
Light Yield in DarkSide-10: a Prototype Two-phase Liquid Argon TPC for Dark
Matter Searches

D. Akimovk, T. Alexanderd, D. Altona, K. Arisakav, H.O. Backm, P. Beltramev, J. Benzigerl, A. Bolozdynyak,
G. Bonfinii, A. Brigattir, J. Brodskym, L. Cadonatix, F. Calapricem, A. Candelai, H. Caom, P. Cavalcantei,

A. Chavarriam, A. Chepurnovj, S. Chidzikm, D. Clinev, A.G. Coccos, C. Condonm, D. D’Angelor, S. Daviniw, E. De
Haasm, A. Derbinn, G. Di Pietror, I. Dratchnevn, D. Durbenb, A. Emplw, A. Etenkok, A. Fanv, G. Fiorillos,

K. Fomenkoi, F. Gabrielem, C. Galbiatim, S. Gazzanai, C. Ghagp, C. Ghianoi, A. Gorettim, L. Grandim,∗, M. Gromov1,
M. Guane, C. Guoe, G. Guraym, E. V. Hungerfordw, Al. Iannii, An. Iannim, A. Kayunovn, K. Keeterb, C. Kendziorad,
S. Kidnery, V. Kobychevf, G. Kohm, D. Korablevh, G. Korgaw, E. Shieldsm, P. Lie, B. Loerd, P. Lombardir, C. Loveo,

L. Ludhovar, L. Lukyanchenko1, A. Lundx, K. Lungv, Y. Mae, I. Machulink, J. Maricicc, C.J. Martoffo, Y. Mengv,
E. Meronir, P.D. Meyersm, T. Mohayaim, D. Montanarid, M. Montuschii, P. Mosteirom, B. Mountb, V. Muratovan,

A. Nelsonm, A. Nemtzowx, N. Nurakhovk, M. Orsinii, F. Orticat, M. Pallaviciniq, E. Panticv, S. Parmeggianor,
R. Parsellsm, N. Pellicciat, L. Perassoq, F. Perfettos, L. Pinskyw, A. Pocarx, S. Pordesd, G. Ranuccir, A. Razetoi,

A. Romanit, N. Rossii,m, P. Saggesei, R. Saldanhai, C. Salvoq, W. Sandsm, M. Seigaru, D. Semenovn,
M. Skorokhvatovk, O. Smirnovh, A. Sotnikovh, S. Sukhotink, Y. Suvorovv, R. Tartagliai, J. Tatarowiczo, G. Testeraq,
A. Teymourianv, J. Thompsonb, E. Unzhakovn, R.B. Vogelaary, H. Wangv, S. Westerdalem, M. Wojcikg, A. Wrightm,

J. Xum, C. Yange, S. Zavatarelliq, M. Zehfusb, W. Zhonge, G. Zuzelg

(DarkSide Collaboration)

aPhysics and Astronomy Department, Augustana College, Sioux Falls, SD 57197, USA
bSchool of Natural Sciences, Black Hills State University, Spearfish, SD 57799, USA

cDepartment of Physics, Drexel University, Philadelphia, PA 19104, USA
dFermi National Accelerator Laboratory, Batavia, IL 60510, USA

eInstitute of High Energy Physics, Beijing 100049, China
fInstitute for Nuclear Research, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine

gSmoluchowski Institute of Physics, Jagellonian University, Krakow 30059, Poland
hJoint Institute for Nuclear Research, Dubna 141980, Russia

iLaboratori Nazionali del Gran Sasso, SS 17 bis Km 18+910, Assergi (AQ) 67010, Italy
jSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

kNational Research Centre Kurchatov Institute, Moscow 123182, Russia
lChemical Engineering Department, Princeton University, Princeton, NJ 08544, USA

mPhysics Department, Princeton University, Princeton, NJ 08544, USA
nSt. Petersburg Nuclear Physics Institute, Gatchina 188350, Russia

oPhysics Department, Temple University, Philadelphia, PA 19122, USA
pDepartment of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
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rPhysics Department, Università degli Studi and INFN, Milano 20133, Italy
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Abstract

As part of the DarkSide program of direct dark matter searches using liquid argon TPCs, a prototype detector with
an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran
Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as
photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured
the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined
with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range
122-1275 keV, we get consistent light yields averaging 8.887±0.003(stat)±0.444(sys) p.e./keVee. With additional
purification, the light yield measured at 511 keV increased to 9.142±0.006(stat) p.e./keVee.
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1. Introduction

