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ABSTRACT

A thorough search for large scale anisotropies in the distribution of arrival

directions of cosmic rays detected above 1018 eV at the Pierre Auger Observa-

tory is presented. This search is performed in several energy ranges in terms

of dipoles and quadrupoles as a function of both the declination and the right

ascension. Within the systematic uncertainties, no significant deviation from

isotropy is revealed. Assuming that the eventual anisotropic component of the

angular distribution of cosmic rays is dominated by dipole and quadrupole mo-

ments in this energy range, upper limits on dipole and quadrupole amplitudes

are derived. These upper limits allow us to challenge an origin of cosmic rays

above 1018 eV from stationary galactic sources densely distributed in the galactic

disk and emitting predominantly light particles in all directions.

Subject headings: Ultra-High Energy Cosmic Rays; Pierre Auger Observatory; Large

Scale Anisotropies
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J. Schovancova25, P. Schovánek25, F. Schröder35, D. Schuster78, S.J. Sciutto4, M. Scuderi47,

A. Segreto50, M. Settimo41, A. Shadkam83, R.C. Shellard13, I. Sidelnik7, G. Sigl40, H.H. Silva
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72 Universidad de Granada & C.A.F.P.E., Granada, Spain

73 Universidad de Santiago de Compostela, Spain

74 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom

75 School of Physics and Astronomy, University of Leeds, United Kingdom

76 Argonne National Laboratory, Argonne, IL, USA

77 Case Western Reserve University, Cleveland, OH, USA

78 Colorado School of Mines, Golden, CO, USA

79 Colorado State University, Fort Collins, CO, USA

80 Colorado State University, Pueblo, CO, USA

81 Fermilab, Batavia, IL, USA

82 Los Alamos National Laboratory, Los Alamos, NM, USA

83 Louisiana State University, Baton Rouge, LA, USA

84 Michigan Technological University, Houghton, MI, USA

85 New York University, New York, NY, USA

86 Northeastern University, Boston, MA, USA

87 Ohio State University, Columbus, OH, USA

88 Pennsylvania State University, University Park, PA, USA

90 University of Chicago, Enrico Fermi Institute, Chicago, IL, USA

91 University of Hawaii, Honolulu, HI, USA

92 University of Nebraska, Lincoln, NE, USA

93 University of New Mexico, Albuquerque, NM, USA

94 University of Wisconsin, Madison, WI, USA



– 9 –

95 University of Wisconsin, Milwaukee, WI, USA

96 Institute for Nuclear Science and Technology (INST), Hanoi, Vietnam

(‡) Deceased

(a) at Konan University, Kobe, Japan

(b) now at the Universidad Autonoma de Chiapas on leave of absence from Cinvestav

(f) now at University of Maryland

(h) now at NYU Abu Dhabi

(i) now at Université de Lausanne

1. Introduction

Establishing at which energy the intensity of extragalactic cosmic rays starts to dominate the intensity

of galactic ones would constitute an important step forward to provide further understanding on the origin

of Ultra-High Energy Cosmic Rays (UHECRs). A time honored picture is that the ankle, a hardening

of the energy spectrum located at ≃ 4 EeV (Linsley 1963; Lawrence et al. 1991; Nagano et al. 1992;

Bird et al. 1993; Pierre Auger Collaboration 2010a) (where 1 EeV ≡ 1018 eV), is the onset in the

energy spectrum marking the transition between galactic and extragalactic UHECRs (Linsley 1963).

As a natural signature of the escape of cosmic rays from the Galaxy, large scale anisotropies in the

distribution of arrival directions could be detected at energies below this spectral feature. Both

the amplitude and the shape of such patterns are uncertain, as they depend on the model adopted

to describe the regular and turbulent components of the galactic magnetic field, the charges of the

cosmic rays, and the assumed distribution of sources in space and time. For cosmic rays mostly

heavy and originating from stationary sources located in the galactic disk, some estimates based on

diffusion and drift motions (Ptuskin et al. 1993; Candia et al. 2003) as well as direct integration of

trajectories (Zirakashvili et al. 1998; Giacinti et al. 2011) show that dipolar anisotropies at the level of a

few percents could be imprinted in the energy range just below the ankle energy. Even larger amplitudes

could be left in case of light primaries, unless sources are strongly intermittent and pure diffusion motions

hold up to EeV energies (Calvez et al. 2010; Eichler & Pohl 2011).

If UHECRs above 1 EeV have already a predominant extragalactic origin (Hillas 1967;

Blumenthal 1970; Berezinsky et al. 2006; Berezinsky et al. 2004), their angular distribution is ex-
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pected to be isotropic to a high level. But, even for isotropic extragalactic cosmic rays, the translational

motion of the Galaxy relative to a possibly stationary extragalactic cosmic ray rest frame can produce

a dipole in a similar way to the Compton-Getting effect (Compton & Getting 1935) which has been

measured with cosmic rays of much lower energy at the solar time scale (Cutler & Groom 1986;

Amenomori et al. 2006; Abdo et al. 2009; Aglietta et al. 2009; Abbasi et al. 2010) as a result of the Earth

moving relative to the frame in which the cosmic rays have no bulk motion. Moreover, the rotation of

the Galaxy can also produce anisotropy by virtue of moving magnetic fields, as cosmic rays travelling

through far away regions of the Galaxy experience an electric force due to the relative motion of the

system in which the field is purely magnetic (Harari et al. 2010). The large scale structure of the galactic

magnetic field is expected to transform even a simple Compton-Getting dipole into a more complex

anisotropy at Earth, described by higher order multipoles (Harari et al. 2010). A quantitative estimate

of the imprinted pattern would require knowledge of the global structure of the galactic magnetic field

and the charges of the particles, as well as the frame in which extragalactic cosmic rays have no bulk

motion. If, for instance, the frame in which the UHECR distribution is isotropic coincides with the cosmic

microwave background rest frame, the amplitude of the simple Compton-Getting dipole would be about

0.6% (Kachelriess & Serpico 2006). The same order of magnitude is expected if UHECRs have no bulk

motion with respect to the local group of galaxies.

Scrutiny of the large scale distribution of arrival directions of UHECRs as a function of the energy is

thus one important observable to provide key elements for understanding their origin in the EeV energy

range. Using the large amount of data collected by the Surface Detector (SD) array of the Pierre Auger

Observatory, results of first harmonic analysis of the right ascension distribution performed in different

energy ranges above 0.25 EeV were recently reported (Pierre Auger Collaboration 2011a). Upper limits

on the dipole component in the equatorial plane were derived, being below 2% at 99% C.L. for EeV

energies and providing the most stringent bounds ever obtained. These analyses benefit from the almost

uniform directional exposure in right ascension of the SD array of the Pierre Auger Observatory which is

due to the Earth rotation, and they constitute a powerful tool for picking up any dipolar modulation in

this coordinate. However, since this technique is not sensitive to an eventual dipolar component along the

Earth rotation axis, we aim in the present report at estimating not only the dipole component in the right

ascension distribution but also the component along the Earth rotation axis as well. More generally, we

present a comprehensive search in all direction for any dipole or quadrupole patterns significantly standing

out above the background noise.
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Searching for anisotropies with relative amplitudes down to the percent level requires the control

of the exposure of the experiment at even greater accuracy. Spurious modulations in the right

ascension distribution are induced by the variations of the effective size of the SD array with time

and by the variations of the counting rate of events due to the changes of atmospheric conditions. In

Ref. (Pierre Auger Collaboration 2011a), we showed in a quantitative way that such effects can be properly

accounted for by making use of the instantaneous status of the SD array provided each second by the

monitoring system, and by converting the observed signals in actual atmospheric conditions into the ones

that would have been measured at some given reference atmospheric conditions. Searching for anisotropies

explicitly in declination requires the control of additional systematic errors affecting both the directional

exposure of the Observatory and the counting rate of events in local angles. Each of these additional effects

are carefully presented in sections 3 and 4.

After correcting for the experimental effects, searches for large scale patterns above 1 EeV are

presented in section 5. Additional cross-checks against eventual systematic errors affecting the results

obtained in section 5 are presented in section 6. Resulting upper limits on dipole and quadrupole amplitudes

are presented and discussed in section 7, while a final summary is given in section 8. Some further technical

aspects are detailed in the appendices.

2. The Pierre Auger Observatory and the data set

The Pierre Auger Observatory (Pierre Auger Collaboration 2004) is located in Malargüe, Argentina,

at mean latitude 35.2◦ S, mean longitude 69.5◦ W and mean altitude 1400 meters above sea level. Two

complementary techniques are used to detect extensive air showers initiated by UHECRs : a surface detector

array and a fluorescence detector. The SD array consists of 1660 water-Cherenkov detectors covering an

area of about 3000 km2 on a triangular grid with 1.5 km spacing, allowing electrons, photons and muons in

air showers to be sampled at ground level with a duty cycle of almost 100%. In addition, the atmosphere

above the SD array is observed during dark cloudless nights by 27 optical telescopes grouped in 5 buildings.

These detectors observe the longitudinal profile of air showers by detecting the fluorescence light emitted

by nitrogen molecules excited by the cascade.

The data set analysed here consists of events recorded by the SD array from 1 January 2004 to 31

December 2011. During this time, the size of the Observatory increased from 154 to 1660 water-Cherenkov
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detectors. Events used in this analysis have zenith angles less than 55◦. Moreover, an event is accepted only

if all six nearest neighbours of the water-Cherenkov detector with the highest signal were operational at the

time of the event. This fiducial cut ensures good event reconstruction (Pierre Auger Collaboration 2010b).

