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Abstract

We derive formulae for neutrino masses and mixing angles in a type I seesaw framework with an underlying

A4 flavor symmetry. In particular, the Majorana neutrino mass matrix includes contributions from an A4

triplet, 1, 1′, and 1′′ flavon fields. Using these formulae, we constrain the general A4 parameter space

using the updated global fits on neutrino mixing angles and mass squared differences, including results from

the Daya Bay and RENO experiments, and we find predictive relations among the mixing parameters for

certain choices of the triplet vacuum expectation value. In the normal hierarchy case, sizable deviation from

maximal atmospheric mixing is predicted, and such deviation is strongly correlated with the value of θ13 in

the range of ∼ (8−10)◦. On the other hand, such deviation is negligible and insensitive to θ13 in the inverted

mass hierarchy case. We also show expectations for the Dirac CP phase resulting from the parameter scan.

Future refined measurements of neutrino mixing angles will test these predicted correlations and potentially

show evidence for particular triplet vev patterns.
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I. INTRODUCTION

With the independent discoveries of a nonzero θ13 from the Daya Bay [1] and RENO [2] collabo-

rations, and the supporting hints from the T2K [3], MINOS [4], and Double Chooz [5] experiments,

we now possess the first complete experimental picture of the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) mixing matrix. Following a recent global analysis of neutrino oscillation parameters from

Ref. [6] (see also [7–9] and [10–12]), we can summarize the experimental status to date as

sin2 θ12 = 0.320+0.015
−0.017 , (1)

sin2 θ23 =

 0.49+0.08
−0.05 (Normal)

0.53+0.05
−0.07 (Inverted)

, (2)

sin2 θ13 =

 0.026+0.003
−0.004 (Normal)

0.027+0.003
−0.004 (Inverted)

, (3)

∆m2
21 = 7.62± 0.19× 10−5 eV2 , (4)

∆m2
31 =

 2.53+0.08
−0.10 × 10−3 eV2 (Normal)

−(2.40+0.10
−0.07)× 10−3 eV2 (Inverted)

. (5)

Before the θ13 6= 0 discovery, the PMNS matrix was consistent with the tribimaximal (TBM)

mixing pattern [13], which can be written as

UTBM =



2√
6

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3

1√
2


, (6)

where we have adopted the same phase convention as the PDG [14] for placement of the minus

signs. The TBM mixing pattern gives the solar mixing angle corresponding to sin2 θ12 = 1/3,

the atmospheric mixing angle sin2 θ23 = 1/2, and reactor mixing angle sin2 θ13 = 0. Neutrino

mass matrices that give rise to TBM mixing have distinct invariants that can be traced to discrete

symmetries such as the Klein Z2×Z2 group or the symmetry group S4 [15–18] (see also, [19]). On

the other hand, by introducing dynamical (flavon) fields, the TBM mixing pattern can arise from a

smaller underlying finite group, the tetrahedral group, A4. To be compatible with grand unification,

a successful generation of appropriate lepton and quark masses and mixing angles can be achieved

by considering T ′, the double covering group of A4. In an SU(5) grand unified model [20], the T ′

group also affords a novel origin of CP violation from complex Clebsch-Gordan coefficients [21],

while in a Randall-Sundrum model [22, 23], the T ′ flavor symmetry is simultaneously used to
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forbid tree-level flavor-changing neutral currents (FCNCs). For reviews of the status of A4 and

S4 models, the tribimaximal and bimaximal paradigm, see [24–26]. For early work in mixing and

GUT theories, see [27].

The literature on the interrelation between TBM neutrino mixing matrices and finite group

flavor symmetries is vast. With discovery of a nonzero θ13 from Daya Bay and RENO, however,

the TBM prediction for a vanishing reactor angle is ruled out, calling into question the entire TBM

paradigm. We emphasize, however, that the underlying flavor symmetries that naturally give rise

to TBM mixing are nevertheless viable options for explaining the updated PMNS mixing pattern.

In particular, we demonstrate that A4, when we include flavons that are not included in the usual

TBM analysis, can readily accommodate a large value of θ13 and retain predictivity for δ, the

PMNS CP -violating Dirac phase.

Work before the Daya Bay and RENO results that focused on finite group symmetries and

generating nonzero θ13 includes [28], which studied corrections to TBM from higher dimensional

operators and [29], which discussed renormalization group (RG) equations in see-saw models. More

recent work looking to use higher dimensional operators to generate violations of the TBM scheme

or neutrino phenomenology include [30, 31]. The authors of [32] conclude higher dimension oper-

ators and RG effects are equally important for leptogenesis. In [33], it was found that the size of

corrections to neutrino mixing sum rules coming from renormalization group running are small.

Correspondingly, in [34], it was shown that a large θ13 value cannot be generated through running

if θ13 starts at 0. In [35], NLO and NNLO expressions were given for neutrino mixing angles in

hierarchal mass scenarios with sequential dominance.

