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ABSTRACT

We describe ten strong lensing galaxy clusters of redshift 0.26 ≤ z ≤ 0.56

that were found in the Sloan Digital Sky Survey. We present measurements of

richness (N200), mass (M200) and velocity dispersion for the clusters. We find that

in order to use the mass-richness relation from Johnston et al. (2007), which was

established at mean redshift of 0.25, that it is necessary to scale measured richness

values up by 1.47. Using this scaling, we find richness values for these clusters

to be in the range of 22 ≤ N200 ≤ 317 and mass values to be in the range of 1×

1014h−1M� ≤M200 ≤ 30×1014h−1M�. We also present measurements of Einstein

radius, mass and velocity dispersion for the lensing systems. The Einstein radii

(θE) are all relatively small, with 5.4′′ ≤ θE ≤ 13′′. Finally we consider if there is

evidence that our clusters are more concentrated than ΛCDM would predict. We

find that six of our clusters do not show evidence of overconcentration, while four

of our clusters do. We note a correlation between overconcentration and mass,

as the four clusters showing evidence of overconcentration are all lower-mass

clusters. For the four lowest mass clusters the average value of the concentration

parameter c200 is 11.6, while for the six higher mass clusters the average value of

c200 is 4.4. ΛCDM would place c200 between 3.4 and 5.7.

Subject headings: general — galaxy clusters, gravitational lensing: individual(cluster

overconcentration, Kitt Peak National Observatory, Sloan Digital Sky Survey
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1. Introduction

Galaxy clusters are the largest gravitationally-bound structures in the universe, and

as such, can tell us many things about the origin and structure of the universe. Clusters

indicate the locations of peaks in the matter density of the universe (Allen, Evrard & Mantz

2011) and represent concentrations of dark matter. Galaxy clusters are also places where

gravitational lensing is likely to be observed (e.g., Mollerach & Roulet 2002; Kochanek et

al. 2003). Gravitational lensing in a cluster can provide even more information, giving us a

window not only to the cluster itself but to far more distant source galaxies.

Gravitational lensing, both strong and weak, can be useful in the study of galaxy

clusters. Strong lensing, the formation of multiple resolved images of background objects by

a cluster or other massive object, can be useful as it provides a direct measure of the mass

contained within the Einstein radius of a cluster (Narayan & Bartelmann 1997). Weak

lensing, the systematic but subtle change in ellipticities and apparent sizes of background

galaxies, can also provide a precise measure of the mass of a cluster (e.g., Mollerach &

Roulet 2002; Kochanek et al. 2003).

Galaxy cluster finding is done by using an algorithm based on some known properties

of galaxy clusters (e.g., Berlind et al. 2006; Koester et al. 2007a; Hao 2009; Soares-Santos

et al. 2010). Koester et al. (2007a) describe the maxBCG method, a cluster-finding method

used on the Sloan Digital Sky Survey (SDSS) data. We describe in §3 how we used this

method for cluster galaxy identification.

The dark matter mass distribution of galaxy clusters is well fit by a Navarro-Frenk-

White (NFW) profile (Navarro et al. 1997; Wright & Brainerd 2000). One of the parameters

in the NFW profile is the concentration parameter (here c200), which is a measure of the

halo density in the inner regions of the cluster. The concentration parameter can be directly

measured through weak lensing. The standard cold dark matter cosmology (ΛCDM)
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describes the history of galaxy cluster formation and as such can make predictions (Duffy

et al. 2008) about the value for c200 as a function of cluster mass and redshift. If measured

values for c200 are higher than predictions, then the clusters are said to be overconcentrated.

There have been indications from several groups (Broadhurst et al. 2005; Broadhurst

& Barkana 2008; Oguri et al. 2009; Gralla et al. 2011; Fedeli 2011; Oguri et al. 2012) that

galaxy clusters that exhibit strong lensing are overconcentrated. The overconcentration has

been shown by disagreement between predicted and observed Einstein radii (Gralla et al.

2011) or by disagreement between predicted and observed concentration parameter (Fedeli

2011; Oguri et al. 2012). There are some indications that the overconcentration problem is

most significant in clusters with mass less than 1014h−1M� (Fedeli 2011; Oguri et al. 2012).

This overconcentration problem might indicate that clusters are collapsing more than we

expected (Broadhurst & Barkana 2008). This collapse may be related to baryon cooling,

especially in the central galaxy of the cluster (Oguri et al. 2012).

In this paper we describe a sample of ten galaxy clusters showing evidence of strong

gravitational lensing. These clusters were discovered in the SDSS during a search for strong

lensing arcs. We took follow-up data on these ten systems using the WIYN telescope at Kitt

Peak National Observatory. In this paper we describe our analyses of this data, including

both the properties of the clusters and the properties of the arcs. In §2 we address how

these systems were found and how the data were taken. We provide details regarding the

searches which led to the discovery of these systems and we discuss the observing conditions

at KPNO during the data acquisition. In §3 we discuss identification of cluster members

and measurements of cluster properties. We describe how we used the maxBCG method to

identify cluster members, quantify cluster richness and estimate cluster masses. We also

describe how we found and used a scale factor to scale our richness measurements up to

match those that would be measured in SDSS data. We applied this scaling relation in
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order to use a relation between cluster richness and cluster mass that was calibrated using

SDSS data. Four of our ten systems are also included in Oguri et al. (2012) and so we

compare our results for cluster mass using cluster richness and strong lensing to their mass

values which were found from strong and weak lensing. In §4 we present measurements of

the strong lenses. For the lenses, we present Einstein radii, lens masses and lens velocity

dispersions. In §5 we discuss evidence of overconcentration. We show that most of our

clusters do not show evidence of overconcentration, but several of them do. As the clusters

showing evidence of overconcentration are all low mass clusters, they support recent results

(Oguri et al. 2012; Fedeli 2011) suggesting that the overconcentration problem is most

significant for lower mass clusters.

Throughout this paper, we assume a flat ΛCDM cosmology with Ωm = 0.3,ΩΛ = 0.7

and H0 = 100 h km s−1 Mpc−1.

2. Data Acquisition

2.1. Lens Searches

The Sloan Digital Sky Survey (SDSS; York et al. 2000) is an ambitious endeavor to

map more than 25% of the sky and to obtain spectra for more than one million objects.

The SDSS was begun in 2000, and has completed phases I and II; phase III began in

2008 and will continue until 2014. The SDSS uses a 2.5-m telescope located at Apache

Point Observatory in New Mexico. The Sloan Bright Arcs Survey (SBAS) is a survey

conducted by a collaboration of scientists at Fermilab and has focused on the discovery of

strong gravitational lensing systems in the SDSS imaging data and on subsequent analysis

of these systems (Allam et al. 2007; Lin et al. 2009; Diehl et al. 2009; Kubo et al. 2009;

Kubo & Allam et al. 2010; West et al. 2012). To this point, the SBAS has discovered
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and spectroscopically verified 19 strong lensing systems with source galaxy redshift between

z = 0.4− 2.9.

2.2. Follow-Up at WIYN: Observing Details

On February 26 and 27, 2009, we took follow-up data for ten of these systems at the

3.5-m Wisconsin-Indiana-Yale-NOAO (WIYN) telescope at Kitt Peak National Observatory.

The ten systems for which we took data for are listed in Table 1. We took follow-up data in

order to obtain images with finer pixel scale, improved seeing, and fainter magnitude limits

than were available in the SDSS data. The pixel scale in the SDSS data is 0.396′′, while the

median seeing in the SDSS Data Release 7 (DR7) is 1.4′′ in the r band. Magnitude limits

for DR7 are 22.2, 22.2, and 21.3 in the g, r, and i bands respectively.

