
FERMILAB-PUB-12-618-EPrepared for submission to JHEP
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1 IntrodutionTheory preditions for inlusive jet and dijet ross setions in hadron-hadron ollisions at�xed order in perturbative Quantum Chromodynamis (pQCD) are urrently available atnext-to-leading order (NLO) in the strong oupling onstant αs. Using preise experimentaldata, these preditions have been well tested and applied in determining the parton distri-bution funtions (PDFs) of the proton, and αs [1℄. Diret tests of pQCD at higher ordersrequire measurements of quantities probing multi-jet �nal states with three or more jets.Quantities in whih a ross setion for the prodution of three or more jets is normalizedby a dijet ross setion (or an inlusive jet ross setion) are ideal for αs determinations.These quantities are still sensitive to the degrees of freedom in the multi-jet �nal stateand, in pQCD, proportional to (at least) O(αs), while the PDF sensitivity exhibited by atypial multi-jet ross setion [2℄ an be strongly redued. Examples of suh quantities arethe ratio of the inlusive three jet and dijet ross setions, R3/2 [3, 4, 5℄, and the averagenumber of neighboring jets, R∆R, whih has reently been proposed, measured, and usedto determine αs [6℄.A third related quantity is the dijet azimuthal deorrelation, whih studies the relativeangle in the azimuthal plane between the two jets with the highest transverse momentum(pT ) ∆φdijet = |φjet1−φjet2|. In alulations at O(α2

s), dijet events have exatly two jets withequal pT , and their azimuthal angles are orrelated suh that ∆φdijet = π. Deviations from
∆φdijet = π (hereafter referred to as �azimuthal deorrelations�) are aused by additional� 1 �
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Figure 1. A sketh of the angle ∆φdijet in the azimuthal plane, in dijet events for di�erent amountsof additional radiation outside the dijet system.radiation whih is not lustered into the two highest pT jets. Additional radiation withsmall pT redues ∆φdijet by a small amount, while high-pT radiation an redue ∆φdijetsigni�antly thereby leading to larger azimuthal deorrelations as illustrated in �gure 1.Due to kinemati onstraints, three-jet �nal states are restrited to ∆φdijet > 2π/3, whilethe phase spae of ∆φdijet < 2π/3 is only aessible in �nal states with at least four jets.The DØ ollaboration has introdued the quantity (1/σdijet) · dσdijet/d∆φdijet, whihis the dijet ross setion di�erentially in ∆φdijet, normalized by the inlusive dijet rosssetion σdijet (in the same kinemati range and integrated over ∆φdijet) [7℄. This quantitywas measured in pp̄ ollisions at √s = 1.96TeV, for di�erent pmax
T requirements, where pmax

Tis the highest jet pT in the event, and for a �xed pT requirement for the seond leading pTjet. For this quantity, the range from small to large azimuthal deorrelations an be used tostudy the transition from soft to hard higher-order pQCD proesses and the measurementresults plaed strong onstraints on Monte Carlo parameters [8℄. The same analysis strategywas later employed by the CMS and ATLAS ollaborations using pp ollision data at √s =