Nevertheless, we note that it is possible, with the so-called Hilbert basis method [36], to con-

struct supersymmetric models where these higher dimensional operators in the holomorphic super-

potential vanish. On the other hand, certain flavon-induced corrections in the non-holomorphic

Kähler potential [37] cannot be forbidden by any conventional symmetries. Hence, even in the

original A4 models where θ13 vanishes at leading order, once these Kähler corrections are properly

taken into account, a sizable θ13 can be attained that is compatible with the current experimental

value [38].

Much of the recent literature has focused solely on accommodating non-zero θ13 with low-energy

perturbations to the TBM matrix and ignore or only briefly discuss the possible underlying UV

physics responsible for these deviations. In this vein, one popular parametrization was introduced

in [39], which introduced deviations from TBM values using s, a, and r for the solar, atmospheric,

and reactor mixing angles, respectively. Further work along this line, such as parameter scans in
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this space of deviations, include [40–48] and also [49–52], which used a similar approach but an

equivalent set of parameters. One drawback of such approaches is that complete UV flavor models

generally predict additional flavor violating effects, which are not captured in these low-energy

deviation studies [53]. Separately, TBM and BM mixing scenarios were studied for the case of

nearly degenerate neutrino masses where loop corrections provide large effects in mixing angles [54].

Loop corrections to the Type I seesaw Majorana neutrino mass matrix leading to nonzero θ13 were

also studied in [55]. Studies of generating nonzero θ13 from breaking µ-τ symmetry include [56–58].

In this work, we adopt a top-down approach where we will constrain the UV parameter space

by the low energy neutrino observables. While other A4 studies may have looked at the additional

effects from 1′ and 1′′ flavons contributing to the Majorana neutrino mass matrix, including [59–65],

they have generally considered the pattern of the vacuum expectation value (VEV) of the triplet

flavon to be ∝ (1, 1, 1)T . Some earlier work has separately considered other forms of the triplet

flavon, such as [66]. In addition, recent literature has focused on small perturbations from the

(1, 1, 1)T triplet flavon structure as a mechanism for generating a nonzero θ13 [59, 67–69], where

this small perturbation may arise from a vacuum misalignment correction.

In contrast, our work considers the full parameter space of A4 flavons contributing to the

Majorana mass matrix in the Type I seesaw. Thus we consider triplet flavon vevs that are markedly

different from the usual TBM (1, 1, 1)T form simultaneously with the presence of 1′ and 1′′ flavons.

By looking at a completely general admixture of possibly flavon vevs, we can definitively constrain

the entire A4 parameter space in this Type I seesaw model. We remark that for the charged

lepton masses and the Dirac neutrino masses, we introduce the minimal field content to generate

their mass matrices and only introduce the full flavon field content for the RH neutrino masses.

Moreover, even though we consider a larger A4 parameter space than the earlier literature, we still

retain predictivity, especially when the triplet flavon vev pattern preserves a subgroup of A4.

Here we concentrate on the group A4, which is the smallest group that contains a triplet rep-

resentation. Other groups that have been utilized include O(2) and SO(2) symmetry [70], ∆(3n2)

and ∆(6n2) [71, 72], ∆96 [73, 74], Q6 with three sterile neutrinos [75], and product groups of mod-

ular Zn finite groups in various permutations [76–85]. Other studies have focused on permutation

symmetry S3 and S4 models [86–92]. Other mixing scenarios beyond TBM and related patterns

include democratic mixing, which has been studied in [43, 54, 93], tetra-maximal mixing [94], and

anarchic mixing [95–98].

The paper is organized as follows. In Sec. II, we briefly review the A4 finite group symmetry

and our type-I seesaw model implementation. In Sec. III, we present the results of our parameter
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H L N eR µR τR φE φN η χ ψ

A4 1 3 3 1 1′′ 1′ 3 3 1 1′ 1′′

Z2 1 1 1 -1 -1 -1 -1 1 1 1 1

TABLE I: The A4 and Z2 charge assignments of the Standard Model fields and A4 flavons.

scan of the A4 flavor vev space. We conclude in Sec. IV. An intermediate step of our calculation

is presented in Appendix A.

II. THE A4 MODEL

We construct a Type I seesaw model based on an A4 flavor symmetry. We include three right-

handed neutrinos Ni, which are Standard Model gauge singlets. These neutrinos transform as a

triplet 3 under A4. We also assign the lepton SU(2) doublet L ∼ 3, charged lepton SU(2) singlets

eR ∼ 1, µR ∼ 1′′, τR ∼ 1′. To separate the charged lepton coupling scalars from the neutrino

coupling scalars, we impose a Z2 symmetry. These representations are summarized in Table I.

The Lagrangian for the leptons is

L ⊃
(
HL̄ (λeeR + λµµR + λττR)

(
φE
Λ

)
+ λNH̃L̄N + h.c.

)
(7)

+ΛRRN
TN

(
cNφN + cηη + cχχ+ cψψ

Λ

)
+ c.c. ,

where φE ∼ 3, φN ∼ 3, η ∼ 1, χ ∼ 1′, and ψ ∼ 1′′ are scalar fields which acquire vevs and break

the A4 symmetry at the scale Λ, and the couplings cN , cη, cχ, and cψ are complex. However, we

absorb all phases (including Majorana phases) into cN and thus cN is indexed to be non-universal.