The follow-up images were taken using the Mini-Mosaic camera, a camera that uses

two CCDs, each of dimensions 2048 × 4096 pixels. The pixel scale for the Mini-Mosaic

camera is 0.14′′. Images were taken using three filters, SDSS g, r and i filters. A collage of

color images of sections of these images showing the strong lenses is provided in Figure 1.

For each data image, the exposure time was 450-s and two exposures were taken for

each field in each filter. Later the exposures were stacked, leading to a total exposure time

of 900-s (15 minutes) per field in each filter. Seeing was variable during the two nights,

ranging from 0.49′′ for SDSS J1318+3942 to 1.54′′ for SDSS J1209+2640. The median

seeing was 0.74′′ for February 26 and 0.75′′ for February 27. Magnitude limits for this data

were estimated from the turnover in the number count histogram and were found to be

approximately 24 in g band, 24 in r band and 23 in i band.

The data were reduced using the NOAO Image Reduction and Analysis Facility (IRAF;

Tody 1993). The data were flat-fielded using both dome flats taken on site and superflats
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produced from data images. Cosmic rays were removed using the IRAF task LACosmic

(Van Dokkum 2001). Next, the two images in each filter were WCS-corrected and stacked,

again in IRAF. Object magnitudes were measured in several measurement apertures using

SExtractor (Bertin & Arnouts 1996). Finally, the instrumental magnitudes measured by

SExtractor were converted to calibrated magnitudes. This was done by finding the model

magnitudes of stars in the SDSS DR7 Catalog Archive Server that also appeared in the

WIYN data and finding the offset in magnitudes in the g, r, and i bands. The median offset

in each filter for each field was then added to the SExtractor magnitudes (using MAG AUTO).

3. Galaxy Cluster Properties

3.1. Identifying Cluster Galaxies

We first sought to characterize richness of the clusters in terms of Ngals, the number of

cluster members within 1 h−1 Mpc of the BCG (Hansen et al. 2005) by using the maxBCG

method. The maxBCG method (Koester et al. 2007a) uses three primary features of galaxy

clusters to facilitate the detection of clusters in survey data. First, galaxies in a cluster

tend to be close together near the center and to become more separated from one another

toward the outskirts of the cluster. Second, galaxies in a cluster tend to closely follow a

sequence in a color-magnitude diagram; this is referred to as the E/S0 ridgeline, where E

and S0 refer to galaxy types in the Hubble classification. Finally, galaxy clusters typically

contain a central BCG, which is defined as the brightest galaxy in the cluster. In all of

the clusters in our sample, one or two BCGs can be seen near the center of the cluster

surrounded by lensing arcs. While the dark matter halo dominates the lensing potential,

the BCG contributes to the lensing potential as well since it comprises a large fraction of

the baryonic matter in the cluster. Typically the BCG would be expected to have a color

similar to that of the other cluster galaxies and it is also expected to be almost at rest with
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respect to the halo of the cluster.

Considering these properties of cluster galaxies, we searched the SExtractor catalog

files for objects that: (1) were classified as galaxies, not stars, (2) were within 1 h−1 Mpc of

the central BCG, (3) had the characteristic r − i and g − r color of the E/S0 ridgeline, and

(4) met a particular magnitude limit.

In order to separate galaxies from stars, we compared two different SExtractor

magnitudes, MAG AUTO and MAG APER. MAG AUTO is the flux measured above background in a

variable-size elliptical aperture. MAG APER uses a circular aperture of fixed size to determine

magnitude; we used a diameter of 2.0′′. The difference MAG APER − MAG AUTO (henceforth

∆m), can be used to identify the galaxies: stars stand out from galaxies because stars

typically have a nearly identical shape while galaxies generally do not. Thus for stars

the fixed aperture of MAG APER will measure a fairly constant fraction of the light that

the variable aperture of MAG AUTO will measure. Therefore, the difference between the

measurements (∆m) will be mostly constant for stars, but not for galaxies. We used this

fact to find stars by plotting ∆m vs. MAG AUTO. In this plot, stars will be found on a mostly

horizontal line of nearly constant ∆m value; this line is referred to as the stellar locus (see

Figure 2).

We also tried using the SExtractor parameter CLASS STAR for star-galaxy separation

by requiring 0 ≤ CLASS STAR ≤ 0.9 (1 is highly star-like and 0 is highly galaxy-like in this

parameter) and remeasuring Ngals with this requirement. We chose this cutoff because

when we plotted CLASS STAR against i-band magnitude (MAG AUTO), we found a tight stellar

sequence within 0.1 of CLASS STAR = 1. We found that the mean difference in Ngals values

was 0.3, which corresponds to a mean percent difference of 1.7%. Thus we conclude that

the ∆m cut method is equivalent to using CLASS STAR.

In order to select galaxies that are members of the cluster, we used the red sequence
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method (Gladders & Yee 2000; Koester et al. 2007a). This approach involves plotting a

color-magnitude diagram of the g − r and r − i colors of the galaxies vs. their i-band

magnitude, looking for a nearly horizontal line of galaxies of similar color. Galaxies in

a cluster are at similar redshifts and will be largely coeval, leading them to have similar

colors. Thus the galaxies that populate the red sequence are likely to be cluster members.

For each cluster we identified the g − r and r − i color of the red sequence on the plots. A

sample color-magnitude diagram is shown in Figure 3.

We also used a second method to check our identification of the red sequence color. For

both g − r and r − i colors, we made a histogram of the colors of the galaxies within 1 h−1

Mpc of the BCG and found the distribution near the red sequence color we had previously

identified. We then fit this section of the histogram with a Gaussian profile and found the

mean color of the red sequence galaxies.

Ultimately we used the first method (color-magnitude diagrams) to obtain a reasonable

range of values for the colors of the red sequence and we used the second method

(histograms) to determine final values for the colors. When we made color cuts, we only

allowed galaxies that were within 2σ of the r − i and g − r colors, where σ was defined as:

σ =

√
(σintrinsic)

2 + (σcolor)
2 (1)

Here σintrinsic is the intrinsic scatter in the red sequence color in the absence of measurement

errors, which we took to be 0.06 for r − i and 0.05 for g − r (Koester et al. 2007a).

σcolor is the color measurement error found by adding the SExtractor aperture magnitude

measurement errors in quadrature.

Finally we cut any galaxies that had a magnitude dimmer than 0.4L∗, where L∗ is

defined as the luminosity at which the luminosity function (Schechter 1985) changes from a

power law to an exponential relation. In the maxBCG algorithm 0.4L∗ is used as a limiting

magnitude (Koester et al. 2007b), and so we adopt this as our magnitude limit as well. We
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referred to a table of 0.4L∗ (Annis & Kubo 2010) as a function of z to make cuts, allowing

only galaxies brighter than 0.4L∗ in i-band. All values used for cluster galaxy cuts are

provided in Table 2.