7TeV, thus aessing larger pmax
T [9, 10℄. The ommon approah fouses on the ∆φdijetdependene; the pT dependene is not easily visible in these presentations. Furthermore, inpQCD, dijet azimuthal deorrelations are predited to depend not only on pT , but also onthe rapidities of the two leading pT jets. The measurements by the DØ, CMS, and ATLASollaborations, however, did not explore the rapidity dependene.In this artile, we propose a new quantity R∆φ for studying dijet azimuthal deorrela-tions with emphasis on the rapidity and the pT dependene.1 The former aspet will allowus to perform novel tests of the pQCD preditions, while the latter an be exploited fordeterminations of αs and its running. The artile is strutured as follows: In setion 2we motivate the variables used to study the rapidity and pT dependenies, and we givethe de�nition of R∆φ. In addition, we propose realisti senarios for phase spae regions inwhih R∆φ an be measured by the LHC and the Tevatron experiments. Theory preditionsfor these senarios are presented in setion 3, inluding perturbative and non-perturbativeontributions. The possible impat of R∆φ measurements on determinations of αs and onMonte Carlo tuning is disussed in setion 4.1Some initial studies for experimental measurements of R∆φ have been made in referenes [11, 12℄.� 2 �
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Figure 2. Jet rapidity variables in the transverse plane in the dijet enter-of-mass frame and inthe hadron-hadron enter-of-mass frame.2 De�nition and Phase Spae SenariosThe quantities R3/2 [3, 4, 5℄ and R∆R [6℄ are de�ned as ratios of multi-jet ross setions.These ratios an be interpreted as the onditional probability that an event with two high-
pT jets also ontains a third jet (R3/2) and as the average number of neighboring jets for agiven jet (R∆R). We propose to study dijet azimuthal deorrelations, using a quantity witha similar intuitive interpretation. For this purpose we introdue the quantity R∆φ. Beforewe de�ne R∆φ, we motivate the variables used to study the rapidity and pT dependenies.In addition, we propose realisti senarios for measurements of R∆φ at the LHC and theTevatron.2.1 Variables for the Rapidity and pT DependeneThe Rapidity Variable One of the main goals for the new quantity R∆φ is to measurethe rapidity dependene of dijet azimuthal deorrelations. The previous analyses [7, 9, 10℄applied rapidity requirements for both jets in the hadron-hadron enter-of-mass frame (i.e.the lab frame). In general, this frame is, however, longitudinally boosted with respetto the enter-of-mass frame of the hard subproess (orresponding to yboost), as shown in�gure 2. In the approximation of 2 → 2 proesses, the rapidities y∗1 and y∗2 (in the dijetenter-of-mass frame) have the same magnitude (y∗ ≡ |y∗1| = |y∗2 |), and are related to therapidities y1 and y2 (in the hadron-hadron enter-of-mass frame) by

y1 = y∗1 + yboost and y2 = y∗2 + yboost . (2.1)We propose to measure the rapidity dependene of R∆φ as a funtion of the variable y∗ fora �xed requirement for the variable yboost. Both variables are given by
yboost = (y1 + y2)/2 and y∗ = |y1 − y2|/2 , (2.2)where y1 and y2 are the respetive rapidities of the two leading pT jets in the event.The pT Variable In the leading logarithmi approximation, an n-parton �nal state anbe regarded as emerging from a two-parton �nal state through suessive branhing, asdisplayed in �gure 3 for three- and four-parton �nal states. In this piture, a quantity suh� 3 �
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Figure 3. Skethes of the azimuthal plane in whih a three-parton (a) and a four-parton �nal state(b) emerge from a two-parton �nal state through parton-branhing, and the relations of di�erentvariables before and after the branhing. The variable HT is approximately preserved in theseproesses.as R3/2 may be interpreted as the branhing probability from two to three �nal state partons(for partons whih have a su�ient angular separation to be resolved as individual jets,aording to the jet de�nition). However, this interpretation only holds if the quantity isbinned in a �pT -type� variable that does not hange its value before and after the branhingof the third parton. Examples of suh variables are the leading jet pT , or, approximately,
HT (de�ned as the salar pT sum over all jets in an event). A ounter example is thevariable H

(2)
T = (pT1 + pT2), de�ned as the salar pT sum of the two leading jets, whihis redued after the branhing displayed in �gure 3 (a). For a quantity like the ratio ofinlusive four-jet and dijet ross setions, R4/2, the leading jet pT ould also be redued,e.g. by a branhing as displayed in �gure 3 (b).In the measurement of dijet azimuthal deorrelations, the angle ∆φdijet is a�eted notonly by the third jet but by all additional radiation in the event. Therefore variables like

pmax
T or H

(2)
T are not suited if we want to interpret the ratio R∆φ as the probability for partonbranhing. Only the value of HT is approximately onserved after the branhing proesses.With an ideal detetor and in a lean environment, one might want to de�ne HT as thesalar pT sum of all jets in the event, without any pT or y requirements. In pratie, onehas a limited detetor y aeptane, a limited knowledge of the detetor response for low pTjets, plus ontributions from the underlying event. Therefore it is advisable to restrit the

pT sum in the HT de�nition to jets whih are well measured, and for whih non-perturbativeontributions are small, by requiring pT i > pTmin. A limited detetor y aeptane an betaken into aount by requiring that the jets are ontained inside this aeptane region.Sine we study the rapidity dependene based on y∗ whih is longitudinally boost invariant,we would like to preserve this property also for the HT de�nition. Therefore the jet seletionis not based on the absolute jet rapidities |yi| in the lab frame, but on the longitudinallyboost invariant quantity |yi − yboost|, and HT is omputed as
HT =