Throughout this article, based on this fiducial cut, any active water-Cherenkov detector with six active

neighbours will be defined as an elemental cell. Also, periods of array instability have been omitted from the

data set, reducing the duty cycle to ≃ 90%. Above the energy at which the detection efficiency saturates,

3 EeV (Pierre Auger Collaboration 2010b), and restricting the zenith angle between 0 and 55◦, the total

exposure of the SD array is 23,555 km2 yr sr for the eight years considered in this analysis.

The event direction is determined from a fit to the arrival times of the shower front at the SD,

which requires having at least three triggered stations. The precision achieved in this reconstruction

depends upon the GPS clock resolution and on the fluctuations in the time of arrival of the first

particle (Bonifazi et al. 2008). The angular resolution of events having only three triggered detectors

(i.e. those at the lowest energies observed) is about 2.2◦, which is largely sufficient to perform searches

for large-scale patterns in arrival directions, and reaches ∼ 1◦ for events with multiplicities larger than

five (Bonifazi et al. 2009). The energy of each event is determined in a two-step procedure. First, using

the constant intensity cut method, the shower size at a reference distance of 1000 m, S(1000), is converted

to the value S38◦ that would have been expected had the shower arrived at a zenith angle 38◦. Then,

S38◦ is converted to energy using a calibration curve based on hybrid events measured simultaneously

by the SD array and the fluorescence telescopes which can provide a calorimetric measurement of the

energy (Pierre Auger Collaboration 2008). The uncertainty in S38◦ resulting from the fit of the shower

size, the conversion to a reference angle, the fluctuations from shower-to-shower and the calibration curve

amounts to about 15%. The absolute energy scale is given by the fluorescence measurements and has a

systematic uncertainty of 22% (Pierre Auger Collaboration 2008).

3. Control of the event counting rate

The control of the event counting rate is critical in searches for large scale

anisotropies. Due to the steepness of the energy spectrum, any mild bias in the estimate of the

shower energy with time or incident angles can lead to significant distortions of the event counting rate.

The procedure followed to obtain an unbiased estimate of the shower energy is described in this section.

This procedure consists in correcting measurements of shower sizes, S(1000), for the influence of weather
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effects and of the geomagnetic field before the conversion to S38◦ using the constant intensity method.

Then, the conversion to energy is applied.

3.1. Influence of atmospheric conditions on shower size

Changes in the atmospheric pressure, P , and air density, ρ, have been shown to affect the development

of extensive air showers detected by the surface detector array and these changes are reflected in the temporal

variations of shower size at a fixed energy (Pierre Auger Collaboration 2009). To eliminate these variations,

the procedure used to convert the observed signal into energy needs to account for these atmospheric effects.

This is performed by relating the shower size S(1000), measured at the actual density ρ and pressure P , to

the one Satm(1000) that would have been measured at reference values ρ0 and P0, chosen as the average

values at Malargüe (i.e. ρ0 = 1.06 kg m−3 and P0 = 862 hPa (Pierre Auger Collaboration 2009)) :

Satm(1000) = [1 − αP (θ)(P − P0) − αρ(θ)(ρd − ρ0) − βρ(θ)(ρ − ρd)] S(1000), (1)

where ρd is the average daily density at the time the event was recorded. The measured coefficients αρ,

βρ and αP - given in Table 1 - reflect respectively the impact of the variation of air density (and thus

temperature) at long and short time scales, and of the variation of pressure on the shower sizes. Coefficients

related to the air density are here predominant relative to the ones related to the pressure.

sec θ αρ[kg−1m3] βρ[kg−1m3] αP [hPa−1]

[1.0 − 1.2] −9.7 10−1 −2.6 10−1 −4.4 10−4

[1.2 − 1.4] −7.2 10−1 −2.2 10−1 −1.6 10−3

[1.4 − 1.6] −5.4 10−1 −2.0 10−1 −2.3 10−3

[1.6 − 1.8] −4.0 10−1 −4.3 10−2 −1.9 10−3

[1.8 − 2.0] −1.5 10−1 −2.3 10−2 −2.8 10−3

Table 1: Coefficients αρ, βρ and αP used to correct shower sizes for atmospheric effects on shower

development, in bins of sec θ. From Ref (Pierre Auger Collaboration 2009).

Applying these corrections to the energy assignments of showers allows us to cancel spurious variations

of the event rate in right ascension, whose typical amplitudes amount to a few per thousand when
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considering data sets collected over full years.

3.2. Influence of the geomagnetic field on shower size

The trajectories of charged particles in extensive air showers are curved in the Earth’s magnetic

field, resulting in a broadening of the spatial distribution of particles in the direction of the Lorentz force.

As the strength of the geomagnetic field component perpendicular to any arrival direction depends on

both the zenith and azimuthal angles, the small changes of the density of particles at ground induced by

the field break the circular symmetry of the lateral spread of the particles and thus induce a dependence

of the shower size S(1000) at a fixed energy in terms of the azimuthal angle. Due to the steepness

of the energy spectrum, such an azimuthal dependence translates into azimuthal modulations of the

estimated cosmic ray event rate at a given S(1000). To eliminate these effects, the observed shower

size S(1000) is related to the one that would have been observed in the absence of geomagnetic field

Sgeom(1000) (Pierre Auger Collaboration 2011b) :

Sgeom(1000) =
[
1 − g1 cos−g2 (θ) sin2 (û,b)

]
S(1000), (2)

where g1 = (4.2 ± 1) 10−3, g2 = 2.8 ± 0.3, and u and b = B/‖B‖ denote the unit vectors in the shower

direction and the geomagnetic field direction, respectively. At a zenith angle θ = 55◦, the amplitude of the

asymmetry in azimuth already amounts to ≃ 2%, which is why we restrict the present analysis to zenith

angles smaller than this value. Carrying out these corrections is thus critical for performing large scale

anisotropies measurements in declination.

3.3. From shower size to energy

Once the influence on S(1000) of weather and geomagnetic effects are accounted for, the dependence

of S(1000) on zenith angle due to the attenuation of the shower and geometrical effects is extracted from

the data using the constant intensity cut method (Pierre Auger Collaboration 2008). The attenuation curve

CIC(θ) is fitted with a second order polynomial in x = cos2 (θ) − cos2 (38◦) : CIC(θ) = 1 + ax + bx2. The

angle 38◦ is chosen as a reference to convert S(1000) to S38◦ = S(1000)/CIC(θ). S38◦ may be regarded

as the signal that would have been expected had the shower arrived at 38◦. The values of the parameters
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a = 0.94 ± 0.03 and b = −0.95 ± 0.05 are deduced for S38◦ = 22 VEM1, that corresponds to an energy of

about 4 EeV - just above the threshold energy for full efficiency. The differences of these parameters with

respect to previous reports will be discussed in section 6.

Finally, the sub-sample of events recorded by both the fluorescence telescopes and the SD array is

used to establish the relationship between the energy reconstructed with the fluorescence telescopes EFD

and S38◦ : EFD = ASB
38◦ . The resulting parameters from the data fit are A = (1.68± 0.05)× 10−1 EeV and

B = 1.030 ± 0.009, in good agreement with the recent report given in Ref. (Pesce et al. 2011). The energy

scale inferred from this data sample is applied to all showers detected by the SD array.

4. Directional exposure of the Surface Detector array above 1 EeV

The directional exposure ω of the Observatory provides the effective time-integrated collecting area for

a flux from each direction of the sky 2, in units km2 yr. For energies below 3 EeV, it is controlled by the

detection efficiency ǫ for triggering. This efficiency depends on the energy E, the zenith angle θ, and the

azimuth angle ϕ. Consequently, the directional exposure of the Observatory is maximal above 3 EeV, and

it is less at lower energies where the detection efficiency is less than unity.

In this section, we show in a comprehensive way how the directional exposure of the SD array is

obtained as a function of the energy. First, we explain how the slightly non-uniform exposure of the sky in

sidereal time can be accounted for in the search for anisotropies (section 4.1). In section 4.2, we empirically

calculate the detection efficiency as a function of the zenith angle and deduce the exposure below the full

efficiency energy (3 EeV). In section 4.3, we discuss the azimuthal dependence of the efficiency due to the

geomagnetic effects, introduce the corrections due to the tilt of the array in section 4.4 and the corrections

due to the spatial extension of the array in section 4.5, and show that the influence of weather effects is

negligible on the detection efficiency between 1 and 3 EeV in section 4.6. Finally we give in section 4.7

some examples of our fully corrected exposure at several energies.

1A vertical equivalent muon, or VEM, is the expected signal in a surface detector crossed by a muon

traveling vertically and centrally to it

2In other contexts such as the determination of the energy spectrum for instance, the term ”exposure”

refers to the total exposure integrated over the celestial sphere, in units km2 yr sr.