3.2. Cluster Properties

3.2.1. Area Corrections

We applied the four cuts described in §3.1 to measure Ngals. However we found that

for several of the ten systems, regions of the cluster were not in the image. The reason for

this is that when we took the data, our primary focus was on the strong lensing arcs, which

were near the center in all of our images. In order to address this problem and still obtain

accurate values for Ngals, we extrapolated values for Ngals in the area off the CCD. In order

to do this, we divided the 1 h−1 Mpc aperture into six annuli with constantly increasing

radii, as shown in Figure 4. We assumed that the number of galaxies in each annulus should

only be a function of radius; this would suggest that the number of galaxies per area should

be a constant in each annulus. Mathematically,

Ntotal = Non CCD

(
Aann

Aann on CCD

)
(2)

where Ntotal means the total number of galaxies in each annulus, Non CCD means the

number of galaxies actually found in the image in each annulus, Aann means the area of the

annulus and Aann on CCD means the area of the annulus that was on the CCD.

We checked the accuracy of Equation 2 using the SDSS data. We measured Ngals

twice, once covering the full 1 h−1 Mpc (taking this as true Ngals) and once covering only

as much of the 1 h−1 Mpc as was on the CCD in the WIYN data. We then used Equation

2 to predict the final values of Ngals based on the measurements with the WIYN area cuts.

Finally we compared the predicted values for Ngals to the measured (true) values and found
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them to be similar. We plot the two sets of Ngals against each other in Figure 5. Note that

the points follow the y = x line very closely, indicating that the measured and extrapolated

values are quite similar and suggesting that the richness extrapolation works well. The

typical fractional error in the extrapolated values is 0.06.

3.2.2. Richness Measurements

We next found the richness, N200 (Hansen et al. 2005), the number of galaxies in a

spherical region within which the density was 200ρcrit, where ρcrit is the critical density

of the universe. The radius of this spherical region of space is termed r200. Hansen et al.

(2005) give r200 as:

r200 = 0.156(Ngals)
0.6h−1Mpc (3)

We used the area-corrected values for Ngals when calculating r200. In order to find N200 we

again applied the four cuts discussed in §3.1, this time using r200 as the distance cut rather

than 1 h−1 Mpc. Finally, once we found N200, we again applied the area corrections using

Equation 2.

We used the variable elliptical aperture of MAG AUTO and the circular 2′′ and 3′′ diameter

apertures using MAG APER in order to determine object magnitudes and thus colors. We

used 2′′ and 3′′ because both were significantly larger than the seeing FWHM, for which

the median value was about 0.75′′. The differences in colors measured in different apertures

were usually small, on the order of 0.05 magnitudes, but could be up to 0.2 magnitudes.

Since identification of a cluster galaxy depends on color, there was a resulting variation in

richness values for different apertures. We determined that the 2′′ aperture had the highest

signal to noise by comparing the measurement errors of the g − r and r − i colors to see in

which aperture the errors were typically lowest. We found that the 2′′ aperture typically

had the lowest error value; therefore we used the colors and thus richness values in the 2′′
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aperture for richness measurements. However, we considered the variation in richness values

to determine the error in richness: we took the standard deviation of the three values for

N200 for each cluster and used these values for the uncertainty in N200.

3.2.3. Cluster Mass

We define M200 to be the mass contained within a spherical region of radius r200

(Johnston et al. 2007). An empirical relation between mass and richness is found in

Johnston et al. (2007) using a large sample of maxBCG clusters from the SDSS:

M200(N200) = M200|20

(
N200

20

)αN
(4)

In this equation M200|20 = (8.8 ± 0.4stat ± 1.1sys) × 1013h−1M� and αN = 1.28 ± 0.04.

Equation 4 was found empirically using data from the SDSS, using mean redshift of

z = 0.25.

The error in M200 values was considered in Rozo et al. (2009). In that paper, the

logarithmic scatter in mass at fixed richness is given as:

σlnM |N = 0.45+0.20
−0.18 (5)

We thus can approximate the uncertainty in the mass itself as:

∆M = 0.45M200 (6)

We also propagate error from the uncertainty in values of N200 through equation 4. Our

final values for error on M200 were found by adding the uncertainty in the mass and the

propagated error in quadrature. The propagated fractional errors had a median value of

0.13 while the scatter described by Equation 6 had a value of 0.45. The combined fractional

errors had a median value of 0.47, with the scatter in mass dominating the errors.
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3.2.4. Velocity Dispersion

Becker et al. (2007) give an empirical relationship for velocity dispersion as a function

of richness found from redshifts of cluster members in the maxBCG cluster sample:

〈lnσv〉 = A+B ln
N200

25
(7)

The constants A and B are referred to as mean-normalization and mean-slope, respectively.

They are given as A = 6.17± 0.04 and B = 0.436± 0.015. Becker et al. (2007) also found

a relation for the scatter, S, in the velocity dispersion. The scatter is defined to be the

standard deviation in lnσv:

S2 = C +D ln
N200

25
(8)

where C = 0.096± 0.014 and D = −0.0241± 0.0050. We used this relation to calculate the

errors on the velocity dispersion values, defining the errors as one standard deviation. We

also propagated the error on N200 through Equation 7 and added these errors in quadrature

to the errors found from Equation 8. Again the propagated errors are minimal: The median

fractional error on the velocity dispersions from the propagated error on N200 is 0.08, while

the median fractional error from Equation 8 is 0.31, leading to an overall median fractional

error of 0.33.

3.2.5. Errors on Richness and Mass

In order to better constrain the error on our richness measurements, we also measured

colors and richnesses for the 10 systems using the SDSS data. We found that richness values

from the SDSS are typically much higher than those found in this paper; the mean ratio of

Ngals(SDSS) to Ngals(2
′′ MAG APER) is 1.75 (for WIYN Ngals before area corrections, using

only cluster area found both in WIYN and SDSS data; see Table 5). These differences

apparently arise because there is a larger error in magnitudes measured in the SDSS than
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in the data used here. This allows some objects to be counted as cluster members in the

SDSS that are not counted as cluster members in the WIYN data. Note that in Figure

6, a color-color diagram for SDSS J1318+3942, more cluster members are found in SDSS

data, but those objects are much more scattered in color-color space and many are not

true cluster members. On the other hand, fewer objects are found in the WIYN data, but

these objects form a much tighter red sequence and are more likely to be genuine cluster

members.

We also include Figure 7, in which we show the deviation of each cluster galaxy’s color

from the measured color of the E/S0 ridgeline; we plot this vs. SDSS i-band magnitude for

all ten clusters. We found g-r and r-i colors for objects considered to be cluster galaxies

within 1 h−1 Mpc of the BCG in WIYN data and in SDSS data and compared them to the

characteristic red sequence colors of the respective clusters. We also found the errors in

colors for both sets of data using Equation 1 to find σ. We used magnitude errors reported

by SExtractor for WIYN data and errors on model magnitudes for SDSS data. The error

bars shown represent 2σ. It can be seen in Figure 7 that the differences between the

measured color and the cluster color are much larger in the SDSS data than in WIYN data

but the errors are larger for SDSS data as well. Due to these larger errors in SDSS data,

there is a higher likelihood that objects with larger color deviations will still be counted as

cluster members.