Particle detectors based on liquid argon, first devel-
oped in the 1970’s for calorimetry and tracking [1],
have recently become recognized as an extremely at-
tractive technology for the direct detection of dark mat-
ter [2, 3, 4, 5]. This was in large part due to the strong
pulse shape discrimination (PSD) possible with liquid
argon scintillation [6]. Particle interactions in argon,
inducing excitation and ionization of the medium, lead
to the emission of scintillation light whose time struc-
ture is strongly correlated with the ionization density,
and hence to the nature, of the primary ionizing par-
ticle [7]. This provides a way to detect rare nuclear
recoil events, possibly induced by Weakly Interacting
Massive Particles (WIMPs), a well-motivated galactic
Dark Matter candidate. Such events must be identi-
fied in the presence of an overwhelming background
of low-ionization-density electron-induced events from
background γ and β radioactivity. With sufficient pho-
ton statistics, PSD can allow discrimination of nuclear
recoil events from electron-induced background events
at better than 10−8 [4, 6, 8, 9]. If realized in a low-
background detector, this offers a natural route to a sen-
sitive dark matter search.

Because the efficiency of the PSD is so strongly de-
pendent on the number of detected scintillation photons,
much of the recent R&D activity in the field has been
aimed at improving the light collection of liquid argon-
based detectors.

The DarkSide project is a direct detection dark matter
search at Laboratori Nazionali del Gran Sasso (LNGS).
It will be based on the use of a two-phase Time Projec-
tion Chamber (TPC) of liquid argon from underground
sources, strongly depleted in the naturally occurring
39Ar radioisotope [10]. The detector will be coupled
with a borated liquid scintillator neutron veto, resulting
in a detector capable of achieving background-free op-
eration in an extended run [2, 11].

DarkSide-50, with an active mass of 50 kg, will be the
first physics-capable detector in the DarkSide program.
It is currently under construction, with commissioning
planned for the end of 2012. In order to develop and op-
timize the two-phase argon time projection technology,
a dedicated 10-kg prototype (DS-10) has been built at
Princeton University. After seven months of running at
Princeton, the DS-10 detector was deployed to LNGS
during the spring of 2011. We report measurements of

∗Corresponding author
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its light yield, performed during the first underground
data campaign, July-December, 2011.

2. Scintillation Light

Scintillation in liquid argon results from the radiative
decays of excited molecular dimers Ar∗2 formed after the
passage of charged particles. An excited dimer may be
formed in either a singlet or a triplet state, which have
very different radiative decay lifetimes, ∼ 7 ns for the
singlet and ∼1.6 µs for the triplet [7]. The relative pop-
ulation of the fast (singlet) and slow (triplet) compo-
nents is strongly correlated with the ionization density
and hence the nature of the primary ionizing particle and
the deposited energy [12]. The typical fraction of the
scintillation light in the fast component is ∼0.7 for nu-
clear recoil events, which are heavily-ionizing, and ∼0.3
for electron-mediated events – this is the basis of pulse
shape discrimination.

The rejection power achievable by PSD is strongly
affected by the amount of light detected. This is due to
the growing statistical precision with which the fast and
slow component populations can be determined for any
event type as the total number of detected photons in-
creases. Consequently, the overall light collection and
detection efficiency becomes a crucial figure of merit
for the performance of these detectors. With the com-
mon use of photomultiplier tubes (PMTs) as light sen-
sors, the overall light yield is often expressed in terms
of the number of detected photoelectrons (p.e.) per keV
of energy deposited in the argon. This number, which
in general depends on the nature of the ionizing parti-
cle and on the applied electric field, is usually quoted
for electron recoil events at null field, and expressed in
units of p.e./keVee (for “electron equivalent” energy). In
absolute terms, the detector light yield can be compared
to the raw photon yield in liquid argon, ∼40 scintilla-
tion photons per keVee deposited [13]. This scintillation
light is peaked in the UV at 128 nm.

We measure the light yield of the DS-10 detector
by studying the scintillation spectra from radioactive γ
sources deployed outside the cryostat. By normalizing
the integrated signal on each PMT to the average inte-
gral corresponding to a single photoelectron, the light
yield of the detector can be estimated from the spectral
features of γ sources.