– 16 –

4.1. From local to celestial directional exposure.

The choice of the fiducial cut to select high quality events allows the precise determination of the

geometric directional aperture per cell as acell(θ) = 1.95 cos θ km2 (Pierre Auger Collaboration 2010b). It

also allows us to exploit the regularity of the array for obtaining its geometric directional aperture as a

simple multiple of acell(θ) (Pierre Auger Collaboration 2010b). The number of elemental cells ncell(t) is

recorded every second using the trigger system of the Observatory. It reflects the array growth as well as

the dead periods of each detector. To search for celestial large scale anisotropies, it is mandatory to account

for the modulation imprinted by the variations of ncell(t) in the expected number of events at the sidereal

periodicity Tsid. Within each sidereal day, we denote throughout this article by α0 the local sidereal time

and express it in hours or in radians, as appropriate. For practical reasons, α0 is chosen so that it is always

equal to the right ascension of the zenith at the centre of the array. As a function of α0, the total number

of elemental cells Ncell(α
0) and its associated relative variations ∆Ncell(α

0) are then obtained from :

Ncell(α
0) =

∑

j

ncell(α
0 + jTsid), ∆Ncell(α

0) =
Ncell(α

0)

〈Ncell(α0)〉 , (3)

with
〈
Ncell(α

0)
〉

= 1/Tsid

∫ Tsid

0 dα0Ncell(α
0). In the same way as in Ref. (Pierre Auger Collaboration 2011a),

the small modulation of the expected number of events in right ascension induced by those variations will be

accounted for by weighting each event k with a factor inversely proportional to ∆Ncell(α
0
k) when estimating

the anisotropy parameters in section 5. Placing such time dependences in the event weights allows us to

remove the modulations in time imprinted by the growth of the array and the dead times for each detector.

At any time, the effective directional aperture of the SD array is controlled by the geometric

one and the detection efficiency function ǫ(θ, ϕ, E). For each elemental cell, the directional exposure

in celestial coordinates is then simply obtained through the integration over local sidereal time of

x(i)(α0)× acell(θ)× ǫ(θ, ϕ, E), where x(i)(α0) is the operational time of the cell (i). Actually, since the small

modulations in time imprinted in the event counting rate by experimental effects will be accounted for by

means of the weighting procedure just described when searching for anisotropies, the small variations in

local sidereal time for each x(i)(α0) can be neglected in calculating ω. The zenith and azimuth angles are

related to the declination and the right ascension through :

cos θ = sin δ sin ℓsite + cos δ cos ℓsite cos (α − α0),

tan ϕ =
cos δ sin ℓsite cos (α − α0) − sin δ cos ℓsite

cos δ sin (α − α0)
, (4)

with ℓsite the mean latitude of the Observatory. Since both θ and ϕ depend only on the difference α − α0,
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the integration over α0 can then be substituted for an integration over the hour angle α′ = α − α0 so

that actually, the directional exposure does not depend on right ascension when the x(i) are assumed local

sidereal time independent :

ω(δ, E) =

ncell∑

i=1

x(i)

∫ 24h

0

dα′ acell(θ(α′, δ)) ǫ(θ(α′, δ), ϕ(α′, δ), E). (5)

Above 3 EeV, this integration can be performed analytically (Sommers 2001). Below 3 EeV, the

non-saturation of the detection efficiency makes the directional exposure lower. Next sub-sections are

dedicated to the determination of ǫ(θ, ϕ, E).

4.2. Detection efficiency

To determine the detection efficiency function, a natural method would be to generate showers by

means of Monte-Carlo simulations and to calculate the ratio of the number of triggered events to the total

simulated. However, there are discrepancies in the predictions of the hadronic interaction model regarding

the number of muons in shower simulations and what is found in our data (Engel et al. 2007). This

prevents us from relying on this method for obtaining the detection efficiency to the required accuracy.

We adopt here instead an empirical approach, based on the quasi-invariance of the zenithal distribution

to large scale anisotropies for zenith angles less than ≃ 60◦ and for any Observatory whose latitude is far

from the poles of the Earth. For full efficiency, the distribution in zenith angles dN/dθ is proportional

to sin θ cos θ for solid angle and geometry reasons, so that the distribution in dN/d sin2 θ is uniform.

Consequently, below full efficiency, any significant deviation from a uniform behaviour in the dN/d sin2 θ

distribution provides an empirical measurement of the zenithal dependence of the detection efficiency. The

quasi-invariance of dN/d sin2 θ to large scale anisotropies is demonstrated in Appendix A.

Based on this quasi-invariance, the detection efficiency averaged over the azimuth can be estimated

from :

〈ǫ(θ, ϕ, E)〉ϕ =
1

N
dN(sin2 θ, E)

d sin2 θ
, (6)

where the notation 〈·〉ϕ stands for the average over ϕ and the constant N is the number of events

that would have been observed at energy E and for any sin2 θ value in case of full efficiency for

an energy spectrum dN/dE = 40 (E/EeV)−3.27 km−2yr−1sr−1EeV−1 - as measured between 1 and

4 EeV (Pierre Auger Collaboration 2010a). Consequently, for each zenith angle, this empirical measurement
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Fig. 1.— Detection efficiency averaged over the azimuth as a function of sin2 θ at different energies,

empirically measured from the data.

of the efficiency provides an estimate relative to the overall spectrum of cosmic rays. In particular, since it

is applied to all events detected at energy E without distinction based on the primary mass of cosmic rays,

this technique is not sensitive to evaluate the mass dependence of the detection efficiency. For that reason,

the anisotropy searches reported in section 5 pertain to the whole population of cosmic rays, whether this

population consists of a single primary mass or a mixture of several elements.

Results are shown in Fig. 1 for four different energies3. At 4 EeV, a uniform behaviour around 1 is

observed, though quite noisy due to the reduced statistics. This uniform behaviour is consistent with full

efficiency at this energy, as expected. At 2 EeV, a loss of efficiency is observed at small zenith angles while

the muonic component of showers still ensures a recovering of efficiency above ≃ 40◦. At lower energies, a

loss of efficiency is observed at all zenith angles. In the following, we use parameterisations obtained by

fitting each distribution with a fourth-order polynomial function in sin2 θ, which is sufficient to reproduce

the main details as illustrated in Fig. 1.

3To get the detection efficiency at a single energy E, events are actually selected in narrow energy bins

around E. In addition, to account for the energy spectrum in E−3.27 in this energy range, each event is

weighted by a factor E3.27.
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Fig. 2.— Left : Dependence of the detection efficiency on azimuth for θ = 55◦ and E = 1 EeV,

due to geomagnetic effects. Right : Maximal contrast of the azimuthal modulation of the detection

efficiency induced by geomagnetic effects as a function of the zenith angle.

4.3. Geomagnetic effects below full efficiency

In addition to the effects on the energy determination presented in section 3.2, geomagnetic effects also

affect the detection efficiency for showers with energies below 3 EeV. This is because under any incident

angles (θ, ϕ), a shower with an energy E triggers the SD array with a probability associated with its size

which is a function of azimuth because of the geomagnetic effects 4 : E × (1 + ∆(θ, ϕ))B . Above 1 EeV, this

effect is in fact the main source of azimuthal dependence of the detection efficiency, so that to first order in

∆(θ, ϕ), ǫ(θ, ϕ, E) can be estimated as :

ǫ(θ, ϕ, E) =
1

N
dN(sin2 θ, E(1 + ∆(θ, ϕ))B)

d sin2 θ

≃ 〈ǫ(θ, ϕ, E)〉ϕ +
BE∆(θ, ϕ)

N
∂ 〈ǫ(θ, ϕ, E)〉ϕ

∂E
. (7)

The correction to the detection efficiency induced by geomagnetic effects, and in particular the azimuthal

dependence, is thus straightforward to implement from the knowledge of 〈ǫ(θ, ϕ, E)〉ϕ. An example of such

an azimuthal dependence is shown in the left panel of Fig. 2, for E = 1 EeV and θ = 55◦. The modulation

reflects the one due to the energy determination : the detection efficiency is lowered in the directions

4Here, the shorthand notation ∆(θ, ϕ) stands for g1 cos−g2 (θ)

[
sin2 (û,b) −

〈
sin2 (û,b)

〉
ϕ

]
. The energy

E × (1 + ∆(θ, ϕ))B is actually the one that would have been obtained without correcting for geomagnetic

effects.
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Fig. 3.— Colour-coded altitude (a.s.l.) of the water-Cherenkov detectors.

where the uncorrected energies are under-estimated due to geomagnetic effects, and the efficiency is higher

where energies are over-estimated. The maximal contrast of such azimuthal modulations is displayed in

the right panel as a function of the zenith angle, for three different energies. At 2 EeV, the amplitude

slightly increases up to ≃ 35◦, (below ≃ 0.1%), and then decreases and even cancels due to the saturation

of the detection efficiency. In contrast, when going down in energy, the relative amplitude largely increases

with the zenith angle due to the increase of the derivative term, amounting to ≃ 1.2% for θ = 55◦ and

E = 1 EeV.

4.4. Tilt of the array

The altitudes above sea level of the water-Cherenkov detectors are displayed in Fig. 3 in colour coding.

The coordinates are in a Cartesian system whose origin is defined at the ”centre” of the Observatory site.

The Andes ridge building up in the western and north-western direction can be seen. A slightly tilted SD

array gives rise to a small azimuthal asymmetry, and consequently slightly modifies the directional exposure

with respect to Eqn. 5 through the little changes of the geometric directional aperture. This modification is

twofold : the tilt changes the geometric factor (cos θ) of the projected surface under incidence angles (θ, ϕ);
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and also induces a compensating effect below full efficiency by slightly varying the detection efficiency with

the azimuth angle ϕ.