We will not specify here the scalar potential to give the φE , φN , η, χ, and ψ fields vevs, but instead

we leave a study of the potential construction and vacuum alignment questions for future work.

The Lagrangian includes the familiar Dirac masses for the charged leptons, new Dirac masses for

the neutrinos, and a general A4–invariant Majorana mass matrix which includes all possible A4

contractions. Thus, in contrast with early, pre-Daya Bay and RENO models that generated exact

TBM mixing by including only the φN ∼ (1, 1, 1)T and η flavons, we include the χ and ψ flavons

and allow φN vev to be less constrained: subcategories of our approach have also been considered

previously [59–65].

The explicit form of the resulting mass matrices for the charged leptons and neutrinos is easily

obtained from the A4 invariants, which are reviewed, for example, in Ref. [24]. We assume φE

acquires a vev 〈φE〉 = Λ(1, 0, 0)T , and thus after electroweak symmetry breaking whereby the
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Higgs acquires a vev vh, the charged lepton mass matrix is

L̄MLe = L̄vh


λe 0 0

0 λµ 0

0 0 λτ

 e , (8)

where e = (eR, µR, τR). The corresponding Dirac mass matrix for the neutrinos is simply governed

by the A4 contraction of L and N , giving

λNH̃L̄N = L̄MDcN = L̄


λNvh 0 0

0 0 λNvh

0 λNvh 0

N . (9)

For the Majorana mass matrix, we will be more general and allow φN to obtain a general

vev pattern, cN 〈φN 〉 = Λ(φa, φb, φc). In addition, we let cη〈η〉 = Λη, and similarly for χ and ψ,

such that the vev parameters η, χ, and ψ are dimensionless and have absorbed their respective

Lagrangian couplings. We have the Majorana mass matrix

MNN
TN = ΛRRN

TN


2
3φa + η −1

3φc + ψ −1
3φb + χ

−1
3φc + ψ 2

3φb + χ −1
3φa + η

−1
3φb + χ −1

3φa + η 2
3φc + ψ

 . (10)

It is worth noting that there is another term one could write, mRRN
TN , which sets an additional

mass scale mRR which we will designate as ΛRR. We absorb this term into the vev of η. Since

N is a gauge singlet, there is no connection between the Higgs vev and the mass scale ΛRR. In

particular, if we set ΛRR ∼ O(ΛGUT ) ≈ 1016 GeV, we exercise the seesaw mechanism to generate

light neutrino masses. Moreover, we assume the A4 breaking scale Λ ∼ 0.1ΛRR to avoid tuning

issues between the mass scale and the breaking scale. The block matrix for the neutrinos in the

(νL, N)T basis is

Mν =

 0 MT
Dc

MDc MN

 , (11)

which generates the effective neutrino mass matrix

Mν, eff = MDcM
−1
N MT

Dc , (12)

after the right-handed neutrinos have been integrated out.

Now, in exact analogy with the Cabibbo-Kobayashi-Maskawa (CKM) matrix, the PMNS matrix

arises when we express the weak charged current interactions in the lepton mass basis. The PMNS
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matrix is

VPMNS = ULU
†
ν , (13)

where

Mdiag
L = ULMLU

†
L , Mdiag

ν = UνMν, effU
†
ν , (14)

but from Eq. (8), UL = 13, and thus the PMNS matrix is identified with the neutrino diagonaliza-

tion matrix U †ν . The three parameters λe, λµ, and λτ , which are each rescaled by 〈φE〉/Λ, are in

one-to-one correspondence with the three charged lepton masses and are hence fixed.

Having identified VPMNS ≡ U †ν , we adopt the standard parametrization of the PMNS matrix

given by

VPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 diag(1, eiξ1 , eiξ2) , (15)

where cij = cos θij , sij = sin θij , δ is the Dirac phase, ξ1 and ξ2 are the Majorana phases, with

0 ≤ θij ≤ π/2, 0 ≤ δ, ξ1, ξ2 ≤ 2π.

We now have a solvable system of equations relating the neutrino masses, mixing angles, and

phases with the flavon vevs. From Eq. (12), Eq. (14), and using U †ν = VPMNS , we find the relation

MDcM
−1
N MT

Dc = Mν eff = U †νM
diag
ν Uν = VPMNSM

diag
ν V †PMNS , (16)

where MN is given in Eq. (10). Solving for M−1
N and inverting, we get

MN = MT
DcVPMNS(Mdiag

ν )−1V †PMNSMDc . (17)

Entry by entry, we have a system of six equations that can be solved analytically, which gives exact

relations between the A4 parameter space and the physical masses and PMNS mixing angles. This

is manifestly symmetric, which is most easily seen from Eq. (10). A similar result using the mass

entries of the Majorana mass matrix instead of the triplet and one-dimensional flavon vevs was the

starting point of [64]. Our approach, in contrast, directly shows the correlation between different

UV triplet flavons and low energy neutrino observables.