3. The DS-10 Detector

The DarkSide-10 detector, shown in Fig. 1, is a two-
phase (liquid and gas) TPC [14], incorporating several
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Figure 1: Vertically-sectioned drawing of the DS-10 detector. For
clarity the bubbler and the boiler tubes, described in the text, are not
shown.

innovative design features intended to improve stabil-
ity, simplicity, and performance. The device consists of
an acrylic/fused silica vessel which contains the two-
phase sensitive region. This “inner vessel” is com-
pletely immersed in a liquid argon (LAr) bath contained
in a vacuum-insulated stainless steel Dewar. The PMTs
are in the outer LAr bath, viewing the active volume of
LAr through the inner vessel.

The inner vessel consists of an open-ended acrylic
cylinder of 23.5 cm height, 24.1 cm inner diameter, and
1.9 cm wall thickness, sealed by PTFE-encapsulated
steel-spring Creavey o-rings at the top and bottom to
fused silica windows, 1.3 cm thick. The cylinder and
windows are clamped together by a cage of spring-
loaded, 0.95-cm-diameter stainless steel rods. The re-
sulting seal is sufficiently “bubble tight” to contain the
argon gas pocket required for two-phase operation.

The gas for the pocket is produced in a tube running
vertically alongside the acrylic cylinder. LAr purified in
the recirculation loop (see below) enters the tube and is
boiled by a resistor operating at a fraction of a watt. A

connecting pipe delivers the gas to the top of the inner
vessel. The gas-liquid interface level is passively main-
tained 2.0 cm below the top fused silica window by a
bubbler tube that vents gas from the pocket and ends
in the LAr bath at the desired height. The liquid level is
continuously measured by a set of discrete Pt-1000 ther-
mistors and a capacitive level sensor in the boiling tube.
Under normal operating conditions, including gas recir-
culation to the inner and outer vessels, the fluctuations
in inner vessel liquid level are < 1mm.

The active volume of the detector, 21 cm in diameter,
is defined by a reflector lining the acrylic cylinder. The
reflector is made of overlapping sheets of 3M Vikuiti
ESR [15], a multilayer plastic foil, mounted inside a
PTFE frame.

To detect the 128 nm argon scintillation light, we
use the wavelength shifter tetraphenyl butadiene (TPB),
with a peak emission wavelength of 420 nm [16]. The
TPB fluorescence decay time is ∼1.8 ns, short compared
to the 7 ns fast component of the LAr scintillation [17].
TPB is deposited by vacuum evaporation onto the re-
flector lining the acrylic cylinder and the inner surfaces
of the fused silica windows. The stainless steel mesh
separating the electron drift and extraction regions of
the TPC (described below), a few cm2 of the reflector
covered by α sources, and small gaps at the edges of
the reflectors caused by differential thermal contraction
are the only non-TPB-coated surfaces seen by the UV
scintillation light from the active argon volume.

Measurements in a vacuum-UV spectrophotome-
ter suggested an optimum TPB thickness of about
200 µg/cm2, a tradeoff between high UV-to-visible con-
version efficiency and low absorption of the visible
light. The reflector and windows were coated with 175-
200 and 200-230 µg/cm2 of TPB, respectively. The
evaporations were performed in a large high-vacuum
chamber using a Knudsen effusion cell. The typical
vacuum level reached prior to the evaporation was (2-
7)×10−8 torr. After the evaporation the parts were kept
in sealed bags filled with dry argon. During the de-
tector assembly we took care to minimize exposure of
TPB-coated surfaces to air, since degradation was noted
during optical-bench testing. We accomplished this by
flushing the inner vessel with argon gas throughout the
assembly procedure. The fused silica windows were
coated about three months before the measurements re-
ported here began. The reflecting foils were coated 9
months before the run and were used in the preceding
3-month run in Princeton.

Wavelength-shifted scintillation light is collected
by two arrays of seven Hamamatsu high-quantum-
efficiency R11065 3” PMTs [18], viewing the active
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volume through the top and bottom fused silica win-
dows. A ∼ 1 mm layer of LAr optically couples the
PMTs to the windows. These fused-silica-window,
metal-bulb tubes are operated at negative HV and are
electrically insulated from the surrounding materials
with PTFE spacers. The PMTs have Hamamatsu-
reported room-temperature quantum efficiencies at 420
nm ranging from 30.4 to 35.7%, with an average of
33.9%. They are run at a typical gain of 4 × 106 with
lines terminated in 50 Ohm at both ends. To enhance the
light collection, the spaces between the phototubes are
filled with 1.3-cm-thick PTFE reflectors, and the small
exposed areas of the stainless steel endplates are cov-
ered with 3M Vikuiti foil.