The differences in richness values between WIYN and SDSS data persist even at bright

magnitudes. We measured values for Ngals at an i-band magnitude of 19.38, which is the

value for 0.4L∗ corresponding to z = 0.25. We found that the mean ratio of Ngals(SDSS) to

Ngals(2
′′ MAG APER) is 1.63, meaning that SDSS values are typically about 60% higher than

WIYN values. Thus we find that in general for these ten clusters richness values measured

in our data do not closely match values measured in the SDSS data.
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However, since the mass-richness relation (Equation 4) is calibrated from SDSS data,

if we use WIYN richness values with this equation, we would expect the masses to be

biased to be too low. Therefore, we determined it would be necessary to scale our measured

richness values up to match SDSS values. To do that, we we first found all objects that

were counted as cluster galaxies (Ngals) only in WIYN (not in SDSS) and then found the

opposite, objects counted as cluster galaxies only in SDSS but not in WIYN. We then also

found the galaxies counted as cluster galaxies in both WIYN and SDSS. Our goal was to

constrain the amount that SDSS was overcounting galaxies. To do that we found the ratio

C =
N1 +N2

N1

= 1 +
N2

N1

(9)

where N1 represents the number of cluster members found in both WIYN data and SDSS

data and N2 represents the number of cluster members found only in SDSS data. Since

we expect the numbers of galaxies in each magnitude bin to be a Poisson distribution,

the standard deviation on N1 and N2 would be simply the square root of each. Then the

fractional error on Equation 9 would be

σC =
N2

N1

√
1

N2

+
1

N1

(10)

We then plotted C against binned WIYN i-band (MAG AUTO) model magnitude. The result

is shown in Figure 8. We fit the data with a linear relation using IDL routine FITEXY,

which applies a linear fit including error bars. The final relation found was

C = (0.222± 0.116)mi WIY N + (−2.84± 2.29) (11)

The magnitude mi WIY N is WIYN i-band magnitude from MAG AUTO. When this equation

is evaluated at i-band m = 19.38, the value for 0.4L∗ at the mean SDSS redshift of 0.25,

then C = 1.47. We took this as the correction factor for our richness values.

We measured Ngals and corrected these values for missing area in WIYN using Equation
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2. Then we included the above correction factor when calculating r200, letting

r200 = 0.156(Ngals SDSS)0.6 = 0.156(1.47Ngals WIY N)0.6 (12)

We remeasured N200 using the new value for r200 and corrected for missing area. Finally we

scaled these new N200 values by multiplying them by the same scale factor of 1.47. We used

these scaled values of N200 to find M200, velocity dispersion and concentration parameter.

We give values for all quantities found without the scale factor in Table 3 and we give the

values found with the scale factor in Table 4.

We find the scaled values for N200 are on average 1.7 times bigger than the unscaled

values. This leads the new values for M200 (those found from the scaled richness values) to

be 2.0 times larger than the previous values. Also new values for velocity dispersion are

1.3 times larger than previous values, while new values for concentration parameter are all

smaller, on average 0.63 times the previous values (see § 5.2).

3.2.6. Comparison of Results

Several other groups have measured cluster masses or related quantities for some of

our clusters. Oguri et al. (2012) present combined strong and weak lensing analyses for 28

clusters, including 4 of the clusters discussed in this paper. This allowed us to compare our

results for M200 to their results for these four systems. As Oguri et al. (2012) present values

for Mvir, we converted these to M200 values using the method described in Appendix A of

Johnston et al. (2007) (see §5.1).

Bayliss et al. (2011) provided velocity dispersions for 4 of our clusters. We used the

relation between cluster mass and galaxy velocity dispersion given in Evrard et al. (2008)

to find M200:

b
1
α
v M200c = 1015M�

1

h(z)

(
σgal
σ15

) 1
α

(13)
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Here h(z) is the Hubble parameter, bv = σgal/σDM is the velocity bias (we assume

bv = 1), σgal is the galaxy velocity dispersion, σDM is the dark matter velocity dispersion,

σ15 = 1084± 13 km s−1, and α = 0.3359± 0.0045. Drabek et al. (2012) present masses for

two clusters, SDSS J1343+4155 and SDSS J1439+3250, based on spectroscopy of a sample

of galaxies in these clusters. We summarize all the values of M200 found by these groups in

Table 6. In Figure 9, we plot the M200 values from the three other papers against our M200

values; the dotted line in the plot is the y = x line. We find that our values are reasonable

in light of the findings of other groups as when we plot our values against those from other

groups, the points are all scattered around the y = x line.

4. Strong Lensing Properties

In a strong lensing system, if the source galaxy and the galaxy cluster are perfectly

aligned, then the image formed will be a perfect ring, or Einstein ring. The radius of

this ring is referred to as the Einstein radius. The Einstein radius for a symmetric mass

distribution treated as a thin sheet is given by (Narayan & Bartelmann 1997):

θE =

√
4GM

c2

Dds

DdDs

(14)

where Dd, Ds, and Dds are angular diameter distances to the lens, to the source, and from

lens to source, respectively, c is the speed of light, G is the gravitational constant, and M is

the mass contained within the Einstein radius. We measured the Einstein radius of each of

the clusters directly by fitting a circle to the visible arc and measuring the radius of that

circle. We intend in the near future to apply more sophisticated mass models to the arcs in

order to better characterize the Einstein radii, but this method provides an estimate. The

values found here are all very similar to those presented in the SBAS discovery papers, with

a median difference of 2.5%.
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In order to try to quantify the uncertainty in our measurements, we measured the

Einstein radii for all the objects again several months after the first measurement without

referencing previous data. In all cases the differences between the original and new

measurements were between 0.03′′ and 0.6′′. Since this represents up to 10% of the value of

θE, we estimated the uncertainty in θE as 10%.

We note however that this method of estimating Einstein radius can lead to large

systematic errors, so we also compared our values for Einstein radii to values from other

groups. West et al. (2012) present strong lensing models for three of our systems and Oguri

et al. (2012) present models for four of our systems. Both groups have measurements for

SDSS J1343+4155, so we compared values for a total of six systems. We provide measured

Einstein radii from these papers in Table 7. For SDSS J0900+2234 and SDSS J0901+1814,

our estimates are almost exactly the same as the values in West et al. (2012). However for

the other four systems, the scatter (standard deviation) in values is larger, between 2.1′′

and 4.0′′. We account for this error by calculating the fractional error in the values for θE

and then finding the median value of the fractional errors for each of the six systems. The

median value of the fractional errors is 0.32, or 32%, which we added in quadrature to the

10% errors to find final error values.

Solving Equation(14) for the mass, we obtain:

M = θ2
E

c2

4G

DdDs

Dds

(15)

Using the redshifts listed in Table 1 for the galaxy clusters and the source galaxies, we

calculated the angular diameter distances. We then used the Einstein radii we had measured

to calculate the masses of the lenses.

Finally, we calculated the velocity dispersions of the regions of the clusters inside θE

assuming the mass distribution was well fit by a singular isothermal sphere (SIS). We used
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the following equation, from Narayan & Bartelmann (1997):

σv =

√
θEc2Ds

4πDds

(16)

All values measured for the strong lenses are presented in Table 8.

In Figure 10 we compare the velocity dispersions found from lensing to those found

from richness measurements. Note that these velocity dispersions measure different things:

the velocity dispersion from lensing describes the velocity dispersion inside θE and the

velocity dispersion from N200 describes the velocity dispersion within the much larger

distance r200. We see in Figure 10 that many of the clusters are found along the y = x line,

several are found above it and several are found below it. For the clusters found along the

y = x line, we see that the velocity dispersions are similar within the two different radii, θE

and r200, which suggests that these systems are largely isothermal. For the systems found

above the y = x line, the velocity dispersion at large radii is much larger than at small radii,

indicating that much of the mass is found at larger distance from the BCG, suggesting

a low value for c200. However for several of the clusters, the velocity dispersion within

θE is larger than that found within r200, indicating that for several clusters there is more

mass within the smaller radius and suggesting that the concentration parameter is large.