Denoting n
(i)
⊥ the normal vector to each elemental cell, the geometric directional aperture per cell is

not any longer simply given by cos θ but now depends on both θ and ϕ :

a
(i)
cell(θ, ϕ) = 1.95 n · n(i)

⊥ ≃ 1.95 [1 + ζ(i) tan θ cos (ϕ − ϕ
(i)
0 )] cos θ, (8)

where ζ(i) and ϕ
(i)
0 are the zenith and azimuth angles of n

(i)
⊥ . It is actually this latter expression acell which

has to be inserted into Eqn. 5 to calculate the directional exposure. Overall, the average tilt of the SD

array is ζeff ≃ 0.2◦, and induces a dipolar asymmetry in azimuth with a maximum in the downhill direction

ϕeff
0 ≃ 0◦ and with an amplitude increasing with the zenith angle as ≃ 0.3% tan θ.

Below 3 EeV, the tilt of the array induces an additional variation of the detection efficiency with

azimuth. This is because the effective separation between detectors for a given zenith angle depends now on

the azimuth. Since, for a given zenith angle, the SD array seen by showers coming from the uphill direction

is denser than that for those coming from the downhill direction, the detection efficiency is higher in the

uphill direction. For an energy dependence of ǫ in E3/(E3 + E3
0.5), we show in Appendix B that the change

in the detection efficiency can be estimated as :

∆ǫtilt(θ, ϕ, E) =
E3(E3

0.5 − Etilt
0.5

3
(θ, ϕ))

(E3 + E3
0.5)(E3 + Etilt

0.5
3
(θ, ϕ))

, (9)

where Etilt
0.5 (θ, ϕ) is related to E0.5 through :

Etilt
0.5 (θ, ϕ) ≃ E0.5 × [1 + ζeff tan θ cos (ϕ − ϕeff

0 )]3/2. (10)

Around 1 EeV, this correction tends to compensate the pure geometrical effect described above, and even

overcompensates it at lower energies.

4.5. Spatial extension of the array

This spatial extension of the SD array is such that the range of latitudes covered by all cells reaches

≃ 0.5◦. This induces a slightly different directional exposure between the cells located at the northern part

of the array and the ones located at the southern part. This spatial extension can be accounted for to

calculate the overall directional exposure using the cell latitudes ℓ
(i)
cell instead of the mean site one in the

transformations from local to celestial angles in Eqn. 4.
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Fig. 4.— Directional exposure ω(δ,E) as a function of the declination δ, for three different energies.

4.6. Weather effects below full efficiency

In the same way as geomagnetic effects, weather effects can also affect the detection efficiency for showers

with energies below 3 EeV. However, above 1 EeV, we have shown in Ref. (Pierre Auger Collaboration 2011a)

that as long as the analysis covers an integer number of years with almost equal exposure in every season,

the amplitude of the spurious modulation in right ascension induced by this effect is small enough to be

neglected when performing anisotropy analyses at the present level of sensitivity.

4.7. Final estimation of the directional exposure - Examples at some energies

Accounting for all effects, the final expression to calculate the directional exposure is slightly modified

with respect to Eqn. 5 :

ω(δ, E) =

ncell∑

i=1

x(i)

∫ 24h

0

dα′ a
(i)
cell(θ, ϕ) [ǫ(θ, ϕ, E) + ∆ǫtilt(θ, ϕ, E)] , (11)

where both θ and ϕ depend on α′, δ and ℓ
(i)
cell. The resulting dependence on declination is displayed in Fig. 4

for three different energies. Down to 1 EeV, the detection efficiency at high zenith angles is high enough

that the equatorial south pole is visible at any time and hence constitutes the direction of maximum of

exposure. For a wide range of declinations between ≃ −89◦ and ≃ −20◦, the directional exposure reaches
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≃ 2, 500 km2 yr at 1 EeV, and ≃ 3, 500 km2 yr for any energy above full efficiency. Then, at higher

declinations, it smoothly falls to zero, so that no direction with declination above ≃ 20◦ is visible.

The average expected number of events within any solid angle and any energy range can be recovered

by integrating the directional exposure over the solid angle considered and the cosmic ray energy spectrum

in the corresponding energy range. Note that the rapid variation of the exposure close to the South pole on

an angular scale of the order of the angular resolution has no influence on the event counting rate, due to

the quasi-zero solid angle in that particular direction. Consequently, though the exposure around the South

pole could be affected by small changes of the detection efficiency around θ = 55◦, results presented in next

sections are on the other hand not affected by the exact value of the exposure for declinations few degrees

away from the South pole.

5. Searches for large scale patterns

5.1. Estimates of spherical harmonic coefficients

Any angular distribution over the sphere Φ(n) can be decomposed in terms of a multipolar expansion :

Φ(n) =
∑

ℓ≥0

ℓ∑

m=−ℓ

aℓmYℓm(n), (12)

where n denotes a unit vector taken in equatorial coordinates. The customary recipe to extract each

multipolar coefficient makes use of the completeness relation of spherical harmonics :

aℓm =

∫

4π

dΩ Φ(n)Yℓm(n), (13)

where the integration is over the entire sphere of directions n. Any anisotropy fingerprint is encoded in the

aℓm spherical harmonic coefficients. Variations on an angular scale of Θ radians contribute amplitude in

the ℓ ≤ 1/Θ modes.

However, in case of partial sky coverage, the solid angle in the sky where the exposure is zero makes it

impossible to estimate the multipolar coefficients aℓm in this way. This is because the unseen solid angle

prevents one from making use of the completeness relation of the spherical harmonics (Sommers 2001). Since

the observed arrival direction distribution is in this case the combination of the angular distribution Φ(n) and

of the directional exposure function ω(n), the integration performed in Eqn. 13 does not allow any longer the
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extraction of the multipolar coefficients of Φ(n), but only the ones of ω(n) Φ(n) (Billoir & Deligny 2008) 5:

bℓm =

∫

∆Ω

dΩ ω(n)Φ(n)Yℓm(n)

=
∑

ℓ′≥0

ℓ′∑

m′=−ℓ′

aℓ′m′

∫

∆Ω

dΩ ω(n)Yℓ′m′(n)Yℓm(n). (14)

Formally, the aℓm coefficients appear related to the bℓm ones through a convolution such that

bℓm =
∑

ℓ′≥0

∑ℓ′

m′=−ℓ′ [K]ℓ
′m′

ℓm aℓ′m′ . The matrix K, which imprints the interferences between modes

induced by the non-uniform and partial coverage of the sky, is entirely determined by the directional

exposure. The relationship established in Eqn. 14 is valid for any exposure function ω(n).

Meanwhile, the observed arrival direction distribution, dN(n)/dΩ, provides a direct estimation of the

bℓm coefficients through (hereafter, we use an over-line to indicate the estimator of any quantity) :

bℓm =

∫

∆Ω

dΩ
dN(n)

dΩ
Yℓm(n), (15)

where the distribution dN(n)/dΩ of any set of N arrival directions {n1, ...,nN} can be modelled as a

sum of Dirac functions on the sphere. Then, if the multipolar expansion of the angular distribution Φ(n)

is bounded to ℓmax, that is, if the Φ(n) has no higher moments than ℓmax, the first bℓm coefficients with

ℓ ≤ ℓmax are related to the non-vanishing aℓm by the square matrix Kℓmax
truncated to ℓmax. Inverting this

truncated matrix allows us to recover the underlying aℓm from the measured bℓm (with ℓ ≤ ℓmax) :

aℓm =

ℓmax∑

ℓ′=0

ℓ′∑

m′=−ℓ′

[K−1
ℓmax

]ℓ
′m′

ℓm bℓ′m′ . (16)

In case of small anisotropies (|aℓm|/a00 ≪ 1), the resolution on each recovered aℓm coefficient is proportional

to

(
[K−1

ℓmax
]ℓmℓm

)0.5

(Billoir & Deligny 2008) :

σℓm =

(
[K−1

ℓmax
]ℓmℓm a00

)0.5

. (17)

The dependence on ℓmax of the coefficients of K−1
ℓmax

induces an intrinsic indeterminacy of each recovered

coefficient aℓm as ℓmax is increasing. This is nothing else but the mathematical translation of it being

impossible to know the angular distribution of cosmic rays in the uncovered region of the sky.

5To cope with the unseen solid angle, another approach makes use of orthogonal functions of increasing

multipolarity, tailored to the exposure ω itself (Billoir & Deligny 2008). This method would yield similar

accuracies.
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Henceforth, we adapt this general formalism to the search for anisotropies in Auger data in different

energy intervals. We assume that the energy dependence of the angular distribution of cosmic rays is

smooth enough that the multipolar coefficients can be considered constant for any energy E within a narrow

interval ∆E. The directional exposure is hereafter considered as independent of the right-ascension, as

defined in section 4. Within an energy interval ∆E, the expected arrival direction distribution thus reads :

dN(n)

dΩ
∝ ω̃(δ)

∑

ℓ≥0

ℓ∑

m=−ℓ

aℓmYℓm(n), (18)

where ω̃(δ) is the effective directional exposure for the energy interval ∆E. For convenience, this latter

function is normalised such that :

ω̃(δ) =

∫

∆E

dE E−γω(δ, E)

max
δ

[∫

∆E

dE E−γω(δ, E)

] , (19)

with γ the spectral index in the considered energy range. This dimensionless function provides, for any

direction on the sky, the effective directional exposure in the energy range ∆E at that direction, relative to

the largest directional exposure on the sky. This is actually the relevant quantity which enters into Eqn. 14

for the analyses presented below. Note that for a directional exposure independent of the right ascension,

the coefficients [K]ℓ
′m′

ℓm are proportional to δm′

m - i.e. different values of m are not mixed in the matrix.