∑

i∈C

pT i , (2.3)
� 4 �



based on all jets in the set C whih is de�ned as
C = { i | 1 ≤ i ≤ njet; and pT i > pTmin; and |yi − yboost| < y∗max} . (2.4)In this de�nition, njet is the total number of jets in the event, and pTmin and y∗max areparameters whih an be hosen aording to the experimental environment. The value of

y∗max should be hosen at least as large as the maximum aessible y∗ for two leading pTjets, to ensure that these are always members of the set C, and therefore inluded in the
HT sum.2.2 De�nition of R∆φWith the riteria above, we propose to study dijet azimuthal deorrelations using the newquantity R∆φ, whih represents the fration of all inlusive dijet events for whih the twoleading pT jets have a deorrelation of ∆φdijet < ∆φmax. It is de�ned as

R∆φ(HT , y∗,∆φmax) =

d2σdijet(∆φdijet<∆φmax)
dHT dy∗

d2σdijet(inlusive)
dHT dy∗

. (2.5)The denominator, d2σdijet(inlusive)/(dHT dy∗), is the ross setion for the prodution oftwo or more jets, with pT > pTmin, and yboost < ymax
boost, double di�erentially in the variables

y∗ and HT . The numerator, d2σdijet(∆φdijet < ∆φmax)/(dHT dy∗), is a subset of the denom-inator with the additional requirement that the two leading pT jets have ∆φdijet < ∆φmax.The quantity R∆φ is measured as a funtion of the parameter ∆φmax, and in bins of y∗ and
HT , and therefore expressed as R∆φ(HT , y∗,∆φmax).It may be onvenient to introdue an additional requirement of an HT -dependent lowerlimit on the leading jet pT as pT1 > f · HT , in both the numerator and the denominator.This requirement (whih uts the tail of low leading jet pT ) is neessary in the experimentif events are triggered by inlusive single jet triggers. The value of f should not be toolarge, so as to not restrit the multi-jet phase spae too strongly. We reommend to set
f not larger than f = 1/3, so that the phase spae for 2 → 2 and 2 → 3 proesses is nota�eted.2.3 Phase Spae Senarios for the LHC and the TevatronTo produe spei� theory preditions, we propose two senarios of phase spae regions inwhih R∆φ an be measured at the LHC and the Tevatron. While making realisti hoiesthat take into aount urrent praties by the experiments, we try to keep the two senariosas similar as possible, so that the results an be used to study the √

s dependene of R∆φ.LHC Senario We assume the running onditions of 2012, where the LHC was produing
pp ollisions at √s = 8TeV. Following the hoies by the ATLAS and CMS experiments,jets are de�ned using the anti-kt jet algorithm [13℄, here with a jet radius of R = 0.6 (inthe y-φ plane), whih is within the range of 0.4�0.7 that is used by ATLAS and CMS. Theparameters in the R∆φ de�nition are set to y∗max = 2.0, ymax

boost = 0.5, and pTmin = 100GeV.The additional HT -dependent requirement on the leading jet pT is pT1/HT > 1/3. The� 5 �



LHC Tevatron
pp at √s = 8TeV pp̄ at √s = 1.96TeVjet algorithm anti-kt, R = 0.6 Run II one, Rcone = 0.7

pTmin (xTmin) 100GeV (0.0250) 30GeV (≈ 0.0306)
ymax
boost 0.5 0.5
y∗max 2.0 2.0

pT1/HT > 1/3 > 1/3

∆φmax 7π/8, 5π/6, 3π/4 7π/8, 5π/6, 3π/4

y∗ ranges 0.0�0.5, 0.5�1.0, 1.0�2.0 0.0�0.5, 0.5�1.0, 1.0�2.0
HT range 750�4000GeV 180�900GeVTable 1. Summary of the phase spae de�nitions for the LHC and the Tevatron senarios.