Naively, we have a six-dimensional UV parameter space, given by the three components of the

φN triplet flavon and each of the one-dimensional flavons. The flavon breaking scale Λ and the

Majorana mass scale are unobservable and can be absorbed into the six flavon vev components.
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Subgroup vev alignment

Z2 (1, 0, 0), (0, 1, 0), (0, 0, 1)

Z3 (−1, 1, 1), (1, 1,−1), (1,−1, 1), (1, 1, 1)

breaking (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 1,−1), (2, 1, 1), (1, 1, 2), (1, 2, 1), (1,−2, 1), (1, 1,−2), (−2, 1, 1)

TABLE II: Listed vev alignments for φ that preserve a Z2 or Z3 subgroup of A4.

Now, although the triplet’s vevs can be independent degrees of freedom, certain breaking alignments

in flavon space preserve the Z2 or Z3 subgroups of A4 and thus reduce the number of UV parameters.

We will thus categorize our results according to subgroup preserving and subgroup breaking triplet

vev patterns, which are listed in Table II. Subgroup preserving vev patterns thus effectively have

a four-dimensional parameter space, while subgroup breaking vev patterns have a six-dimensional

space.

In general, there are nine physical parameters which give rise to eight physical predictions:

three mixing angles, three masses, and one Dirac CP phase, as well as two Majorana phases that

combine to dictate the rate of neutrinoless double β decay. We will not discuss 0ν2β further in

this paper, and instead focus on the three angles, three masses, and the Dirac CP phase. We can

thus see both our subgroup preserving and subgroup breaking categories are predictive: the four

parameters in the subgroup preserving category, for instance, are over-constrained by the existing

neutrino measurements, and the existence of a nontrivial solution reflects the suitability of the A4

finite group as a possible flavor symmetry of the lepton sector. In addition, for both categories,

the yet-to-be-discovered Dirac CP phase is predicted from our parameter scan, which we detail in

the next section.

A. Breaking Bimaximality, Analytic Results

We present an analytic understanding of breaking bimaximality (i.e. deviations of θ23 from

45◦) in our general Type I seesaw A4 construction. First, we calculate the effective neutrino mass

matrix, and then analyze to the extent a θ23 = 45◦ rotation diagonalizes this matrix. Starting

with Eq. (9), we write

MDc = MT
Dc = λNvh


1 0 0

0 0 1

0 1 0

 , (18)
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and we can recognize that M−1
Dc =

1

λ2
Nv

2
h

MDc. Next, since Uν is the diagonalization matrix of

Mν, eff, as established in Eq. (14), Uν is also the diagonalization matrix of M−1
ν, eff, since

(Mdiag
ν )−1 = (UνMν, effU

†
ν )−1 = (U †ν )−1(Mν, eff)−1(Uν)−1 = Uν(Mν, eff)−1U †ν . (19)

Thus, the seesaw mass matrix in Eq. (12) can be inverted to give

M−1
ν, eff =

1

λ4
Nv

4
h

MDcMNM
T
Dc . (20)

Recall that because our charged lepton mass matrix in Eq. (8) is diagonal, we have the identity

VPMNS = U †ν , so the diagonalization matrix of Mν, eff, and by extension, M−1
ν, eff is the PMNS

matrix.

Recall that the PMNS matrix is composed of three Jacobi rotation angles, ordered as a θ23 rota-

tion, a θ13 rotation, and then a θ12 rotation, and the phase rotations, as we can see from Eq. (15).

Also, recall that a Jacobi rotation operates on a 2× 2 block of the matrix, such as a b

b c

 , (21)

where the rotation angle is defined as

tan 2θ =
2b

c− a
. (22)

In particular, for fixed c and a, the sign of b determines the sign of θ. Moreover, we know that a

rotation matrix for a single angle α+ β can be decomposed into first rotating by α and then by β.

(This, of course, does not commute with rotations about other axes.) Hence, we can rotate M−1
ν, eff

by θ23 = 45◦ and then understand deviations from bimaximality by testing the remaining presence

of off-diagonal entries in the (3, 2) and (2, 3) entries of the effective neutrino mass matrix.

From Eq. (9) and Eq. (10), the RHS of Eq. (20) is

M−1
ν, eff =

1

λ2
Nv

2
h


2
3φa + η −1

3φb + χ −1
3φc + ψ

−1
3φb + χ 2

3φc + ψ −1
3φa + η

−1
3φc + ψ −1

3φa + η 2
3φb + χ

 , (23)

which as a trivial check, is still symmetric. After we perform the θ23 = 45◦ bimaximal rotation, we

have

RTBMM
−1
ν, effRBM =

2
3φa + η 1

3
√

2
(−φb + φc) + 1√

2
(χ− ψ) −1

3
√

2
(φb + φc) + 1√

2
(χ+ ψ)

1
3
√

2
(−φb + φc) + 1√

2
(χ− ψ) 1

3(φa + φb + φc)− η + 1
2χ+ 1

2ψ
1
3(−φb + φc)− 1

2χ+ 1
2ψ

−1
3
√

2
(φb + φc) + 1√

2
(χ+ ψ) 1

3(−φb + φc)− 1
2χ+ 1

2ψ
1
3(−φa + φb + φc) + η + 1

2χ+ 1
2ψ

 .