The observed arrival direction distribution, dN(n)/dΩ, is here modelled as a sum of Dirac functions on the

sphere weighted by the factor ∆N−1
cell(α

0
k) for each event recorded at local sidereal time α0

k, as described in

section 4.1 to correct for the slightly non-uniform directional exposure in right ascension. In this way, the

integration in Eqn. 14 yields for the bℓm coefficients to :

bℓm =

N∑

k=1

Yℓm(nk)

∆Ncell(α0
k)

. (20)

The multipolar coefficients aℓm are then recovered by means of Eqn. 16. Given the exposure functions

described in section 4, the resolution on each recovered coefficient, encoded in Eqn. 17, is degraded by a

factor larger than 2 each time ℓmax is incremented by 1. This prevents the recovery of each coefficient with

good accuracy as soon as ℓmax ≥ 3, since, for ℓmax = 3 for instance, our current statistics would only allow

us to probe dipole amplitudes at the 10% level. Consequently, in the following, we restrict ourselves to

reporting results on individual coefficients obtained when assuming a dipolar distribution (ℓmax = 1) and

a quadrupolar distribution (ℓmax = 2). Meanwhile, due to the interferences between modes induced by

the non-uniform and partial sky coverage, it is important to stress again that each multipolar coefficient

recovered under the assumption of a particular bound ℓmax might be biased if the underlying angular
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distribution of cosmic rays is not bounded to ℓmax. Given the directional exposure functions considered in

this study, this effect can be important only if the angular distribution has in fact important moments of

order ℓmax + 1.

5.2. Searches for dipolar patterns

As outlined in the introduction, a measurable dipole is regarded as a likely possibility in many

scenarios of cosmic ray origins at EeV energies. Assuming that the angular distribution of cosmic rays is

modulated by a pure dipole, the intensity Φ(n) can be parameterised in any direction n as :

Φ(n) =
Φ0

4π

(
1 + r d · n

)
, (21)

where d denotes the dipole unit vector. The dipole pattern is here fully characterised by a declination δd, a

right ascension αd, and an amplitude r corresponding to the maximal anisotropy contrast :

r =
Φmax − Φmin

Φmax + Φmin
. (22)

The estimation of these three coefficients is straightforward from the estimated spherical harmonic

coefficients a1m : r = [3(a2
10 + a2

11 + a2
1−1)]0.5/a00, δ = arcsin (

√
3a10/a00r), and α = arctan (a1−1/a11).

Uncertainties on r, δ and α are obtained from the propagation of uncertainties on each recovered a1m

coefficient (cf Eqn. 17). Under an underlying isotropic distribution, and for an axisymmetric directional

exposure around the axis defined by the North and South equatorial poles, the probability density function

of r is given by (Pierre Auger Collaboration 2011b) :

pR(r) =
r

σ
√

σ2
z − σ2

erfi

(√
σ2

z − σ2

σσz

r√
2

)
exp

(
− r2

2σ2

)
, (23)

where erfi(z) = erf(iz)/i, σ =
√

3σ11/a00, and σz =
√

3σ10/a00. The probability PR(> r) that an amplitude

equal or larger than r arises from a statistical fluctuation of an isotropic distribution is then obtained by

integrating pR above r :

PR(> r) = erfc

(
r√
2σz

)
+ erfi

(√
σ2

z − σ2

σσz

r√
2

)
exp

(
− r2

2σ2

)
. (24)

The reconstructed amplitudes r(E) and corresponding directions are shown in Fig. 5 with the

associated uncertainties, as a function of the energy. The directions are drawn in azimuthal projection, with

the equatorial South pole located at the centre and the right-ascension going from 0 to 360◦ clockwise. In the
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Fig. 5.— Left : Reconstructed amplitude of the dipole as a function of energy. The dotted line

stands for the 99% C.L. upper bounds on the amplitudes that would result from fluctuations of

an isotropic distribution. Right : Reconstructed declination and right-ascension of the dipole with

corresponding uncertainties, as a function of energy, in azimuthal projection.
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Fig. 6.— Reconstructed declination (left) and right ascension (right) of the dipole as a function of

energy. The smooth fit to the data of (Pierre Auger Collaboration 2011a) is shown as the dashed

line in the right panel : a consistent smooth behaviour is observed using the analysis presented

here and applied to a data set containing two additional years of data.

left panel, the 99% C.L. upper bounds on the amplitudes that would result from fluctuations of an isotropic

distribution are indicated by the dotted line (i.e. the amplitudes r99(E) such that PR(> r99(E)) = 0.01).
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Fig. 7.— Significance sky maps in four independent energy bins. The maps are smoothed using

an angular window with radius Θ = 1 radian, to exhibit any dipolar-like structures. The directions

of the reconstructed dipoles are shown with the associated uncertainties. The galactic plane and

galactic center are also depicted as the dotted line and the star.

One can see that within the statistical uncertainties, there is no strong evidence of any significant signal.

The reconstructed declinations δ and right ascensions α are shown separately in Fig 6. Both quantities

are expected to be randomly distributed in case of independent samples whose parent distribution is isotropic.

In our previous report on first harmonic analysis in right ascension (Pierre Auger Collaboration 2011a), we

pointed out the intriguing smooth alignment of the phases in right ascension as a function of the energy,

and noted that such a consistency of phases in adjacent energy intervals is expected with smaller number

of events than the detection of amplitudes standing-out significantly above the background noise in case

of a real underlying anisotropy. This motivated us to design a prescription aimed at establishing at 99%

C.L. whether this consistency in phases is real, using the exact same analysis as the one reported in

Ref (Pierre Auger Collaboration 2011a). The prescription will end once the total exposure since 25 June
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Fig. 8.— Left : Amplitude of the dipole for two energy intervals : 1 < E/[EeV] < 4 and

E > 4 EeV. Right : Amplitude of the dipole as a function of energy thresholds. The dotted lines

stand for the 99% C.L. upper bounds on the amplitudes that could result from fluctuations of an

isotropic distribution.

2011 reaches 21,000 km2 yr sr. The smooth fit to the data of Ref (Pierre Auger Collaboration 2011a) is

shown as a dashed line in the right panel of Fig 6, restricted to the energy range considered here. Though

the phase between 4 and 8 EeV is poorly determined due to the corresponding direction in declination

pointing close to the equatorial south pole, it is noteworthy that a consistent smooth behaviour is observed

using the analysis presented here and applied to a data set containing two additional years of data. It is

also interesting to see in the left panel that all reconstructed declinations are in the equatorial southern

hemisphere.

For completeness, significance sky maps are displayed in Fig. 7 in equatorial coordinates and using a

Mollweide projection, for the four energy ranges. The galactic plane and galactic center are also depicted

as the dotted line and the star. Significances are calculated using the Li and Ma estimator (Li & Ma 1983).

The maps show the overdensities obtained in circular windows of radius Θ = 1 radian, to better exhibit

possible dipolar-like structures. The directions of the reconstructed dipoles are also shown, with their

associated uncertainties (thick circles).

Finally, since some consistency is observed both in declination and right ascension as a function of

energy, the use of larger energy intervals and/or energy thresholds may help to pick up a significant signal

above the background level. The amplitudes of the dipole are shown in Fig. 8 for two energy intervals

(1 < E/[EeV] < 4 and E > 4 EeV) and as a function of energy thresholds. This does not provide any
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further evidence for significant anisotropies.

5.3. Searches for quadrupolar patterns

Any excesses along a plane would show up as a prominent quadrupole moment. Such excesses

are plausible for instance at EeV energies in case of an emission of light EeV-cosmic rays from sources

preferentially located in the galactic disk, or at higher energies from sources preferentially located in the

super-galactic plane. Consequently, a measurable quadrupole may be regarded as an interesting outcome of

an anisotropy search at ultra high energies.