y∗max and ymax
boost requirements ensure that the two leading pT jets and all other jets enteringthe HT sum are well-ontained in the detetor, within |y| < 2.5. The pTmin requirementensures that all jets are well measured in the experiment, and that pileup ontributions andnon-perturbative orretions are small. For studies of the √

s dependene of R∆φ, we notethat the pTmin requirement translates to a requirement for the saling variable xT = 2pT /
√

sof xTmin = 0.025. The parameter ∆φmax is set to 7π/8, 5π/6, or 3π/4, and the y∗ regionsare hosen as 0 < y∗ < 0.5, 0.5 < y∗ < 1, and 1 < y∗ < 2. The HT dependene is studiedover the range 750 < HT < 4000GeV.Tevatron Senario In Run II, the Tevatron ollided protons and anti-protons at √s =

1.96TeV. For the majority of the jet results, the CDF and DØ experiments use iterativeseed-based one algorithms with a one of radius Rcone = 0.7 in y and φ. For these studies,we apply the Run II midpoint one jet algorithm [14℄ that is used by DØ. We use the samevalues for the parameters y∗max, ymax
boost, and ∆φmax, the idential y∗ regions, and the same

pT1/HT requirement as in the LHC senario. The only di�erenes are the value of the pTminrequirement, whih is set to pTmin = 30GeV, and the HT range of 180�900GeV. The pTminrequirement translates to a requirement for the saling variable of xTmin ≈ 0.0306, whih isslightly higher than the orresponding requirement in the LHC senario (of xTmin = 0.025).However, we use this value beause it orresponds to the lower pT requirements used inreent multi-jet measurements at the Tevatron [5, 6℄The parameters, de�ning the phase spae for the LHC and the Tevatron senarios aresummarized in table 1.3 Theory Preditions and their PropertiesIn this setion, we ompute the perturbative and the non-perturbative ontributions for
R∆φ and investigate their properties. We ompare the preditions for the LHC and theTevatron senarios, and investigate the di�erenes due to the di�erenes in √

s, and due tothe slightly di�erent phase spae requirements.All theory results have been obtained using the implementations of the anti-kt and theDØ Run II one jet algorithms in fastjet [15, 16℄.� 6 �
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Figure 4. The NLO pQCD preditions for R∆φ as a funtion of (HT /
√

s), and in regions of
y∗ (olumns) and for di�erent ∆φmax requirements. The results are shown for the LHC and theTevatron senarios, and for a LHC-like senario in whih the LHC senario is saled to √

s = 2TeVand modi�ed to pp̄ ollisions.3.1 NLO pQCD PreditionsThe NLO (LO) pQCD preditions for R∆φ are omputed by taking the ratios of theNLO (LO) pQCD preditions for the ross setions in the numerator and the denomi-nator in eq. (2.5). The denominator is the inlusive dijet ross setion for whih the NLO(LO) predition is omputed at O(α3
s) (O(α2

s)). Due to the additional requirement of
∆φdijet < ∆φmax, the numerator reeives only ontributions from �nal states with three ormore jets. Therefore, the numerator is a three-jet ross setion for whih the NLO (LO)predition is omputed at O(α4

s) (O(α3
s)). All NLO and LO pQCD results are omputedusing nlojet++ [17, 18℄, interfaed to fastnlo [19℄. The alulations are made in the MSsheme [20℄ for �ve ative quark �avors, and using the next-to-leading logarithmi (two-loop) approximation of the renormalization group equation. The value of αs(MZ) = 0.118is used onsistently in the matrix elements and in the MSTW2008NLO PDF sets [21℄. Theentral hoie µ0 for the renormalization and fatorization sales is µR = µF = µ0 = HT /2.2The results of the NLO alulations for the LHC and the Tevatron senarios are dis-played in �gure 4, where R∆φ is shown as a funtion of (HT /

√
s) in di�erent regions of y∗and for di�erent ∆φmax requirements. In di�erent regions of HT and y∗, and for di�erenthoies of ∆φmax, R∆φ has values in the range 0.012�0.32. In most phase spae regions,