(24)
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So, if 1
3(−φb + φc) − 1

2χ + 1
2ψ 6= 0, then the θ23 = 45◦ bimaximal rotation was insufficient to

eliminate the (3, 2) and (2, 3) entries and an additional θ23 rotation is needed. (In addition, if the

(2, 2) and (3, 3) entries are identical, then θ23 = 45◦ is guaranteed.) Moreover, we see that the

transformation φb ↔ φc and χ ↔ ψ changes the sign of the (3, 2) and (2, 3) entries while leaving

the (2, 2) and (3, 3) entries fixed. Hence, we can see that any viable solution characterized by

a triplet vev of (φa, φb, φc) and a particular set of η, χ, and ψ can be transmuted to a different

solution characterized by (φa, φc, φb) and η, ψ, and χ with an opposite sign of the deviation from

θ23 = 45◦.

III. PARAMETER SCAN RESULTS FOR SUBGROUP PRESERVING AND SUBGROUP

BREAKING TRIPLET FLAVON VEVS

Since current neutrino experiments do not have sensitivity to individual neutrino masses, we

constrain the low energy neutrino observables by fitting to three mixing angles, two ∆m2, and the

cosmological constraint on the sum of absolute neutrino masses. Clearly, the remaining parameter

space for δ is the predictive relation from our parameter scan. (As stated before, we do not discuss

the sensitivity to the Majorana phases from neutrino-less double β decay experiments.) We first

take the system of equations in Eq. (17) and solve for the A4 breaking vevs in terms of the neutrino

observables. These solutions are presented in Appendix A. Since we want to work from the top-

down, however, we partially invert the system to solve for the neutrino masses and the A4 singlet

vevs in terms of the A4 triplet vev and the neutrino mixing angles and the CP phase. We obtain

mi =
v2
h

ΛRR
(aibjckεijk)(φab

kcjεijk + φba
jckεijk + φca

kbjεijk)
−1 , (25)

where m1,m2, m3 are the three light neutrino masses, i, j, k = 1, 2, 3, and εijk is the Levi-Civita

tensor. The three-component vectors ~a, ~b, ~c are found in Table III.

This partial inversion is advantageous because, using the measured mixing angles, we can test

individual A4 triplet vevs and determine the fit to the correct mass squared differences and the

cosmological constraint. We reparametrize the mass squared difference constraints into a ratio

∆21/∆31, where ∆ij ≡ m2
i − m2

j and use the dimensionless ratio to constrain the dimensionless

vevs in Eq. (25). The mass scale v2
h/ΛRR is then fixed by matching either of the measured mass

squared differences.

In line with our top-down approach and intuition about the A4 finite group, we attempt to pre-

serve many of the symmetries present in the case of TBM mixing. Yet, simply relaxing sin2 θ13 = 0
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a1
[
c212c

2
13 −

(
s12s23 − e−iδc12c23s13

) (
−c23s12 − eiδc12s13s23

)]
a2 e

−i2ξ1
[
c213s

2
12 +

(
c12s23 + e−iδc23s12s13

) (
c12c23 − eiδs12s13s23

)]
a3 e

−i2ξ2(s213 − c213c23s23)

b1
[(
s12s23 − e−iδc12c23s13

) (
s12s23 − eiδc12c23s13

)
+ c12c13

(
c23s12 + e−iδc12s13s23

)]
b2 e−i2ξ1

[(
c12s23 + e−iδc23s12s13

) (
c12s23 + eiδc23s12s13

)
− c13s12

(
c12c23 − e−iδs12s13s23

)]
b3 e−i2ξ2(c213c

2
23 − e−iδc13s13s23)

c1
[
c12c13

(
−s12s23 + e−iδc12c23s13

)
+
(
c23s12 + eiδc12s13s23

) (
c23s12 + e−iδc12s13s23

)]
c2 e−i2ξ1

[
c13s12

(
c12s23 + e−iδc23s12s13

)
+
(
c12c23 − eiδs12s13s23

) (
c12c23 − e−iδs12s13s23

)]
c3 e−i2ξ2(c213s

2
23 − e−iδc13c23s13)

TABLE III: The explicit components of ~a, ~b, ~c as function of mixing angles and the triplet φ.

while simultaneously keeping the other TBM mixing angle relations did not lead to viable solutions

without perturbing the triplet vev alignment. We therefore choose to relax the bimaximal relation

sin2 θ23 = 1
2 and maintain the trimaximal relation sin2 θ12 = 1

3 . In this way, we can understand a

larger region of A4 parameter space since the experimental bounds on θ12 are tighter than those

on θ23. Given this fixed θ12, we then choose each of the Dirac and Majorana phases to be 0 or π

for each triplet vev pattern.

However, this process itself is not entirely trivial, as not all choices are independent. Up to field

re-phasing, there are four transformations about bimaximal mixing in which components of Eq. (25)

transform antisymmetrically. Under the interchange of θ23 = 45◦ + x↔ θ23 = 45◦ − x and any of

the four,

δ = 0, ξ1 = 0, ξ2 = 0↔ δ = π, ξ1 = π, ξ2 = π (26)

δ = 0, ξ1 = π, ξ2 = 0↔ δ = π, ξ1 = π, ξ2 = 0

δ = 0, ξ1 = 0, ξ2 = π ↔ δ = π, ξ1 = 0, ξ2 = π

δ = 0, ξ1 = π, ξ2 = π ↔ δ = π, ξ1 = 0, ξ2 = 0 ,

we find

~a · (~b× ~c)↔ −~a · (~b× ~c) (27)

~b× ~c↔ ~c×~b

~a×~b↔ ~a× ~c .