To allow the device to be operated as a time projec-
tion chamber, the inner vessel is equipped with a set of
high voltage electrodes and a distribution system to pro-
vide the necessary electric fields in the sensitive volume
to drift electrons to the surface of the liquid, to extract
them into the gas, and to accelerate them through the gas
producing a secondary scintillation signal proportional
to the collected ionization. The electrodes fixing the po-
tential at boundaries of the chamber are: a transparent
Indium Tin Oxide (ITO) cathode on the inner surface
of the bottom window, a kapton flexible printed circuit
board with overlapping etched copper strips alternat-
ing between the two sides wrapped around the acrylic
cylinder, an etched stainless steel grid 5 mm below the
liquid-gas surface, and an ITO anode on the bottom sur-
face of the top window. For TPC operation, the anode
is grounded and independently-controllable voltages on
the cathode and grid set the drift and extraction fields,
while a chain of resistors between the copper strips cre-
ates the graded potential that keeps the drift field uni-
form. To shield the negatively-biased PMT photocath-
odes from the voltages applied to the anode and cathode,
each fused silica window carries a second ITO layer on
its external face. These are maintained at approximately
the average of the PMT photocathode voltages.

To obtain the light yield measurements presented
here, the TPC anode, grid, and cathode as well as the
field shaping copper strips have all been kept at ground
potential, giving null drift, extraction, and multiplica-
tion fields. In the rest of the paper this will be referred
as the null field configuration. In this configuration the
device operates as a pure LAr scintillation detector. The
TPC system nonetheless affects the scintillation optics.
The measurements presented here were made with the
gas pocket present, and the gas pocket affects the light
propagation, primarily through total internal reflection
in the LAr. The grid is a 100-µm-thick stainless steel
membrane etched with a hexagonal pattern of through

holes 0.5 cm on a side, with an optical transparency
for normally incident light of 89%. The ITO layers are
15 nm thick, the thinest thought feasible by the vendor.
Since ITO conducts, it has a complex index of refraction
that results in absorption. At 420 nm, calculations give
an absorption of 2% per layer at normal incidence, and
all light must pass through at least two layers to reach
the PMTs.

A 90-W Cryomech PT90 cryocooler is connected to a
cold-head inside the Dewar but outside the inner vessel.
The cold head provides the cooling power needed both
to cool and condense argon gas in the detector during
filling and to control the liquid argon temperature dur-
ing normal operation. The cold-head is instrumented
with a temperature sensor and a 100-W heater which
are part of a feedback loop controlled by a Lakeshore
430 temperature controller. This allows the temperature
of the system to be maintained at the boiling point of
liquid argon (87.8 K) with typical fluctuations less than
0.1K.

Dissolved impurities such as nitrogen, oxygen, and
water are known to strongly affect the scintillation prop-
erties of liquid argon [19, 20]. The purity of the active
argon in DS-10 is established and maintained by a num-
ber of measures. Before the detector is cooled, the de-
war is repeatedly flushed and pumped over several days
at room temperature using research grade (99.999%) ar-
gon gas and a dry turbopump, achieving a final pressure
of about 6 × 10−5 mbar. This removes adsorbed impu-
rities from metal surfaces and reduces subsequent out-
gassing from the internal plastic parts. Research grade
atmospheric1 argon gas is also used for the fill. The
gas is further purified by a single pass through a SAES
MonoTorr PS4-MT3-R1 getter which is sized and con-
figured to reduce O2, N2, and H2O impurities to sub-ppb
levels [21]. During operation, high argon purity is main-
tained by continuous gas recirculation which forces the
boil-off argon from the Dewar through the MonoTorr
getter before it is re-introduced into the Dewar and re-
liquefied by the cold-head.

4. Data Acquisition

The data acquisition system consists of a set of 12
bit, 250 MS/s, digitizers (CAEN 1720) which record
the signals from each of the 14 photomultiplier tubes
and store them for offline analysis. To trigger the sys-
tem, the anode signal from each PMT is first amplified

1Atmospheric argon is used in this prototype, as opposed to the
39Ar-depleted underground argon being extracted for the DarkSide
dark matter detectors [10].
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tenfold by a LeCroy 612A fast amplifier with two par-
allel outputs. One output goes directly into the digi-
tizer channel which runs continuously, filling a circular
memory buffer. In the digitizer, one sample at one count
represents 0.0078 pC from the PMT. The other output is
used to form a majority trigger. This requires a coinci-
dence, within 100 ns, of at least 5 PMTs with signals
above a threshold that corresponds to roughly two in-
time photoelectrons. When an event satisfies the major-
ity trigger condition, data in the 14 circular buffers rep-
resenting a 35 µs time window (5 µs before the trigger
and 30 µs after), is downloaded to a PC and stored on a
local hard disk. The acquired window length for the null
field configuration has been selected to fully contain the
slow component of the scintillation light, while also in-
cluding relatively large pre- and post-trigger regions to
allow for baseline evaluation.