R∆φ dereases with inreasing HT , exept at 1 < y∗ < 2 where R∆φ inreases again at high2At LO, this hoie oinides with the ommon hoies of µR,F = pT for inlusive jet prodution and
µR,F = (pT1 + pT2)/2 for dijet prodution. � 7 �



HT . At �xed HT , R∆φ inreases with inreasing y∗. The fat that R∆φ dereases withdereasing ∆φmax is a trivial phase spae e�et, sine a stronger ∆φdijet requirement leadsto a smaller ross setion in the numerator.For a �xed xTmin requirement and at �xed (HT /
√

s), the √
s dependene of the per-turbative results for R∆φ is only introdued through the evolution of αs and the PDFs withthe sales µR and µF . In �gure 4, the √

s dependene of R∆φ annot diretly be judgedbased on the omparison of the LHC and the Tevatron senarios, as the two di�er in the
xTmin requirement and in the jet algorithm. The following study is made to separate thelatter e�ets from the genuine √

s dependene of R∆φ. Using the �exibility provided byfastnlo, we use the fastnlo oe�ient tables for the LHC senario (for pp ollisions at√
s = 8TeV) to ompute the orresponding preditions for pp̄ ollisions at the same √

s.The results for the latter (not shown in �gure 4) agree with those for the LHC senariobetter than 0.8% for HT < 2TeV and always better than 3.2% in the phase spae studied,meaning that R∆φ is insensitive to the di�erene between pp and pp̄ initial states. Then weuse the fastnlo results for the LHC senario to ompute the orresponding preditions fora LHC-like senario (i.e. using the same jet algorithm and the same xTmin requirement) for
pp̄ ollisions at √s = 2TeV. These preditions are shown in �gure 4 as the dotted line. The
R∆φ results at √s = 2TeV are 10�20% higher than those at 8TeV. This √s dependene isonsistent with the running of αs over a fator of four in energy.3 For ∆φmax = 7π/8 and
5π/6, the results for the LHC-like senario agree within 5% with those for the Tevatronsenario. Only for ∆φmax = 3π/4 the di�erenes beome larger (slightly more than 10%at y∗ > 1). From this we onlude that, even with di�erent jet algorithms and slightlydi�erent xTmin requirements, a omparison of Tevatron and LHC data is probing the √

sdependene of R∆φ and testing the orresponding theory preditions.In the following, we investigate the NLO k-fators and the sale dependene as india-tors for the stability of the perturbative expansion, and we study the PDF unertainties for
R∆φ. The NLO k-fators are omputed as the ratio of the NLO and the LO preditions,
k = RNLO

∆φ /RLO
∆φ. The values of the k-fators are displayed in �gure 5 as a funtion of

(HT /
√

s), for the LHC and the Tevatron senarios. For ∆φmax = 7π/8 and 5π/6, the k-fators for the LHC and the Tevatron are always lose to unity; they derease slightly withinreasing y∗ and are almost independent of HT . Due to kinemati onstraints, the regionof ∆φdijet < 2π/3 is only aessible in four-jet �nal states. For this reason, the kinematiregion of ∆φmax = 3π/4 also reeives large ontributions from four-jet prodution whih areonly modeled at LO by the O(α4
s) alulation for the numerator of R∆φ. This is re�etedin the large NLO k-fators for ∆φmax = 3π/4 whih are as large as k = 1.5 at lower HT .The unertainties due to the sale dependene are omputed from the relative variationsof the R∆φ results when µR and µF are varied independently around µ0 = HT /2 between

µ0/2 and 2µ0 but never exeeding 0.5 ≤ µR/µF ≤ 2.0. These unertainties are displayedin �gure 6 for the LHC and Tevatron senarios. For the LHC (Tevatron) senario, theseunertainties are typially 5% (7%) for ∆φmax = 7π/8 and 5π/6, and up to 19% (17%)3The PDFs approximately anel in the ratio R∆φ, so the µF dependene of the PDFs does not have asigni�ant impat on the √
s dependene of R∆φ. � 8 �
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Figure 7. The hadronization orretions for R∆φ, plotted as a funtion of HT in di�erent y∗regions (olumns) and for di�erent values of ∆φmax (rows), for the LHC and Tevatron senarios.
R∆φ results on di�erent levels, as