It immediately follows that the existence of one solution implies there is a corresponding solution

with different phases (and a possibly different triplet alignment) which is related under these
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transformations. What remains to be specified are the angles θ23 and θ13, which we scan over the

2σ θ23 range of [12] and over the 2σ θ13 experimental bounds from Daya Bay in Ref. [1] . We

draw contours in this two-dimensional plane that satisfy the measured mass squared differences

from [12] and we constrain the ratio of ∆m2 within 2σ uncertainties as dictated by the predicted

neutrino hierarchy and set the individual neutrino mass scale using ΛRR. From the existence of

matter effects in solar neutrino oscillation, we know that ∆21 > 0. So by enforcing this constrain

upon the ratio there is a unique positive value and negative value for ∆21/∆31 that correspond to

a normal or inverted neutrino mass hierarchy respectively. We then require the contours to satisfy

the
∑
i
|mνi | < 0.81 eV [99]. Because degenerate neutrino spectra lead to numerically unstable

results, we discard possible solutions arising from degenerate neutrino spectra.

A. Numerical Results

These results are shown in the left panel of Fig. 1 for subgroup preserving triplet vev patterns

from Table II that generate a normal hierarchy, while the right panel shows the subgroup preserving

patterns that generate an inverted hierarchy. These figures clearly show the correlations between

the deviation from the bimaximal θ23 and nonzero θ13. Patterns that have such solutions are now

uniquely determined and predict a very specific combination of masses and the CP phase. A

notably absent alignment is the (1,1,1) breaking pattern, often associated with TBM mixing. We

can understand this by considering Eq. (20) and asserting φa = φb = φc. We find

f(θ12, θ13, θ23)(m2 −m3) = 0 , (28)

and so unless the function f is zero, the masses m2 and m3 are required to be degenerate and

this vev is not a viable phenomenological alignment. Under exact TBM mixing, f is zero and the

masses are free.

We also show the corresponding parameter scans for subgroup breaking triplet vev patterns

that give normal hierarchies in the left panel of Fig. 2 and inverted hierarchies in the right panel.

Although the parameter space is less predictive, we can nevertheless see that a normal hierarchy

requires significant breaking of bimaximality, while an inverted hierarchy still allows for a bimaximal

θ23 for some vev patterns.

For each successful triplet vev pattern and phase choice, we list the θ23 value and neutrino

mass spectrum corresponding to the central value for θ13 from the Daya Bay collaboration [1]

in Table IV.
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FIG. 1: Contour plots of ∆21/∆31 over the 2σ regions of θ23 and θ13 for subgroup preserving triplet vev

patterns that generate (left panel) a normal hierarchy and (right panel) an inverted hierarchy. For normal

hierarchies, we find the (1, 0, 0) pattern stays close to the central angle of θ23, while the the (1,−1, 1) and

(1, 1,−1) patterns avoid the central value. The inverted hierarchy solutions, however, only deviate from the

maximal angle of θ23 by values of order O(0.1◦).

FIG. 2: Contour plots of ∆21/∆31 over the 2σ regions of θ23 and θ13 for subgroup breaking triplet vev

patterns that generate (left panel) a normal hierarchy and (right panel) an inverted hierarchy. The nor-

mal hierarchy solutions characteristically avoid the central value of θ23. Like the subgroup preserving vev

patterns, here the inverted hierarchy solutions feature little deviations from the central value of θ23

The vev alignments (1, 0, 0) and the permutations of (−1, 1, 1) comprising the first and second

sets of solutions shown in Table IV are vevs preserving the Z3 and Z2 subgroups, respectively. The

remaining vev alignments break A4 completely. Each vev alignment can produce some deviation

from θ23 = π/4, and most notably, non-Z3 preserving alignments can produce significant breaking

of bimaximality where TBM cannot be approximate.
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Generally, we find that inverted hierarchies feature deviations from θ23 from the TBM case

of order O(0.1◦), while normal hierarchies favor deviations an order of magnitude larger. For a

given choice of Dirac CP phase, we find that most breaking patterns are relatively insensitive to

changes in θ13 with the current experimental bounds. We also highlight the fact that many simple

A4 triplet vev possibilities are excluded by the current experimental data. In particular, arbitrary

triplet vev patterns in general will not generate the small hierarchy in experimental mass squared

differences, and those that do are highly predictive about the extent of bimaximal breaking.