5. Single-Photoelectron Calibration

The charge response of each PMT to a single photo-
electron is evaluated using a laser calibration procedure,
which was repeated frequently among the data runs an-
alyzed here. Light pulses of ∼ 70 ps duration at 440
nm wavelength from a diode laser are injected into the
detector through an optical fiber that terminates on the
bottom window of the inner vessel. Diffuse reflection
from the TPB leads to a roughly uniform illumination
of the 14 PMTs. The controller pulses the laser at a
rate of 1000 Hz and simultaneously triggers the data ac-
quisition system. Optical filters are placed between the
laser and the fiber to adjust the intensity until the aver-
age number of photoelectrons generated on each tube in
any given trigger, referred to as the average occupancy,
is roughly 0.1. Unlike regular data runs, the digitiza-
tion window for laser runs is only 1.5 µs long. Within
this record, a 0.8 µs period before the pulse arrival time
is used to define the baseline. After subtraction of this
baseline, the integral of the recorded waveform is eval-
uated within a fixed 92-ns window around the arrival
time of the laser pulse. The resulting charge spectrum
for each PMT is then fitted to a model function, allowing
the mean of the single-photoelectron charge response to
be determined.

The fitting function used is

F(x) =

7∑
n=0

P(n; λ) fn(x) (1)

where P(n; λ) is a Poisson distribution with mean λ,
representing the average occupancy, and fn(x) the n-
photoelectron charge (x) response of the system. We
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Figure 2: Example of the charge response spectrum of a single PMT
exposed to low-occupancy laser flashes. The horizontal axis mea-
sures charge in integrated digitizer counts (counts · samples), where
1 count · sample corresponds to a PMT output charge of 0.0078 pC.
The colored curves represent components in the fit function used in the
calibration. Green: pedestal. Dashed Magenta: Gaussian and expo-
nential terms of the single-p.e. model convolved with pedestal. Solid
Magenta: full single-p.e. response convolved with pedestal. Solid
Blue: 2-p.e response. Dotted Blue: ≥ 3-p.e. response. Solid Red:
Sum of all components.

have modeled the n-photoelectron response of the sys-
tem as

fn(x) = ρ(x) ∗ ψn∗
1 (x) (2)

where ρ denotes the zero photoelectron response
(pedestal), ∗ is a convolution, and ψn∗

1 is the n-fold
convolution of the PMT single-photoelectron response
function, ψ1, with itself. The function representing the
pedestal, ρ, the integral in the absence of any photo-
electrons and thus the entire n = 0 term, is described
by a Gaussian, while the PMT single-photoelectron re-
sponse, ψ1, is modeled by the weighted sum of a decay-
ing exponential and a Gaussian truncated at zero,

ψ1(x) =

pE

(
1
x0

e−x/x0
)

+ (1 − pE)G(x; xm, σ) x > 0;
0 x ≤ 0.

(3)

The Gaussian term G(x; xm, σ) represents the single-
photoelectron response from the full dynode chain,
while the exponential term accounts for incomplete
dynode multiplication [22, 23].

The fit is performed with seven free parameters: the
average occupancy λ, the mean and standard deviation
of the pedestal Gaussian, the mean xm and standard de-
viation σ of the single-photoelectron Gaussian, the de-
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cay constant x0 of the single-photoelectron exponen-
tial component, and the relative weight pE between the
single-photoelectron Gaussian and exponential terms.
In order to simplify the computation, for n ≥ 3 the
function ψn∗

1 is approximated by a Gaussian whose mean
and variance are n times that of the single-photoelectron
Gaussian. Figure 2 shows a sample spectrum and fit
for a laser run on a single channel. Due to the pres-
ence of the exponential term, the mean of the single-
photoelectron response is, on average, 13% lower than
that of the Gaussian single-photoelectron component
alone.