Assuming now that the angular distribution of cosmic rays is modulated by a dipole and a quadrupole,

the intensity Φ(n) can be parameterised in any direction n as :

Φ(n) =
Φ0

4π

(
1 + r d · n +

1

2

∑

i,j

Qijninj

)
, (25)

where Q is a traceless and symmetric second order tensor. Its five independent components are determined

in a straightforward way from the ℓ = 2 spherical harmonic coefficients a2m. Denoting by λ+, λ0, λ− the

three eigenvalues of Q/2 (λ+ being the highest one and λ− the lowest one) and q+,q0,q− the three

corresponding unit eigenvectors, the intensity can be parameterised in a more intuitive way as :

Φ(n) =
Φ0

4π

(
1 + r d · n + λ+(q+ · n)2 + λ0(q0 · n)2 + λ−(q− · n)2

)
. (26)

It is then convenient to define the quadrupole amplitude β as :

β =
λ+ − λ−

2 + λ+ + λ−
. (27)

In case of a pure quadrupolar distribution (i.e. in the absence of dipole), β is nothing else but the customary

measure of maximal anisotropy contrast :

r = 0 ⇒ β =
λ+ − λ−

2 + λ+ + λ−
=

Φmax − Φmin

Φmax + Φmin
. (28)

Hence, any quadrupolar pattern can be fully described by two amplitudes (β, λ+) and three angles :

(δ+, α+) which define the orientation of q+ and (α−) which defines the direction of q− in the orthogonal

plane to q+. The third eigenvector q0 is orthogonal to q+ and q−, and its corresponding eigenvalue

λ0 is such that the traceless condition is satisfied : λ+ + λ− + λ0 = 0. Though the probability density

functions of the estimated quadrupole amplitudes (β, λ+) can be in principle calculated in the same way as
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Fig. 9.— Amplitudes of the dipolar (top) and quadrupolar moments (middle and bottom) as a

function of energy using a multipolar reconstruction up to ℓmax = 2, for two different binnings (left

and right). In each panel, the dotted lines stand for the 99% C.L. upper bounds on the amplitudes

that could result from fluctuations of an isotropic distribution.

in the case of the estimated dipole amplitude (r), expressions are much more complicated to obtain even

semi-analytically and we defer hereafter to Monte-Carlo simulations to tabulate the distributions.
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The amplitudes r(E), λ+(E) and β(E) are shown in Fig. 9 as functions of energy. Dipole amplitudes

are compatible with expectations from isotropy. Compared to the results on the dipole obtained in previous

section for ℓmax = 1, the sensitivity is now degraded by a factor larger than 2 as expected from the

dependence of the resolution σℓm on ℓmax (cf Eqn. 17). In the same way as for dipole amplitudes, the

99% C.L. upper bounds on the quadrupole amplitudes that could result from fluctuations of an isotropic

distribution are indicated by the dashed lines. They correspond to the amplitudes λ+,99(E) and β99(E)

such that the probabilities PΛ+
(> λ+,99(E)) and PB(> β99(E)) arising from statistical fluctuations of

isotropy are equal to 0.01. Here, both distributions PΛ+
and PB are sampled from Monte-Carlo simulations.

Throughout the energy scan, there is no evidence for anisotropy. The largest deviation from isotropic

expectations occurs between 2 and 4 EeV, where both amplitudes λ+ and β lie just above λ+99 and β99.

6. Additional cross-checks against experimental effects

6.1. More on the influence of shower size corrections for geomagnetic effects

Understanding the influence of the shower size corrections for geomagnetic effects is critical to get

unbiased estimates of anisotropy parameters. Without accounting for these effects, an increase of the event

rate would be observed close to the equatorial South pole with respect to expectations for isotropy, while

a decrease would be observed close to the edge of the directional exposure in the equatorial Northern

hemisphere. This would result in the observation of a fake dipole. A convenient way to exhibit this effect

is to separate the dipole in two components : the component of the dipole in the equatorial plane r⊥,

and the component along the Earth rotation axis, r‖. While r⊥ is expected to be affected only by any

time-dependent effect, r‖ is on the flip side the relevant quantity sensitive to time-independent effects such

as the geomagnetic one.

∆E [EeV] runcorr
⊥ [%] r⊥[%] runcorr

‖ [%] r‖[%]

1 − 4 0.9 ± 0.3 0.9 ± 0.3 −2.2 ± 0.4 −1.0 ± 0.4

> 4 1.8 ± 1.0 2.1 ± 1.0 −4.1 ± 1.7 −3.0 ± 1.7

Table 2: Influence of shower size corrections for geomagnetic effects on the component of the dipole

in the equatorial plane and on the one along the Earth rotation axis.
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Estimations of r⊥ and r‖ obtained by accounting or not for geomagnetic effects are given in Table 2,

in two different energy ranges. These estimations are obtained from the recovered a1m coefficients :

r‖ =
√

3a10/a00, and r⊥ = [3(a2
11 + a2

1−1]0.5/a00. It can be seen that the main effect of the geomagnetic

corrections is a shift in r‖ of about 1.2%. In the energy range 1 ≤ E/[EeV] ≤ 4, this shift is significant, r‖

changing from -2.2% to -1.0% with an uncertainty amounting to 0.4%. Above 4 EeV, the net correction is

of the same order, though the statistical uncertainties are larger. In contrast, r⊥ remains unchanged in

both cases, as expected.

6.2. Eventual energy dependence of the attenuation curve

In this section, we study in which extent the procedure used to obtain the attenuation curve in

section 3.3 might influence the determination of anisotropy parameters.

To convert the shower size into energy, we explained and applied in section 3.3 the constant intensity

cut method for showers with S38◦ ≥ 22 VEM, that is, just above the threshold energy for full efficiency.

The value of the parameter a obtained in these conditions is consistent within the statistical uncertainties

with the one previously reported when applying the same constant intensity cut method for showers with

S38◦ ≥ 47 VEM. Opposite to this, the value obtained for the coefficient b differs by more than 3 standard

deviations. Such a difference might be expected from both the evolution of the maximum of the showers and

from an eventual change in composition with energy, but it may also be due to energy and angle-dependent

resolutions effects mimicking a real evolution with energy.

With a different attenuation curve, some events would be reconstructed in the adjacent energy

intervals in an extent which depends on the change of the attenuation curve with zenith angle. For that

reason, the determination of anisotropy parameters might be altered by this effect.

Disentangling real evolution of the attenuation curve with energy from resolution effects is out of the

scope of this paper and will be addressed elsewhere. Here, we restrict ourselves to probe the effect that a

real energy dependence would have on the determination of anisotropy parameters. To do so, we choose

to fit the values of the coefficient b obtained for S38◦ = 22 VEM and S38◦ = 47 VEM through a linear

dependence with the logarithm of S38◦ . Below and above these values, the behaviour of b(E) is obtained by

extrapolating this energy dependence. In this way, the changes in the anisotropy parameters are probed in

extreme conditions.
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Repeating the whole chain of analysis with this new attenuation curve, it turns out that the

reconstructed dipole parameters are only marginally affected by this change, as illustrated in the top and

middle panels of Fig. 10. Meanwhile, both reconstructed quadrupole amplitudes in the energy interval

2 ≤ E/EeV ≤ 4 are reduced in such a way that they lie now below the 99% upper bounds for isotropy.

Conversely, the amplitudes in the energy interval 1 ≤ E/EeV ≤ 2 are increased so that they lie now above

the 99% upper bounds for isotropy. Below 4 EeV, the determination of the attenuation curve thus appears

to be the main source of systematic uncertainties for determining the quadrupole amplitudes. The two

extreme extrapolations performed in this analysis (i.e. b constant with the energy or linearly dependent

with the logarithm of the energy) allows us to bracket the possible values.

6.3. Systematic uncertainties associated to corrections for weather and

geomagnetic effects

In section 3, we presented the procedure adopted to account for the changes in shower size due to

weather and geomagnetic effects. Since the coefficients αP , αρ and βρ in Eqn. 1 were extracted from

real data, they suffer from statistical uncertainties which may impact in a systematic way the corrections

made on S(1000), and consequently may also impact the anisotropy parameters derived from the data

set. Besides, the determination of g1 and g2 in Eqn. 2 is based on the simulation of showers. Both

the systematic uncertainties associated to the different interaction models and primary masses and the

statistical uncertainties related to the procedure used to extract g1 and g2 constitute a source of systematic

uncertainties on the anisotropy parameters.

To quantify these systematic uncertainties, we repeated the whole chain of analysis on a large number

of modified data sets. Each modified data set is built by sampling randomly the coefficients αP , αρ and

βρ (or g1 and g2 when dealing with geomagnetic effects) according to the corresponding uncertainties

and correlations between parameters through the use of a Gaussian probability distribution function. For

each new set of correction coefficients, new sets of anisotropy parameters are then obtained. The RMS

of each resulting distribution for each anisotropy parameter is the systematic uncertainty that we assign.

Results are shown in Fig. 10, in terms of the dipole and quadrupole amplitudes as a function of the energy.

Balanced against the statistical uncertainties in the original analysis (shown by the bands), it is apparent

that both sources of systematic uncertainties have a negligible impact on each reconstructed anisotropy

amplitude.
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Fig. 10.— Impact of different sources of systematic uncertainties on the dipole amplitudes (top)

and the dipole directions and phases (middle) obtained under the assumption ℓmax = 1, and

quadrupole amplitudes (bottom) obtained with ℓmax = 2, as a function of the energy. The blue

bands correspond to the results presented in Fig. 5 and Fig. 9.
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7. Upper limits and discussion

From the analyses reported in section 5, upper limits on dipole and quadrupole amplitudes can be

derived at 99% C.L. (see appendices C and D). All relevant results are summarised in Table 3 and Table 4.

The upper limits are also shown in Fig. 11 accounting for the systematic uncertainties discussed in the

previous section : in the two last energy bins, any of the systematic measurements yield to the same upper

limit because all amplitudes lie well within the background noise. We illustrate below the astrophysical

interest of these upper limits by calculating the amplitudes of anisotropy expected in a toy scenario in

which sources of EeV-cosmic rays are stationary, densely and uniformly distributed in the galactic disk, and

emit particles in all directions.

∆E [EeV] N r [%] δ[◦] α[◦] UL [%]

1 − 2 361260 1.4 ± 0.4 −45 ± 16 337 ± 16 1.8

2 − 4 88438 1.4 ± 0.8 −43 ± 32 34 ± 32 2.7

4 − 8 19861 2.7 ± 2.0 −66 ± 30 12 ± 63 5.8

> 8 8409 7.5 ± 2.6 −43 ± 20 94 ± 20 11.4

Table 3: Summary of the dipolar analysis (ℓmax = 1) reported in section 5.2, together with the

derived 99% C.L. upper limits (UL) on the amplitudes.