We can semi-analytically see why the normal hierarchy solutions deviate more strongly from

bimaximality than the inverted hierarchy solutions. In general, for fixed θ12 and θ13, we can

consider a Taylor expansion of the neutrino masses around z ≡ θ23 − 45◦,

m1 = x1 + y1z + . . . , (29)

m2 = x2 + y2z + . . . ,

m3 = x3 + y3z + . . . ,

where x1,2,3 and y1,2,3 are the zeroth and first order coefficients. Using this expansion, we have

∆21 = m2
2 −m2

1 ≈ x2
2 − x2

1 + 2(x2y2 − x1y1)z +O(z2) . (30)

A complete expression of this mass squared difference for the central values of θ12 and θ13 and

arbitrary triplet vev is not useful, but if we consider the special case of φb = φc, we generally find

x1 = x2 and y1 = −y2, giving

∆21 ≈ 4x2y2z +O(z2) . (31)

Furthermore, if we consider the behavior of the expansion coefficients x1 and y1 for normal hierarchy

solutions versus related inverted hierarchy solutions, we find x
(N)
1 ≈ x

(I)
1 and 4y

(N)
1 ≈ y

(I)
1 : from

the ∆21 constraint, we see

z(N) ≈ 4z(I) , (32)

which implies that the resulting deviation from bimaximality is much larger for normal hierarchies

compared to inverted hierarchies. When exact expressions are used, the difference can be as big as

an order of magnitude, as evident in the figures.

B. Dirac CP Phase Predictions

We now examine the predicted Dirac CP phase for various triplet vev patterns. Instead of fixing

δ and scanning over θ23 and θ13 as before, we now set θ23 to the value preferred by the central
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θ13 value of Daya Bay [1], as shown in Table IV, and scan this θ23 slice of the δ vs. θ13 plane.

Contours that satisfy the correct mass squared differences are highlighted and shown in Fig. 3 for a

few illustrative choices of vev patterns. Thus, for θ13 within the 2σ range of [1], the favored range

of δ can be broad, as for the (1, 1,−2) vev, or fairly narrow, as for the (1, 1,−1), (−1, 1, 1) and

(0, 1, 1) vevs. This figure shows that a measurement of δ and further refinement in narrowing the

θ13 uncertainties can exclude or significantly favor a particular set of A4 vev patterns. In addition,

we see that shifts in the central value of θ13 will serve to disfavor particular vev patterns as well as

better accommodate other vev patterns. Certainly, more data is needed to test these possibilities

and the A4 paradigm.

(φνa, φ
ν
b , φ

ν
c ) mass hierarchy (ξ1, ξ2, δ, θ23 − 45◦) (m1,m2,m3)

(1, 0, 0) N (0, 0, π,−0.3◦); (π, π, 0, 0.3◦) (0.0447, 0.0455,−0.0667)

(1, 0, 0) I (π, 0, 0,−0.05◦); (π, 0, π, 0.05◦) (0.0618,−0.0624, 0.0370)

(1, 0, 0) I (0, 0, 0,−0.05◦); (π, π, π, 0.05◦) (0.0630, 0.0636,−0.0390)

(−1, 1, 1) I (0, 0, π,−0.03◦); (π, π, 0, 0.03◦) (−0.0496,−0.0504, 0.0035)

(1,−1, 1) N (0, 0, 0,−6.6◦); (π, π, π, 6.6◦) (0.0078,−0.0117,−0.0501)

(1, 1,−1) N (π, π, 0,−4.8◦); (0, 0, π, 4.8◦) (0.0032,−0.0093, 0.0496)

(0, 1, 1) I (π, π, π,−0.1◦); (0, 0, 0, 0.1◦) (0.0522, 0.0530, 0.0167)

(0, 1, 1) I (π, π, 0,−0.2◦); (0, 0, π, 0.2◦) (0.0522, 0.0530, 0.0167)

(2, 1, 1) N (0, 0, 0,−3.8◦); (π, π, π, 3.8◦) (0.0092, 0.0127, 0.0503)

(2, 1, 1) N (0, 0, π,−3.6◦); (π, π, 0, 3.6◦) (0.0210, 0.0227, 0.0538)

(−2, 1, 1) I (π, π, π,−0.02◦); (0, 0, 0, 0.02◦) (−0.0498,−0.0506, 0.0055)

(−2, 1, 1) I (0, 0, π,−0.1◦); (π, π, 0, 0.1◦) (−0.0523,−0.0530, 0.0168)

(0, 1,−1) N (π, π, 0,−5.4◦); (0, 0, π, 5.4◦) (0.0213,−0.0230, 0.0539)

(0, 1,−1) N (π, π, π,−7◦); (0, 0, 0, 7◦) (−0.0282, 0.0295,−0.0570)

(1, 0, 1); (1, 1, 0) N (π, 0, 0,−4.4◦); (π, 0, π, 4.4◦) (0.0073, 0.0114,−0.0500)

(1, 2, 1); (1, 1, 2) N (0, π, π,−4.4◦); (0, π, 0, 4.4◦) (0.0572,−0.0578,−0.0756)

(1,−2, 1); (1, 1,−2) N (π, π, 0,−4.2◦); (0, 0, π, 4.2◦) (0.0074,−0.0114,−0.0500)

TABLE IV: The collection of vev alignments considered in our parameter scan, resulting hierarchy, phases,

deviation from bimaximality, and neutrino masses. The mass hierarchy column indicates whether the vev

generates a normal (N) hierarchy or inverted (I) hierarchy. The last two columns indicate the required

phases to obtain a valid mass hierarchy and the θ23 angle and neutrino masses corresponding to the central

θ13 value from Daya Bay [1].
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FIG. 3: Contours for various A4 breaking patterns at their respective favored θ23 angle based on Table IV.