6. Event Analysis

For each individual channel, we determine a baseline
and subtract it from the digitized waveform. Because
argon scintillation pulses extend over several microsec-
onds and eventually taper into sparse, individual photo-
electrons, this needs careful treatment. The baseline is
calculated by two different methods. The first, referred
as the linear-baseline method, calculates the average of
the digitized samples in a gate at least 1.0 µs wide before
the trigger in the acquisition window (where no signal
is expected) and, when possible, at the end of it, using
a linear interpolation between these two values as the
baseline in the region in between. If the two values dif-
fer by more than 1 ADC count, the event is rejected.
The second algorithm uses a moving average, over a
window of length 80 ns, to calculate a local baseline
in regions where the waveform fluctuations are consis-
tent with electronic noise. In regions where sharp ex-
cursions are found (such as under scintillation pulses,
including single photoelectrons) the baseline is linearly
interpolated between the nearest quiet intervals. This
moving-average baseline is intended to remove slowly
varying fluctuations, such as possible low-frequency in-
terference.

Once the baseline has been subtracted, the waveform
for each channel is scaled by the corresponding single
photoelectron mean, as obtained from the nearest laser
calibration run. The scaled waveforms from all 14 chan-
nels are then added together to form a summed wave-
form which is further analyzed to identify scintillation
pulses. The scintillation-pulse finding algorithm identi-
fies a pulse start time and end time for the scintillation
signal and, once the start and end times of the pulse are
found, the integral in that interval is evaluated indepen-
dently for each of the 14 scaled channels and these inte-
grals are summed to give an estimate of the total number
of photoelectrons of the scintillation event.

Source Eγ [keV] Iγ % Activity [µCi]
57Co 14.41 9.16

0.9657Co 122.06 85.60
57Co 136.47 10.68
22Na 510.99 180.76 1.0822Na 1274.53 99.94
137Cs 661.66 85.10 0.94

Table 1: γ energies and intensities [24], and activities of sources used.
The 511-keV 22Na line results from positron annihilation resulting in
two back-to-back 511-keV γ rays.

7. Response to Cobalt, Cesium, and Sodium Sources

Events with known energy depositions are obtained
by exposing the detector to a series of external radioac-
tive γ sources. The gamma sources are collimated by
means of a 45.5-mm-thick lead collimator with a 10
mm diameter hole. Three collimator positions along
the vertical direction are used: bottom, central, and top,
corresponding to 20 mm, 105 mm, and 158 mm from
the TPC cathode. Due to the large amount of mate-
rial between the source collimator, located outside the
LAr Dewar, and the active volume, the spectra are de-
graded, leaving full-absorption peaks as the most visible
and reliable features for light yield estimates. Light
yield measurements have been performed with 57Co,
22Na, and 137Cs whose main gamma energies and inten-
sities are summarized in Table 1. The data for a single
spectrum contain about 1,000,000 events taken over a
few hours. Gamma rays interact in the active volume
through Compton scattering and the photoelectric ef-
fect, with events in the full-energy peak typically result-
ing from multiple interactions. Figures 3, 4, and 5 show
the gamma-induced scintillation spectra obtained with
the three sources collimated at the central position, after
subtraction of a background spectrum acquired (Fig. 6)
with no source present and scaled by the ratio of the
livetimes. The events in the plots were analyzed using
the linear-baseline algorithm.

A minimal set of cuts is applied in order to remove
from the spectra:

• events saturating the digitizer ADC of any channel;
• events with a rejected baseline (described above);
• events in which the first found pulse in the acqui-

sition window is not within 100 ns of the trigger
time.

These cuts typically retain >98% of the triggered events.
Looking at the scintillation spectra in Figs. 3-5 it is

evident that, while the Compton edges are degraded, the
full-absorption peaks are very clear. This is consistent
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Eγ µp σp LYγ

[keVee] [p.e.] [p.e.] [p.e./keVee]
122.06 1082.0±2.3 56.80 8.865±0.019
510.99 4486.4±2.5 152.86 8.780±0.007
661.657 6009.6±1.8 186.19 9.083±0.005
1274.53 10961.9±6.7 318.07 8.601±0.007

Table 2: Fitted gamma full-absorption peak mean, width, and light
yield. The error on µp is the statistical error from the fit. The error
on LYγ is the fit error combined with the statistical error on the mean
single-p.e. response.

with expectations from a GEANT4-based Monte Carlo
simulation of the experimental setup, including the ma-
terial between the source and the active volume. The
experimental spectra in the region of the full absorp-
tion peaks are fitted with a Gaussian function with mean
value µp and standard deviation σp. For 22Na and 137Cs,
where the Compton edge and degraded gamma tails are
more significant, a falling exponential term is added to
the fit function. For 57Co the full absorption peaks of the
122 and 136 keV lines are not individually resolved and
hence the spectrum was fit with the sum of two Gaus-
sians. The ratio between the means and variances of
the two Gaussians were fixed to the ratio of the energies
and the ratios of the integrals were fixed to the relative
intensity of the two γ rays (see Table 1). Fitting these
functions to simulated spectra reproduces the true peak
positions to better than 1%. The best-fit functions are
also shown in Figs. 3-5. The best-fit values of the pa-
rameters of interest are summarized in Table 2 together
with the light yield (LYγ), defined for each fit as µp/Eγ.