Our highest mass clusters are found above the y = x line (suggesting lower concentration

parameter), while our lower mass clusters are found below the y = x line (suggesting higher

concentration parameter). This would agree with what we discuss in the next section, that

our highest mass clusters are not overconcentrated but our lowest mass clusters seem to be.
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5. Applications to Cosmology

5.1. An Overconcentration Problem?

Several recent papers (Oguri & Blandford 2009; Gralla et al. 2011; Fedeli 2011; Oguri

et al. 2012) have presented evidence that galaxy clusters that exhibit strong lensing have

higher concentration parameters than ΛCDM would predict. The most recent considerations

(Fedeli 2011; Oguri et al. 2012) suggest that this overconcentration is most significant at

cluster masses less than 1014h−1M�. Overconcentration can be illustrated by comparing

Einstein radii to M200 (Gralla et al. 2011). Since Einstein radii are dependent on both

cluster mass and cluster concentration parameter, such a comparison will yield larger

Einstein radii than would be expected for particular M200 values.

Considering this, we have compared Einstein radius to M200 for our ten systems. One

complication in making this comparison is that Einstein radius is a function of redshift.

Since all of our systems have different redshifts for both lens and source, in order to compare

them, we needed to scale them to a single, constant redshift for lens and source. We chose

both the lens and source redshifts (we refer to them henceforth as fiducial redshifts) by

taking the mean of the ten lens redshifts and the mean of the ten source redshifts. Our

fiducial redshifts are zd = 0.433 for the lens and zs = 1.65 for the source.

To scale Einstein radii to the fiducial redshifts, we needed to find a scale factor k that

would satisfy:

θE scaled(zd fiducial, zs fiducial) = k × θE measured(zd, zs) (17)

We note that Equation 16 can be rearranged as

θE =
4πσ2

v

c2

Dds

Ds

(18)

Since σv is proportional to the mass and does not depend on redshift, θE scales with redshift
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according to the ratio Dds/Ds. Thus solving Equation 17 for k we obtain:

k =
θE scaled

θE measured
=

4πσ2
v

c2
Dds fiducial

Ds fiducial

4πσ2
v

c2
Dds
Ds

(19)

and since σv does not scale with redshift, it cancels. Then

k =
Dds fiducial/Ds fiducial

Dds/Ds

(20)

We applied Equation 20 to find the scale factor k for each cluster and then scaled each

Einstein radius to the fiducial values.

In order to compare the relation between Einstein radius and M200 for our data to

the relation that ΛCDM would predict, we refer to the models presented in Oguri et al.

(2009) and Oguri et al. (2012) which predict concentration as a function of cluster mass.

Concentration parameter, c∆, is defined as

c∆ =
r∆

rs
(21)

The rs term is the scale radius, a term in the Navarro-Frenk-White (NFW) model of dark

matter halo density (Navarro et al. 1997), described below. The quantity ∆ is the virial

overdensity. In this paper we use ∆ = 200, but Oguri et al. (2009) use ∆ = vir, where the

virial overdensity is the local overdensity that would cause halo collapse; it is a function of

redshift. Oguri et al. (2009) suggest that lensing-selected clusters (those discovered based

on lensing, like those in this paper) will have a value for the concentration that is 50%

higher than for general clusters.

Oguri et al. (2009) present a relation for cvir in general clusters, citing results obtained

from N-body simulations conducted using WMAP5 cosmology (Duffy et al. 2008):

c̄vir(sim) =
7.85

(1 + z)0.71

(
Mvir

2.78× 1012M�

)−0.081

(22)

We consider this relation at z = 0.45, for consistency with the lensing-selected relation

below. Oguri et al. (2012) present a relation for cvir in lensing-selected clusters, using ray
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tracing to estimate the effect of lensing bias:

c̄vir(z = 0.45) ≈ 6.3

(
Mvir

5× 1014h−1M�

)−0.2

(23)

In order to compare our data to these predictions, we chose a range of values of Mvir

and used Equations 22 and 23 to find the corresponding values for cvir. We then used the

relations in Johnston et al. (2007) and Hu & Kravtsov (2003) to convert from cvir and

Mvir to c200 and M200. Finally we used the range of values for M200 and the predicted

values for c200 to find predicted values for Einstein radius (θE) by using the NFW profile

(see Equation 24 below). We plotted the relations between M200 and θE as the general and

lensing-selected predictions in Figures 11 and 12.

To find a predicted Einstein radius we used the NFW density profile, expressed as

ρ(r) =
ρs

(r/rs) (1 + r/rs)
2 (24)

where r is the distance from the center of the cluster, ρs is a characteristic density, and

rs is the scale radius, given by rs = r200/c200. We implemented Equation 13 in Wright &

Brainerd (2000), an equation that describes surface mass density ΣNFW in the NFW model.

The Einstein radius θE is given implicitly by the solution of (Narayan & Bartelmann 1997):

ΣNFW

(
θE
rs

)
= Σcrit (25)

where the critical surface mass density Σcrit is

Σcrit =
c2

4πG

Ds

DdDds

(26)

Thus we found Einstein radius by solving for ΣNFW and using that to find θE.

5.2. Consideration of the Overconcentration Problem

The final result of our analysis is shown in Figures 11 and 12. Figure 11 shows the

relation between M200 and θE for our measured values of M200 while Figure 12 shows the
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relation for the new M200 values that come from the scaled-up richness values. We consider

Figure 12 to be more reliable as it uses richness values scaled to correspond with values from

SDSS data, which was used to calibrate the mass-richness relation. In Figure 11 there is a

noticeable disagreement between our data and the predicted relations. It can also be seen

that the lower-mass clusters disagree more while the higher-mass clusters fit the predictions

better, as found by other authors. However in Figure 12, we see that all clusters are shifted

to higher masses by an average factor of 2.0. In the plot of the scaled values, we see that

many of the clusters now closely follow the lensing-selected prediction. There are still four

clusters that do not fit the predicted relations. These clusters are SDSS J0901+1814, SDSS

J1038+4849, SDSS J1343+4155 and SDSS J1537+6556, which are the lowest mass clusters

in our sample. SDSS J1318+3942, which is also among the lowest mass clusters, is found

close to the predicted line, but still slightly above it.

We determined values for c200 for our clusters by using our measured values for M200

and θE in Equations 24 and 25; values are listed in Table 3. We estimated errors on c200

by varying M200 and θE to the maximum and minimum values allowed by their respective

error bars. Maximum values for c200 were found with minimum M200 and maximum θE

while minimum values for c200 were found with the opposite. For smaller values of M200,

this led to very large upper error bars on c200 as a very high concentration parameter would

then be required to achieve the large Einstein radius.

Our measurements of c200 follow the trends noted earlier: for many of the clusters, our

measured values of c200 are within the range of predictions, but for the lowest mass clusters

measured values of c200 are higher than predictions. The average value for c200 predicted

for our scaled values of M200 by Equation 22 (for general clusters) is 3.4 while the average

value predicted by Equation 23 (for lensing-selected clusters) is 5.7. The average of our ten

measured values of c200 is 7.3, which is slightly larger than the lensing-selected prediction.
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However for our four lowest mass clusters the average c200 value is 11.6, much larger than

the lensing-selected prediction. The four clusters we identify as overconcentrated above have

the following values for c200: for SDSS J0901+1814 c200 = 9.6+13
−3.5, for SDSS J1038+4840

c200 = 17+73
−7.8, for SDSS J1343+4155 c200 = 9.1+22

−3.9 and for SDSS J1537+6556, c200 = 11+15
−3.9.