∆E [EeV] λ+ [%] β [%] UL (λ+) [%] UL (β) [%]

1 − 2 1.1 ± 0.4 1.2 ± 0.5 2.1 2.1

2 − 4 5.4 ± 1.8 4.7 ± 1.3 7.1 6.8

4 − 8 2.0 ± 1.9 1.9 ± 1.7 10.0 9.4

> 8 4.5 ± 3.6 4.7 ± 2.8 14.5 13.8

Table 4: Summary of the quadrupolar analysis (ℓmax = 2) reported in section 5.3, together with

the derived 99% C.L. upper limits (UL) on the amplitudes.

Both the strength and the structure of the magnetic field in the Galaxy, still remaining poorly

known, play a crucial role in the propagation of cosmic rays. The field is thought to contain a large scale
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regular component and a small scale turbulent one, both having a local strength of a few microgauss (see

e.g. (Beck 2001)). While the turbulent component dominates in strength by a factor of a few, the regular

component imprints dominant drift motions as soon as the Larmor radius of cosmic rays is larger than the

maximal scale of the turbulences (thought to be in the range 10-100 pc). We adopt in the following a recent

parameterisation of the regular component obtained by fitting model field geometries to Faraday rotation

measures of extragalactic radio sources and polarised synchrotron emission (Pshirkov et al. 2011). It

consists in two different components : a disk field and a halo field. The disk field is symmetric with respect

to the galactic plane, and is described by the widely-used logarithmic spiral model with reversal direction of

the field in two different arms (the so-called BSS-model). The halo field is anti-symmetric with respect to

the galactic plane and purely toroidal. The detailed parameterisation is given in Ref. (Pshirkov et al. 2011)

(with the set of parameters reported in Table 3). In addition to the regular component, a turbulent field

is generated according to a Kolmogorov power spectrum and is pre-computed on a three dimensional

grid periodically repeated in space. The size of the grid is taken as 100 pc, so as the maximal scale of

turbulences, and the strength of the turbulent component is taken as three times the strength of the regular

one.

To describe the propagation of cosmic rays with energies E ≥ 1 EeV in such a magnetic field, the

direct integration of trajectories is the most appropriate tool. Performing the forward tracking of particles

from galactic sources and recording those particles which cross the Earth is however not feasible within a

reasonable computing time. So, to obtain the anisotropy of cosmic rays emitted from sources uniformly

distributed in a disk with a radius of 20 kpc from the galactic centre and with a height of ± 100 pc, we

adopt a method first proposed in Ref. (Thielheim & Langhoff 1968) and then widely used in the literature.

It consists in back tracking anti-particles with random directions from the Earth to outside the Galaxy.

Each test particle probes the total luminosity along the path of propagation from each direction as seen

from the Earth. For stationary sources emitting cosmic rays in all directions, the time spent by each test

particle in the source region is then proportional to the flux detected in the initial sampled direction.

The amplitudes of anisotropy obviously depend on the rigidity E/Z of the cosmic rays, with Z the

electric charge of the particles. Since we only aim at illustrating the upper limits, we consider two extreme

single primaries : protons and iron nuclei. In the energy range 1 ≤ E/EeV ≤ 20, it is unlikely that our

measurements on the average position in the atmosphere of the shower maximum and the corresponding

RMS can be reproduced with a single primary (Pierre Auger Collaboration 2010c). As well, in the

scenario explored here and for a single primary, the energy spectrum is expected to reveal a hardening
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Fig. 11.— 99% C.L. upper limits on dipole and quadrupole amplitudes as a function of the

energy. Some generic anisotropy expectations from stationary galactic sources distributed in the

disk are also shown, for various assumptions on the cosmic ray composition. The fluctuations of

the amplitudes due to the stochastic nature of the turbulent component of the magnetic field are

sampled from different simulation data sets and are shown by the bands (see text).

in this energy range, whose origin is from the one expected if the ankle marks the cross-over between

galactic and extragalactic cosmic rays (Linsley 1963) or if it marks the distortion of a proton-dominated

extragalactic spectrum due to e+/e− pair production of protons with the photons of the cosmic microwave

background (Hillas 1967; Blumenthal 1970; Berezinsky et al. 2006; Berezinsky et al. 2004). For a given

configuration of the magnetic field, the exact energy at which this hardening occurs depends on the electric

charge of the cosmic rays. This is because the average time spent in the source region first decreases as

≃ E−1 and then tends to the constant free escape time as a consequence of the direct escape from the

Galaxy. The hardening with ∆γ ≃ 0.6 observed at 4 EeV in our measurements of the energy spectrum is

not compatible with the one expected in this scenario (∆γ ≃ 1). Nevertheless, the calculation of dipole and

quadrupole amplitudes for single primaries is useful to probe the allowed contribution of each primary as a

function of the energy.

The dipole and quadrupole λ+ amplitudes obtained for several energy values covering the range

1 ≤ E/EeV ≤ 20 are shown in Fig. 11. To probe unambiguously amplitudes down to the percent level,

it is necessary to generate simulated event sets with ≃ 5 105 test particles. Such a number of simulated

events allows us to shrink statistical uncertainties on amplitudes at the 0.5% level. Meanwhile, there is an

intrinsic variance in the model for each anisotropy parameter due to the stochastic nature of the turbulent
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component of the magnetic field. This variance is estimated through the simulation of 20 sets of 5 105

test particles, where the configuration of the turbulent component is frozen in each set. The RMS of the

amplitudes sampled in this way is shown by the bands in Fig. 11. While the dipole amplitude steadily

increases for iron nuclei, this is not the case any longer for protons around the ankle energy. This is because

we explore a source region uniformly distributed in the disk. Consequently, the image of the galactic

plane appears less distorted by the magnetic field with increasing energy. This gives rise to an important

quadrupolar moment which actually turns out to be the main feature of the anisotropy at large scale 6.

The dipole and quadrupole λ+ amplitudes obtained here depend on the model used to describe the

galactic magnetic field. We note that recently, a new model was given in Ref (Farrar & Jansson 2012),

providing improved fits to Faraday rotation measures of extragalactic radio sources and polarised

synchrotron emission observations. However, we tested at a few energies that the results obtained

are qualitatively in agreement with the ones presented in Fig. 11. Similar conclusions were given in

Ref (Giacinti et al. 2011), where more systematic studies can be found in terms of the field strength and

geometry.

Around 1 EeV, there is evidence that the cosmic ray composition includes a strong light

component (Pierre Auger Collaboration 2010c). It is apparent that amplitudes derived for protons largely

stand above the allowed limits. Consequently, unless the strength of the magnetic field is much higher

than in the picture used here, the upper limits derived in this analysis exclude that the light component of

cosmic rays comes from galactic stationary sources densely distributed in the galactic disk and emitting

in all directions. This is in agreement with the absence of any detectable point-like sources above 1 EeV

that would be indicative of a flux of neutrons produced by EeV-protons through mainly pion-producing

interactions in the source environments (Pierre Auger Collaboration 2012b). On the other hand, if the

measurements of the cosmic ray composition around 1 EeV result from a mixture containing a large fraction

of iron nuclei of galactic origin, upper limits can still be respected, or alternatively a light component

of extragalactic origin would be allowed. Future measurements of composition below 1 EeV will come

from the low energy extension HEAT now available at the Pierre Auger Observatory (Mathes et al. 2011).

Combining these measurements with large scale anisotropy ones will then allow us to further understand

the origin of cosmic rays at energies less than 4 EeV.

6This feature would remain in the case of a radial distribution of sources following the matter in the

Galaxy, though the dipole amplitude would steadily increase above the ankle energy.
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8. Summary

For the first time, a thorough search for large scale anisotropies as a function of both the declination

and the right ascension in the distribution of arrival directions of cosmic rays detected above 1 EeV at the

Pierre Auger Observatory has been presented. With respect to the traditional search in right ascension

only, this search requires the control of additional systematic effects affecting both the exposure of the sky

and the counting rate of events in local angles. All these effects were carefully accounted for and presented

in sections 3 and 4. No significant deviation from isotropy is revealed within the systematic uncertainties,

although the consistency in the dipole phases may be indicative of a genuine signal whose amplitude is at

the level of the statistical noise. The sensitivity accumulated so far to dipole and quadrupole amplitudes

allows us to challenge an origin of cosmic rays from stationary galactic sources densely distributed in the

galactic disk and emitting predominantly light particles in all directions.