The measured widths of the full absorption peaks de-
serve a separate discussion. As reference we obtain an
energy resolution of 3.1% (σ) for 662 keV γ rays. The
variance of the detector response, in photoelectrons, to
a mono-energetic energy release can be approximately
described as [25]

σ2
p = σ2

baseline + (1 + σ2
ψ1

) µp + σ2
vol µp

2 (4)

where

• σ2
baseline is the variance of the integrated baseline

over the length of the pulse. It has typical values of
2800 p.e.2;
• σ2

ψ1
is the relative variance of the single-

photoelectron response (see Eq. 3) averaged over
all channels, with a typical value of 0.2;
• σ2

vol is the relative geometrical variance, associated
with spatial non-uniformities in the light collec-
tion of the detector. Due to their different mean
interaction lengths in liquid argon, gammas of dif-
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Figure 3: Scintillation spectrum of 57Co collimated at the central po-
sition after subtraction of a background spectrum. The full absorption
peak has been fit with two Gaussians (see text). The best-fit function
is superimposed on the histogram in the energy range over which the
fit was performed.

ferent energies can probe different regions of the
active volume. Thus, the geometrical variance is
expected to be different for different sources. The
order of magnitude of this term can be qualitatively
compared to the observed variation of LYγ with the
vertical position of the source. 22Na source runs
performed with the collimator located in the top
and bottom positions show, respectively, a decrease
of 4.4% and an increase of 5.6% in the light yield
with respect to the central position. (This asymme-
try agrees with expectations as the vertical sym-
metry of the system is broken by the presence of
the liquid-gas interface and the grid near the top,
both of which favor light collection by the bottom
PMT’s). We note that in full TPC mode, three-
dimensional event reconstruction allows these non-
uniformities in the detector response to be mea-
sured and corrections applied.

From the estimates for the individual terms above, at
662 keV we obtain an energy resolution of ∼ 0.9%
from the baseline and ∼ 1.4% from photoelectron statis-
tics. The residual resolution in the observed response
(∼ 2.6%) is of the same order of magnitude as the es-
timated contribution for the geometrical variance. It
should be noted that Eq. 4 does not account for any addi-
tional variance from multiple Compton scattering (such
as non-linear quenching) or possible non-Poissonian
fluctuations in the distribution of scintillation photons
[26, 27, 28].

Light collection performance has shown good stabil-
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Figure 4: Scintillation spectrum of 137Cs collimated at the central po-
sition after subtraction of a background spectrum. The full absorption
peak has been fit with the sum of a Gaussian and a falling exponential.
The best-fit function is superimposed on the histogram in the energy
range over which the fit was performed.

ity with time. A 22Na calibration run (collimated at the
central position) performed 53 days after the one shown
in Table 2 gives LYγ = 9.142±0.006 p.e./keVee for the
511 keV line. The observed light yield increase of about
4% is likely associated with an improvement in the liq-
uid argon purity due to the running of the purification
system between the two measurements. Argon contam-
inants such as N2 and O2 are known to quench the ar-
gon scintillation light via non-radiative collisional de-
excitation [19, 20]. This process also reduces the ob-
served slow-component lifetime. Figure 7 shows aver-
age scintillation waveforms from the two runs. Inde-
pendent of any particular model, the slow-component
lifetime has clearly improved from the first to the sec-
ond run, suggesting the elimination of de-exciting con-
taminants. The fit to an exponential in the range 1.0-
5.0 µs provides lifetimes of (1.4601±0.0007) µs for the
first run and (1.5349±0.0008) µs for the second, where
the errors are statistical only. A simple model with an
absolute-purity slow-component lifetime of 1.6 µs, pre-
dicts that this increase in lifetime would correspond to
an increase in total light yield of 3.8%, in good agree-
ment with that observed.

Several sources of systematic uncertainty have been
considered and are summarized in Table 3. As discussed
in Sec. 6, the algorithm used to evaluate the baseline
affects the integral of the digitized signals. A study of
the effect of the baseline algorithm on simulated data
has shown that the moving-baseline algorithm tends to
underestimate the true integral for events with a large
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Figure 5: Scintillation spectrum of 22Na collimated at the central po-
sition after subtraction of a background spectrum. The full absorption
peaks at 511 keV and 1274 keV have been fitted with the sum of a
Gaussian and a falling exponential. The best-fit functions are super-
imposed on the histogram in the energy ranges over which the fits
were performed.

number of photoelectrons. Nonetheless, we include the
difference in 137Cs light yields between the two baseline
algorithms as a systematic uncertainty in Table 3.