These clusters have respectively M200 of 0.99, 1.2, 2.3 and 2.2× 1014h−1M�, which are the

lowest masses in our sample.

Concentration parameters (cvir) based on strong and weak lensing measurements

are provided in Oguri et al. (2012) for two of these four clusters. We convert these to

c200 using the method discussed in §5.1. For SDSS J1038+4840, c200 = 33.8+0.00
−18.3 and

for SDSS J1343+4155, c200 = 4.25+1.38
−0.790. Thus for SDSS J1038+4840, the second lowest

mass cluster in our sample, both sets of measurements find this cluster to be significantly

overconcentrated. For SDSS J1343+4155 the evidence for overconcentration is not as

strong.

In Figures 13 and 14 we consider the mass-concentration relation, comparing log(c200)

to log(M200). Figure 13 is the mass-concentration relation for our measured values of c200

and M200 without scaling and Figure 14 is this relation using scaled richness values. We

also include three lines in Figures 13 and 14: the blue solid line is the prediction from Oguri

et al. (2012) for lensing-selected clusters, the green solid line is the best-fit to the data in

the Oguri paper (Equation 26 in Oguri et al. (2012)) and the red dotted line is the best fit

to our data. Equation 26 in Oguri et al. (2012) is:

cvir = (7.7± 0.6)

(
Mvir

5× 1014h−1M�

)−0.59±0.12

(27)

We used the same method as discussed in §5.1 to add the prediction and best fit from Oguri

et al. (2012) to Figures 13 and 14. For the predicted line, we applied Equation 23 and for

the best fit from Oguri et al. (2012) we applied Equation 27. In Figure 13 the slope is

α = 0.45± 0.30 while in Figure 14 α = 0.45± 0.23. Note that the error bars are larger on
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c200 in Figure 13; this is because when calculating error bars, the minimum M200 was small

and maximum θE was large, leading to very large values for c200. Fedeli (2011) suggests

that for clusters that are not overconcentrated, α should be no larger than 0.2. At 1σ, our

lowest value of α is 0.15 for unscaled values and 0.22 for scaled values. Both of these values

are consistent with clusters that are not overconcentrated, again suggesting that most of

our clusters are not overconcentrated. Prada et al. (2011) suggest in their Figure 12 that

log(c200) should be less than about 0.8 at z = 0.5. This is again consistent with most of

our clusters, although not for the lowest mass clusters. Note in Figure 14 that the four

lowest mass clusters have values of log(c200) above 1.0 which suggest that these clusters are

overconcentrated.

We find in Figure 13 that our data points are mostly above the predicted line,

suggesting many of our clusters are overconcentrated. However when we use the more

reliable scaled values in Figure 14 we find that most of the clusters are found near the

predicted line, but the lowest mass clusters (the four identified above) remain above the

prediction. This again confirms our previous statement that most of our clusters do not

appear to be overconcentrated, but there is evidence for overconcentration at lower cluster

masses.

Thus for most of our clusters, ΛCDM seems to match their observed properties. But for

our several clusters showing evidence of overconcentration, what does the overconcentration

problem suggest is happening in galaxy clusters? It seems to suggest that clusters are

collapsing more than ΛCDM would predict (Broadhurst & Barkana 2008; Fedeli 2011;

Oguri et al. 2012). The dark matter halo associated with a galaxy cluster is expected to

have undergone an adiabatic collapse during the formation of the cluster. The baryonic

matter in the cluster (concentrated in the BCG) would also have collapsed. The baryonic

matter would likely have dragged the dark matter along with it, augmenting the collapse
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of the halo. Since we find some clusters to be more concentrated than expected, it may be

that the halo collapsed more than expected due to the contribution of the baryons. It is

suggested (Fedeli 2011; Oguri et al. 2012) that the overconcentration is most significant

in lower-mass clusters because in these clusters the BCG makes up a larger percentage of

the overall cluster mass. Thus the baryons would contribute to the halo collapse more in a

lower-mass cluster than in a higher-mass cluster.

6. Conclusion

We have reported on the properties of ten galaxy clusters exhibiting strong gravitational

lensing arcs which were discovered in the Sloan Digital Sky Survey. These are a subset of

the 19 systems discovered thus far by the Sloan Bright Arcs Survey.

We measured N200, M200, σv and c200 using the postulates of the maxBCG method

to identify cluster galaxies. We found that the values of N200 measured here do not agree

with values found in the SDSS because magnitude errors are larger in SDSS data so

some non-cluster galaxies are scattered into the sample, overestimating cluster richnesses.

Thus we scaled our N200 values up to match the SDSS values in order that we might

use the mass-richness relation calibrated from the SDSS. The scaled richness values

for the clusters range from N200 = 22 to N200 = 317. The cluster masses range from

M200 = 0.993 × 1014h−1M� to M200 = 30.2 × 1014h−1M� and the velocity dispersions for

the clusters range from σv = 452 km/s to σv = 1446 km/s. Finally the concentration

parameters for the clusters range from 2.4 to 17.

We applied a simple SIS model to infer the lens masses and lens velocity dispersions

from the measured Einstein radii. The smallest Einstein radius was θE = 5.4′′ and the largest

was θE = 13′′. The lens mass within the Einstein radius ranged from M = 5.5× 1012h−1M�
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to M = 36 × 1012h−1M� and the lens velocity dispersion ranged from σv = 336 km/s to

σv = 804 km/s.

Finally we considered the relation between θE and M200 and compared this relation to

the predictions of ΛCDM, both for lensing-selected and for general clusters. We also found

the mass-concentration relation for our data. We found that most of our clusters are not

overconcentrated, but our four lowest mass clusters show evidence of overconcentration,

with values for c200 between 9.6 and 17. This may suggest that the lowest mass clusters are

collapsing more than ΛCDM would predict.
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System R.A. (deg) Decl. (deg) Lens z Source z

SDSS J0900+2234 135.01128 22.567767 0.4890 2.0325

SDSS J0901+1814 135.34312 18.242326 0.3459 2.2558

SDSS J0957+0509 149.41318 5.1589174 0.4469 1.8230

SDSS J1038+4849 159.67974 48.821613 0.4256 0.966

SDSS J1209+2640 182.34866 26.679633 0.5580 1.018

SDSS J1318+3942 199.54798 39.707469 0.4751 2.9437

SDSS J1343+4155 205.88702 41.917659 0.4135 2.0927

SDSS J1439+3250 219.98542 32.840162 0.4176 1.0-2.5a

SDSS J1511+4713 227.82802 47.227949 0.4517 0.985

SDSS J1537+6556 234.30478 65.939313 0.2595 0.6596

Table 1: The coordinates and redshifts of the ten systems in this paper.

aSource redshift has not yet been determined for this system, thus we present a range of possible values.
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System ∆m g-r color r-i color 0.4L* Magnitude

SDSS J0900+2234 0.56 1.83 0.73 21.20

SDSS J0901+1814 0.22 1.72 0.52 20.26

SDSS J0957+0509 0.15 1.78 0.71 21.26

SDSS J1038+4849 0.07 1.72 0.62 20.84

SDSS J1209+2640 0.34 1.79 0.93 21.59

SDSS J1318+3942 0.06 1.73 0.73 21.15

SDSS J1343+4155 0.16 1.75 0.54 20.71

SDSS J1439+3250 0.11 1.74 0.67 20.78

SDSS J1511+4713 0.17 1.78 0.75 20.97

SDSS J1537+6556 0.14 1.50 0.52 19.38

Table 2: A summary of the values of limits used for richness measurements. ∆m is the mag-

nitude measured in i-band in 2′′ MAG APER minus the magnitude in the same band measured

in MAG AUTO. ∆m was used for star-galaxy separation. The g−r and r−i colors are based on

measurements in the 2′′ aperture. Finally, the magnitude at 0.4L∗ was found in the i-band.
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System Ngals r200(h−1Mpc) N200 M200(1014M�) σv(km/s) c200