cnpert = chadr · cue with chadr =
R

(2)
∆φ

R
(1)
∆φ

and cue =
R

(3)
∆φ

R
(2)
∆φ

. (3.1)Figure 7 shows the hadronization orretions for R∆φ for the LHC and the Tevatronsenarios. The hadronization orretions for the LHC are very small and always be-low 1.5% (0.985 < chadr < 1.00) at all HT , y∗, and for all ∆φmax requirements. Thehadronization orretions for the Tevatron, although slightly larger, are still always below6% (0.94 < chadr < 1.01). The herwig results and the pythia results for the di�erenttunes agree always within 1% (3%), for the LHC (Tevatron) senario.� 11 �
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The total non-perturbative orretions are always in the range 0.98 < cnpert < 1.03(0.96 < cnpert < 1.03) for the LHC (Tevatron) senario. The smallness of these orretionsand their small model dependene are remarkable features of the quantity R∆φ whih makes
R∆φ well-suited for preision tests of pQCD.4 PhenomenologyIn this setion, we disuss two examples of the potential impat of future R∆φ measurementsfor QCD phenomenology.4.1 Sensitivity to αsIn pQCD, R∆φ is omputed as a ratio of three-jet and dijet ross setions, whih is, at LO,proportional to αs. In the following, we study the sensitivity of R∆φ to αs and investigatethe e�ets of theoretial and experimental unertainties on the αs results. These studiesare made in the kinemati region of y∗ < 0.5 and for ∆φmax = 7π/8 where the pQCDpreditions are most reliable (see setion 3.1).In all studies, αs is varied onsistently in the pQCD matrix elements and in the PDFsets. The ontinuous dependene of the NLO pQCD preditions for R∆φ on αs is obtainedusing ubi interpolation between the disrete αs(MZ) values for whih the MSTW2008NLOPDFs sets are available.4 Where needed, αs(MZ) is onverted from the sale µR = MZ tothe sale µR = HT /2, using the two-loop solution of the renormalization group equation.A �rst impression of the αs sensitivity is obtained by studying the αs(MZ) depen-dene of the NLO pQCD preditions for R∆φ. For this purpose, we plot R∆φ for valuesof αs(MZ) = 0.110�0.130 (labeled R∆φ(αs(MZ))), normalized to the value of R∆φ for
αs(MZ) = 0.1184 (the world average value [1℄) as a funtion of αs(MZ). The results areshown in �gure 9 for three di�erent HT bins, for the LHC and the Tevatron senarios, andare ompared to the naive expetation of a linear relation (R∆φ ∝ αs). Deviations from alinear dependene ould be due to three di�erent e�ets.1. The naive expetation of a linear dependene stems from the LO piture, and ismodi�ed due to NLO orretions.2. The naive expetation assumes a perfet anellation of the PDFs, while residual PDFe�ets may lead to non-linearities.3. While �gure 9 shows the αs(MZ) dependene, the alulations for R∆φ are made forthe sale µR = HT /2, and the relation between αs(µR) and αs(MZ) as a funtion of

αs(MZ) is not linear, and involving logarithms of (µR/MZ).For αs(MZ) . 0.125, in the Tevatron senario, the αs(MZ) dependene of R∆φ is almostlinear for 180 < HT < 205GeV (i.e. where µR = HT /2 ≈ MZ). The derease of the slope(and therefore the inreasing non-linearity) of the urves for higher HT is likely aused bythe third e�et. The hange of the slopes around αs(MZ) ≈ 0.125 is likely aused by the4The MSTW2008NLO PDF sets are available for αs(MZ) = 0.110, 0.111, 0.112, · · · , 0.130.� 13 �
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αs at highest energies.5The presently most preise αs result from a hadron ollider was obtained using theory alulationsbeyond NLO (adding the 2-loop orretions from threshold orretions) and has therefore smaller saleunertainties [34℄. These ontributions are, however, only available for inlusive jet prodution and neitherfor dijet nor for three-jet prodution. � 14 �
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HT , NLO pQCD and the event generators pythia and herwig all predit an inrease of
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