Future work will profit from both the increased statistics and the lower energy threshold that is now

available at the Pierre Auger Observatory (Mathes et al. 2011; Sanchez et al. 2011). This will provide

further constraints helping to understand the origin of cosmic rays in the energy range 0.1 < E/EeV < 10.
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Appendix A : Large scale anisotropies in local coordinates

To study the angular distribution in local coordinates for different anisotropic angular distributions

Φ(α, δ) in celestial coordinates, we restrict ourselves, without loss of generalities, to the case of full detection

efficiency (ǫ(θ, ϕ, E) = 1). Then, the instantaneous arrival direction distribution in local coordinates reads :

d3N

dθdϕdα0
∝ sin θ cos θ Φ(θ, ϕ, α0). (29)

Φ(θ, ϕ, α0) is the underlying angular distribution of cosmic rays, expressed in local coordinates. In case

of isotropy, Φ is constant so that once integrated over ϕ and α0, the arrival direction distribution is such

that dN/d sin2 θ is also constant. On the other hand, in case of a dipolar distribution for instance, Φ is

proportional to 1 + rd(θ, ϕ, α0) ·n(θ, ϕ), where n is here a unit vector in local coordinates, and d the dipole

unit vector pointing towards (αd, δd) and expressed in local coordinates by means of Eqn. 4. To quantify
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Fig. 12.— Effect of large scale anisotropies in local coordinates (left : as a function of sin2 θ, right :

as a function of ϕ) for an observer located at the Earth latitude ℓsite = −35.2◦ of the Pierre Auger

Observatory.

the distortions induced by a dipole in the dN/d sin2 θ distribution, we define ∆(dN/d sin2 θ) such that :

∆(dN/d sin2 θ) =
1

r

(
dNdipole/d sin2 θ − dNiso/d sin2 θ

dNiso/d sin2 θ

)
. (30)

Once multiplied by the dipole amplitude r, ∆(dN/d sin2 θ) gives directly the relative changes in the

dN/d sin2 θ distribution with respect to isotropy. Carrying out integrations over ϕ and α0 yields to :

∆(dN/d sin2 θ) =
N0,dipole

N0,iso
sin ℓsite sin δd cos θ, (31)

where both intensity normalisations N0,iso and N0,dipole are tuned to guarantee the same number of

events observed in the covered region of the sky for each underlying angular distribution. This result is

shown in the left panel of Fig. 12, for the latitude ℓsite = −35.2◦ of the Pierre Auger Observatory and

for different dipole directions. Within the zenithal range [0◦, 55◦] considered in this article, the relative

changes - maximal for δd = ±90◦ - amount at most to ≃ ±15%. So, even for an amplitude r as large as

10%, the relative changes in dN/d sin2 θ would be within ≃ ±1.5%, variation which - given the available

statistics - is sufficiently low to be considered as negligible. Besides, the same calculation applied to the

case of a symmetric quadrupolar anisotropy shows that the variation of ∆(dN/d sin2 θ) is less than ≃ 0.1%,

thus being negligible. Consequently, the distribution in dN/d sin2 θ can be considered at first order as

insensitive to large scale anisotropies, so that any significant deviation from a uniform distribution provides

an empirical measurement of the zenithal dependence of the detection efficiency.

It is worth noting that the azimuthal distribution averaged over time is, on the other hand, sensitive
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to large scale anisotropies. Repeating the same calculation and integrating now over θ (in this example

between 0 and 60◦) and α0 yields the ∆(dN/dϕ) relative changes :

∆(dN/dϕ) =
N0,dipole

N0,iso

sin δd cos ℓsite

24

(
7 tan (ℓsite) + 3

√
3 sin (ϕ)

)
. (32)

This function is shown in the right panel of Fig. 12, for δd = 90◦ (dashed line) and δd = −90◦ (dotted line).

The amplitude of the dipole wave is now ≃ 0.5. As well, the influence of a quadrupole on ∆(dN/dϕ) is

illustrated by the dashed-dotted line (oblate symmetric quadrupole in this example). Since, at the Earth

latitude of the Pierre Auger Observatory, any genuine large scale pattern which depends on the declination

translates into azimuthal modulations of the event rate similar to the ones induced by experimental

effects, it is thus mandatory to model accurately the dependence on azimuth of the detection efficiency for

disentangling local from celestial effects.

Appendix B : Modulation of the detection efficiency induced by a tilted array

To estimate the modulation of the detection efficiency induced by a tilted array, we consider here that

in the absence of tilt, the corresponding detection efficiency function ǫnotilt depends only on the energy and

the zenith angle and can be parameterised in a good approximation as :

ǫnotilt(E, θ) =
E3

E3 + E3
0.5(θ)

. (33)

E0.5(θ) is the zenithal-dependent energy at which ǫnotilt(E, θ) = 0.5. In case of a tilted array, this parameter

depends also on the azimuth angle, which is then the source of the azimuthal modulation of the detection

efficiency. To understand this, it is useful to consider for any given shower with parameters (E, θ, ϕ)

the circle in the shower plane corresponding to the region in which a signal S larger than some specified

threshold value S0 is expected. Let r0(ζ) denote the radius of this circle, ζ being the tilt angle of the SD

array. The detection efficiency, and hence also the parameter E0.5, is ultimately a function of the average

number of detectors contained in the projection of this circle into the ground, given by :

〈ndet〉 (S > S0) ∝ r2
0

h2|n⊥ · n| , (34)

where h = 1.5 km is the nominal separation between surface detectors. The radii r0(ζ) obtained with the

tilted array leading to the same value of 〈ndet〉 can be related to r0(ζ = 0) through :

r2
0(ζ) = r2

0(ζ = 0)
|n⊥ · n|

cos θ
. (35)
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Hence, we can obtain the relation between the energies E0.5 with tilt (Etilt
0.5 ) and without tilt (E0.5) by

comparing the cosmic ray energies required to get the value S0 at radius r0(ζ) and at radius r0(ζ = 0).

Approximating the lateral distribution function of the signal near the radius r0 as a power law S(r) ∝ Er−3,

we obtain the following relation :

Etilt
0.5 (θ, ϕ) = E0.5(θ)

(
r0(ζ)

r0(ζ = 0)

)3

≃ E0.5(θ)[1 + ζ tan θ cos (ϕ − ϕ0)]3. (36)

Then, subtracting ǫnotilt to ǫtilt leads to Eqn. 9.

Appendix C : Determination of upper limits on dipole amplitudes

To determine upper limits on the dipole amplitudes, Linsley described the procedure to follow in the

case of first harmonic analysis in right ascension (Linsley 1975). We adapt here this procedure to the case

of the dipolar reconstruction adopted in section 5.2.

Here, the data set is supposed to have been drawn at random from an underlying dipolar distribution

characterised by d, whose value is unknown. In the limit of large number of events, the joint p.d.f.

pDX ,DY ,DZ
(dx, dy, dz) can be factorised in terms of three Gaussian distributions N(di − di, σi) :

pDX ,DY ,DZ
(dx, dy, dz ; dx, dy, dz) = N(dx − dx, σ)N(dy − dy, σ)N(dz − dz , σz). (37)

The joint p.d.f. pR,∆,A(r, δ, α) expressing the dipole components in spherical coordinates is then obtained

by performing the Jacobian transformation :

pR,∆,A(r, δ, α; d, δd, αd) =

∣∣∣∣
∂(dx, dy, dz)

∂(r, δ, α)

∣∣∣∣pDX ,DY ,DZ
(dx(r, δ, α), dy(r, δ, α), dz(r, δ, α))

=
r2 cos δ

(2π)3/2σ2σz
exp

[
− (r sin δ − d sin δd)2

2σ2
z

]

× exp

[
− (r cos δ cos α − d cos δd cos αd)2

2σ2

]

× exp

[
− (r cos δ sin α − d cos δd sin αd)2

2σ2

]
. (38)

Each analysed data set having been selected at random from an ensemble in which all possible

values of d are equally represented, the various d, δd and αd combinations have relative probability

pR,∆,A(r, δ, α; d, δd, αd)/pR,∆,A(r, δ, α; d = 0). This allows us to define the joint p.d.f. p̃R,∆,A by requiring

this ratio to be normalised to unity :

p̃R,∆,A(r, δ, α; d, δd, αd) = K(r, δ) exp

[
rd cos δ cos δd cos (α − αd)

σ2

]
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× exp

[
rd sin δ sin δd

σ2
z

− d2 cos2 δd

2σ2
− d2 sin2 δd

2σ2
z

]
, (39)

where the normalisation reads :

K(r, δ) = 2π I0

(
rd cos δ cos δd

σ2

)

×
∫

dd dδd exp

[
− d2 cos2 δd

2σ2
− d2 sin2 δd

2σ2
z

+
rd sin δ sin δd

σ2
z

]
. (40)

I0 is here the modified Bessel function of the first kind with order 0. Integration of p̃R,∆,A over δd and

αd yields the p̃R p.d.f., from which upper limits on d can be obtained within a confidence level C.L. by

inverting the relation :

∫ 1

rdata

dr p̃R(r, δ; dUL) = C.L. (41)

Due to the non-uniform directional exposure in declination, the resulting upper limits actually depend on

the declination through the dependence of p̃R on δ. In practice, this dependence is small, which is why we

presented in section 7 upper limits averaged over the declination.

Appendix D : Determination of upper limits on quadrupole amplitudes

To determine upper limits on quadrupole amplitudes, we rely on Monte-Carlo simulations. For each

possible amplitude λ+ (β), we estimate the p.d.f. pΛ+
(λ+; λ+) (pB(β; β)) with a given number of events N

and a given exposure ω̃. The amplitude λUL
+ such that

∫ ∞

λ+,data
dλ+ p̃Λ(λ+; λUL

+ ) = C.L. is a relevant upper

limit (and respectively for βUL).

Alternatively to the previous procedure used to derive upper limits on dipole amplitudes, this

procedure can lead to upper limits tighter than the upper bounds for isotropy λ+,99 when the measured

values of λ+,data are smaller than the expected average for isotropy. To cope with this undesired behaviour,

the upper limits presented in section 7 are defined as max(λ+,99, λ
UL
+ ).
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