SDSS J0900+2234 28 1.15 30 ± 4.1 1.48 ± 0.715 518+196
−153 8.27+14.9

−3.32

SDSS J0901+1814 15 0.792 11 ± 0.58 0.409 ± 0.186 334+137
−98 19.0+91.0

−9.00

SDSS J0957+0509 29 1.18 36 ± 3.4 1.87 ± 0.8708 561+200
−153 7.49+9.81

−2.78

SDSS J1038+4849 16 0.823 15 ± 0.62 0.609 ± 0.276 383+150
−108 34.9+18800

−21.3

SDSS J1209+2640 101 2.49 214 ± 11.5 18.3 ± 8.32 1219+293
−240 3.64+2.81

−1.21

SDSS J1318+3942 24 1.050 25 ± 4.2 1.17 ± 0.583 478+191
−150 9.9+31.8

−4.39

SDSS J1343+4155 28 1.15 29 ± 1.1 1.42 ± 0.641 510+182
−135 14.3+118

−7.26

SDSS J1439+3250 59 1.80 105 ± 18 7.35 ± 3.69 894+296
−250 3.20+2.41

−1.03

SDSS J1511+4713 31 1.22 40 ± 2.9 2.14 ± 0.981 587+203
−154 7.69+6.51

−2.45

SDSS J1537+6556 22 0.997 22 ± 2.9 0.994 ± 0.477 452+177
−136 18.8+49.2

−7.84

Table 3: A summary of the quantities measured for the ten galaxy clusters. These are all

based on colors measured in the 2′′ aperture. The Ngals and N200 values are area-corrected

using Eq. 2 but are not scaled up. All the other values are based on these area-corrected

but not scaled richness values.
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System Ngals r200(h−1Mpc) N200 M200(1014M�) σv(km/s) c200

SDSS J0900+2234 28 1.45 53 ±7.6 3.046 ± 1.48 662+233
−187 5.13+5.36

−1.82

SDSS J0901+1814 15 0.996 22 ± 2.4 0.993 ± 0.468 452+174
−132 9.63+12.7

−3.52

SDSS J0957+0509 29 1.48 57 ± 5.1 3.38 ± 1.57 686+226
−176 5.15+4.68

−1.72

SDSS J1038+4849 16 1.036 25 ± 1.8 1.17 ± 0.536 477+177
−132 16.8+73.3

−7.80

SDSS J1209+2640 101 3.13 317 ± 17 30.2 ± 13.7 1446+307
−258 2.69+1.90

−0.890

SDSS J1318+3942 24 1.32 44 ± 5.0 2.41 ± 1.14 612+215
−168 5.83+7.30

−2.17

SDSS J1343+4155 28 1.45 43 ± 1.6 2.31 ± 1.046 603+203
−153 9.11+22.0

−3.94

SDSS J1439+3250 59 2.27 158 ± 28 12.4 ± 6.26 1069+331
−288 2.36+1.72

−0.790

SDSS J1511+4713 31 1.54 70 ± 5.6 4.40 ± 2.030 751+237
−185 5.21+3.44

−1.52

SDSS J1537+6556 22 1.25 41 ± 9.6 2.21 ± 1.20 594+243
−204 10.0+14.7

−3.88

Table 4: A summary of the quantities measured for the ten galaxy clusters. These are all

based on colors measured in the 2′′ aperture. The Ngals and N200 values are area-corrected

using Eq. 2 and are scaled up using Eq. 9.
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System Ngals (MAG AUTO) Ngals (2′′ MAG APER) Ngals (3′′ MAG APER) Ngals(Sloan)

SDSS J0900+2234 23 28 29 56

SDSS J0901+1814 8 14 8 11

SDSS J0957+0509 15 28 26 63

SDSS J1038+4849 16 15 17 32

SDSS J1209+2640 85 101 98 190

SDSS J1318+3942 21 23 23 39

SDSS J1343+4155 26 25 32 46

SDSS J1439+3250 48 55 51 82

SDSS J1511+4713 22 29 29 54

SDSS J1537+6556 14 20 18 8

Table 5: A comparison of Ngals values measured in different SExtractor apertures and in

SDSS data. These values for Ngals have not been area corrected with Eq. 2. For the SDSS

values, any area which is not on the CCD in the WIYN data is excluded from consideration.

Note that for SDSS J1537+6556 much of the WIYN area is outside the SDSS footprint, so

the SDSS value is biased low.
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System M200(this paper) M200(Oguri) M200(Bayliss) M200(Drabek)

SDSS J0957+0509 3.38 ± 1.57 1.17+0.77
−0.55 8.01+4.98

−6.40 -

SDSS J1038+4849 1.17 ± 0.536 0.681+0.48
−0.11 2.06+1.18

−0.36 -

SDSS J1209+2640 30.2 ± 13.7 5.50+1.67
−1.32 16.8+6.43

−11.0 -

SDSS J1343+4155 2.31 ± 1.046 3.34+1.38
−1.11 8.13+4.76

−6.87 6.60 ± 3.20

SDSS J1439+3250 12.4 ± 6.26 - - 4.73 ± 2.84

Table 6: M200 values from other papers for several of our systems. The other papers are

Oguri et al. (2012), Bayliss et al. (2011) and Drabek et al. (2012). Note that the values from

Oguri et al. (2012) have been converted from Mvir to M200 using the process detailed in the

appendix of Johnston et al. (2007). To convert the errors, we simply converted the upper

and lower errors on Mvir given in Oguri et al. (2012) using the same method. All M200 values

have the units 1014h−1M�. Though there are significant differences in the M200 values for

some clusters, overall our values seem consistent with those of the other groups. See Figure

9.

System θE(arcsec)(this paper) θE(arcsec)(West et al.) θE(arcsec)(Oguri et al.)

SDSS J0900+2234 8.0 ± 2.7 8.32 -

SDSS J0901+1814 6.9 ± 2.3 6.35 -

SDSS J0957+0509 8.2 ± 2.7 - 5.2+0.5
−0.5

SDSS J1038+4849 8.6 ± 2.9 - 12.6+1.3
−1.6

SDSS J1209+2640 11 ± 3.7 - 8.8+0.9
−0.9

SDSS J1343+4155 13 ± 4.3 7.05 5.4+2.5
−1.6

Table 7: A comparison of values for Einstein radius measured in this paper, in West et al.