A second source of systematic uncertainty is the func-
tion modeling the spectrum. One component of this un-
certainty is the use of an exponential to model the spec-
trum under the Gaussian in the full-absorption-peak fits.
We conservatively estimate this uncertainty by re-fitting
the 137Cs peak with a Gaussian only. The observed vari-
ation in the fit result is 0.07%. A contribution of the
same order is attributed to the background subtraction,
estimated by re-fitting the 137Cs spectrum without sub-
tracting the background. Fitting simulated 137Cs and
22Na spectra with the same Gaussian+exponential used
on data shows systematic displacement of the fitted peak
from the true value, typically 0.7%. We combine these
three components into the “Fit function” entry in Ta-
ble 3.

In the fit of the single-photoelectron spectrum, the pa-
rameters of the exponential term have shown some in-
stability when noise increases the pedestal width. This
can result in sizable excursions in individual channels.
To explore this, we measured the values of the exponen-
tial parameters for each PMT using a single laser run,
chosen to be relatively clean. The full laser calibration
was redone with these parameters fixed and the calibra-
tion was used to reanalyze the source spectra. Shifts of
up to 0.5% are observed in the resulting light yields and
we assign this as a systematic error. We vary the spec-
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Figure 6: Background spectrum acquired with no calibration sources
present.

Source [%]
Baseline algorithm 4.9

Fit function 0.7
Single photoelectron 1.0

Total 5.0

Table 3: Systematic uncertainties in light yield measurement [%]

trum binning and the integration region to estimate sys-
tematic uncertainties associated with the mechanics of
the single-photoelectron fit. These variations have ∼1%
effects on the light yield estimate and, combined with
the systematic uncertainty from the exponential term,
are included in Table 3.

8. Conclusions

The light yield reported here greatly exceeds that
measured in the previous run of DS-10, about
4.5 p.e./keVee. Since the previous run, a number of
modifications were made to the detector. The most rel-
evant of these were the replacement of the bottom PMT
array and the replacement of the top and bottom win-
dows. In the previous run, the bottom PMT array con-
sisted of a single 8” Hamamatsu R5912-02 PMT. This
was replaced with an array of 7 3” R11065s, matching
the top array. The new array had less photocathode cov-
erage (partly compensated by filling the gaps between
the 3” PMTs with PTFE reflectors), but much higher
quantum efficiency (averaging 33.9% vs. 18%). In the
previous run, the windows were acrylic, with 100-nm-
thick ITO on both sides. A 100 nm ITO layer is cal-
culated to absorb 10% of 420 nm light at normal inci-
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Figure 7: Average scintillation waveforms from a single PMT in
0.2 µs bins. The waveforms are from two 22Na run collimated at the
central position, one (red) taken 53 days after the other (black). There
has been a clear increase in the slow-component lifetime between the
runs. The change in the leading edge at the left of the plot is thought
to be due to a small change in the trigger timing.

dence, with a large effect on the light yield when mul-
tiple passes and non-normal incidence were considered.
However, thinner coatings were not recommended on
acrylic. The replacement windows, fused silica with 15-
nm ITO, were expected to provide considerably better
light yield.

As described in Sec. 5 the light yields reported here
depend directly on the single-photoelectron calibration,
in which the response was fitted to the single-p.e. model
of Eq. 3. The first, exponential, term lowers the single-
p.e. mean, and thus raises the inferred number of p.e. in
a signal of a given integrated charge. The presence of
such a term in the single-p.e. response of the PMT’s is
motivated by structure below the single-p.e. peak ob-
served to be correlated with laser activity. However, its
inclusion in the light yield may not be appropriate for
all applications, notably those that count single photo-
electrons above some threshold. As discussed in Sec. 5,
including less of the exponential term is at most a 13%
effect.

The light yield achieved in DarkSide-10,
9.142±0.006(stat)±0.457(sys) p.e./keVee after the
purification campaign, is well in excess of the
6 p.e./keVee proposed in Reference [6] and assumed in
the background calculations for the 50-kg DarkSide-
50 [2], now under construction. It demonstrates that
excellent light yield can be achieved in the elaborate
structure of a TPC.
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