(2012) and in Oguri et al. (2012).
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System θE(arcsec) Mlens(1012h−1M�) σv(km/s) θE(rescaled)

SDSS J0900+2234 8.0 ± 2.7 11 ± 7.3 648 ± 108 7.9 ± 2.7

SDSS J0901+1814 6.9 ± 2.3 5.5 ± 3.7 564 ± 93.9 5.9 ± 2.0

SDSS J0957+0509 8.2 ± 2.7 12 ± 8.0 680 ± 113 8.5 ± 2.8

SDSS J1038+4849 8.6 ± 2.9 15 ± 10.0 780 ± 130 11 ± 3.8

SDSS J1209+2640 11 ± 3.7 36 ± 24.0 691 ± 115 19 ± 6.2

SDSS J1318+3942 9.1 ± 3.0 12 ± 8.0 336 ± 55.9 8.2 ± 2.7

SDSS J1343+4155 13 ± 4.3 24 ± 16.0 804 ± 134 12 ± 3.9

SDSS J1439+3250a 7.4 ± 2.5 7.4 ± 4.9 -10.0 ± 6.7 596 ± 99.2 - 708 ± 118 7.1 ± 2.4

SDSS J1511+4713 5.4 ± 1.8 6.3 ± 4.2 631 ± 105 7.3 ± 2.4

SDSS J1537+6556 8.5 ± 2.8 8.7 ± 5.8 715 ± 119 9.4 ± 3.1

Table 8: A summary of the properties measured for the ten strong lensing systems. Rescaled

Einstein radii are Einstein radii projected to fiducial redshifts, of zlens = 0.433 and zsource =

1.65. See Equation 20.

aSource redshift has not yet been determined for the arc in this system and we can only present a range of

redshifts, leading to a range of values for mass and velocity dispersion.
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Fig. 1.— A collage of the ten lensing systems. The bottom row is (left to right):

SDSS J0901+1814, SDSS J1038+4849, SDSS J0900+2234, SDSS J1209+2640 and SDSS

J0957+0509. The top row is (left to right): SDSS J1511+4713, SDSS J1537+6556, SDSS

J1439+3250, SDSS J1318+3942 and SDSS J1343+4155. These images were produced by

combining the stacked images in g, r and i filters. Each image has dimensions of 49′′ × 49′′.
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Fig. 2.— A sample plot of ∆m vs. i-band MAG AUTO for SDSS J1439+3250. Recall that

∆m is 2′′ MAG APER − MAG AUTO. The horizontal red line is the star-galaxy cutoff we used,

meaning objects with ∆m≤0.11 were cut as stars.
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Fig. 3.— The r − i color-magnitude diagram for SDSS J1209+2640. The black dots denote

the galaxies, the red diamonds denote the cluster galaxies, the vertical green line shows the

value of 0.4L∗ and the horizontal violet dotted line represents the red sequence r − i color.

The objects plotted are galaxies within 1 h−1 Mpc of the BCG.
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Fig. 4.— An image of SDSS J1038+4849, with a circular region of radius 1 h−1 Mpc centered

on the BCG. We have divided the aperture into six annuli in order to apply Equation 2 for

area corrections.
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Fig. 5.— This plot is a test of the accuracy of the Ngals extrapolation described in Equation

2. Here we plot Ngals values measured in SDSS data, with the measured values on the x-axis

and the predicted values on the y-axis. The red line is the y = x line. Since the data closely

follow the y = x line, we conclude that the predictions from the extrapolation are quite

accurate.
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Fig. 6.— A comparison of cluster members found in our data (2′′ MAG APER) and in the SDSS

data for SDSS J1318+3942. The larger blue circles represent cluster members found in our

data and the smaller violet diamonds are cluster members found in the SDSS data. The

smallest black circles are all galaxies within 1 h−1 Mpc of the BCG that are brighter than

0.4L∗ in our data but do not meet the color cuts to be considered cluster members. The error

bars represent 2σ, with σ defined by Eq. 1. The solid lines mark the cluster red sequence

colors for the WIYN data: the vertical green line marks the g-r color and the horizontal red

line marks the r-i color.
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Fig. 7.— A plot of color difference versus SDSS i-band magnitude for all cluster members

in both SDSS and WIYN data. Color difference is defined as the difference between the

actual r − i or g − r color of each cluster galaxy and the measured red sequence color for

that cluster. Cluster galaxies in each of the ten clusters are plotted together here. The red

diamonds denote WIYN data points and the black circles denote SDSS data points. The

error bars represent 2σ, where σ is defined by Eq. 1. For SDSS measurements, color is found

from SDSS model magnitudes and the red sequence colors were measured in SDSS data.

For WIYN measurements, color is found from 2′′ MAG APER magnitudes and red sequence

colors were measured in WIYN data. Note that WIYN data points are found much closer

to the central line that represents color difference of 0, while SDSS points can be found

further away. To be counted as cluster members, points must be within 2σ of the cluster red

sequence colors, but 2σ is larger for the SDSS points.
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Fig. 8.— A plot comparing objects counted as cluster galaxies only in SDSS data and in

both WIYN and SDSS data. Here N1 is the number of cluster members found in both

SDSS and WIYN in that magnitude bin and N2 is the number of cluster members found

only in SDSS. We plot the ratio 1 + N2

N1
(which we refer to in the text as C) on the y-axis

and the magnitude bin on the x-axis, where magnitude bins are 0.5 magnitude in size. The

red line is a linear best fit, found using IDL routine FITEXY. The equation of that line

is C = (0.222 ± 0.116)mi WIY N + (−2.84 ± 2.29), where mi WIY N represents magnitude in

i-band MAG AUTO.
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Fig. 9.— A comparison of M200 values in this paper and in other papers. The black circles

represent mass values in Oguri et al. (2012), the red diamonds represent mass values in

Bayliss et al. (2011) and the green squares represent mass values in Drabek et al. (2012).

The dotted violet line is the y = x line.
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Fig. 10.— A comparison of velocity dispersions found from N200 and found from Einstein

radii. The line shown has the equation y = x. The clusters on or above the y = x line are

all higher mass clusters.
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Fig. 11.— A plot of Einstein radius versus M200 for unscaled M200 values, with Einstein radii

scaled to fiducial redshifts. The theoretical lines come from a prediction of Einstein radii

for given M200 and c200 values found by using an NFW (Navarro et al. 1997) fit to the mass

and concentration. The general clusters line was found using predicted c200 values found

from Equation 22 and the lensing-selected clusters line was found using predicted c200 values

found from Equation 23. The average c200 for general clusters is 3.6 and for lensing-selected

clusters it is 6.4. Both Equations took z = 0.45. The approximate fit line was found by

multiplying the values of cvir resulting from Eq. 23 by 1.9. We tried different factors to

multiply cvir until the resultant line went approximately through the low mass data points.
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Fig. 12.— The same plot as Figure 11 but using M200 values found by scaling richness values

up using Eq. 11. The average c200 for general clusters is 3.4 and for lensing-selected clusters

it is 5.7. To find the approximate fit to the low mass data, we multiplied all cvir values

from Eq. 23 by 1.5. Note that with scaled richness values, the points all move closer to the

predicted values.
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Fig. 13.— A plot of the logarithm of the concentration parameter c200 versus logarithm of

M200. This is modeled on Figure 1 in Fedeli (2011). The red line is the best fit to the data

and has a slope α = 0.45 ± 0.30. The solid green line is the fit to the data in Oguri et al.

(2012) (their Equation 26). The solid blue line is the Oguri prediction for lensing-selected

clusters (Equation 23). The large vertical error bars arise on the low-mass clusters due to

how c200 changes as a function of M200 and θE. We found the upper vertical error bars on c200

by setting M200 and θE to their minimum and maximum values, respectively. When M200

is very small, a very large value for c200 is required to achieve the large value for Einstein

radius.
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Fig. 14.— The same plot as Figure 13 but made with M200 and c200 values corresponding to

richness values scaled up using Eq. 11. The slope of the best fit line is α = 0.45±0.23. Note

that the values for M200 have been shifted to the right and thus many of the points fit the

predicted relations now. However the lowest mass points still do not match the predictions.
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