The (1, 1,−1) and (1, 1,−2) patterns show the ratio contour for a normal mass hierarchy, while the (−1, 1, 1)

and (0, 1, 1) show the ratio for an inverted mass hierarchy. The (1, 1,−1), (−1, 1, 1), and (0, 1, 1) vevs are

moderately more predictive of δ than the (−1, 1, 1) vev.

IV. CONCLUSIONS

In light of the results from the Daya Bay and RENO collaborations, we have developed a

framework for understanding the constraints on the A4 parameter space from low energy neutrino

observables. For our parameter scan, we have assumed a Type I seesaw model with a minimal

A4 flavor structure governing the charged lepton masses and the Dirac neutrino masses, but the

Majorana mass matrix has contributions from each of the possible 3, 1, 1′, and 1′′ flavons, where

the triplet vev pattern is initially unconstrained. We categorize the triplet vev according to Z3

or Z2 subgroup preserving patterns, which enhances the model predictivity: for these subgroup

preserving patterns, four A4 parameters are used to predict seven neutrino observables. Regarding

the chosen vev patterns, we leave the question of scalar potentials or vacuum alignment for future

work.
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We have analyzed the A4 parameter space in two distinct and intriguing slices. In the first case,

we fix θ12 to be trimaximal and scan over the resulting θ23 vs. θ13 plane for various choices of Dirac

and Majorana phases. The results show that vev patterns giving a normal neutrino mass hierarchy

have moderately large breaking of bimaximality for θ23, while inverted hierarchies generally retain

bimaximality as a prediction. This indicates that a non-bimaximal θ23 measurement, such as the

preliminary result sin2(2θ23) = 0.94+0.04
−0.05 from MINOS [100] is favorably correlated with a normal

hierarchy in our A4 framework. We also analyzed the predictions for the Dirac CP phase δ for

some illustrative choices of triplet vev pattern in the δ vs. θ13 plane. This analysis emphasizes

the point that a future measurement of δ, decreased uncertainty in θ13, and shifts in the central

value of θ13 can strongly favor or exclude particular triplet vev patterns, highlighting the fact that

future experimental results have significant power in discriminating possible A4 flavon structures.
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Appendix A: General VEV Solutions of Flavon Fields

In Eq. (17), we have six equations that relate the A4 flavons comprising the Majorana mass

matrix to the low energy neutrino masses, mixing angles, and phases. We can solve this system to

express the triplet flavon components, (φa, φb, φc)
T , and the one-dimensional flavons, η, χ, and ψ,
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in terms of the physical neutrino observables. This solution set is

〈φa〉 = F

(
1

m1

[
c2

12c
2
13 −

(
s12s23 − e−iδc12c23s13

)(
−c23s12 − eiδc12s13s23

)]
+

1

m2
e−i2ξ1

[
c2

13s
2
12 +

(
c12s23 + e−iδc23s12s13

)(
c12c23 − eiδs12s13s23

)]
+

1

m3
e−i2ξ2(s2

13 − c2
13c23s23)

)
, (A1)

〈φb〉 = F

(
1

m1

[(
s12s23 − e−iδc12c23s13

)(
s12s23 − eiδc12c23s13

)
+ c12c13

(
c23s12 + e−iδc12s13s23

)]
+

1

m2
e−i2ξ1

[(
c12s23 + e−iδc23s12s13

)(
c12s23 + eiδc23s12s13

)
− c13s12

(
c12c23 − e−iδs12s13s23

)]
+

1

m3
e−i2ξ2(c2

13c
2
23 − e−iδc13s13s23)

)
, (A2)

〈φc〉 = F

(
1

m1

[
c12c13

(
−s12s23 + e−iδc12c23s13

)
+
(
c23s12 + eiδc12s13s23

)(
c23s12 + e−iδc12s13s23

)]
+

1

m2
e−i2ξ1

[
c13s12

(
c12s23 + e−iδc23s12s13

)
+
(
c12c23 − eiδs12s13s23

)(
c12c23 − e−iδs12s13s23

)]
+

1

m3
e−i2ξ2(c2

13s
2
23 − e−iδc13c23s13)

)
, (A3)

〈η〉 =
F

3

(
1

m1
[c2

12c
2
13 + 2(−s2

12s23c23 + c2
12s

2
13s23c23 + e−iδc12s12s13c

2
23 − eiδc12s12s13s

2
23)]

+
1

m2
e−i2ξ1 [c2

13s
2
12 − 2c2

12c23s23 − 2c12s12s13(e−iδc2
23 − eiδs2

23) + 2s2
12s

2
13s23c23]

+
1

m3
e−i2ξ2(s2

13 + 2c2
13c23s23)

)
, (A4)

〈ψ〉 =
F

3

(
1

m1
[c2

23s
2
12 − c12c23s13(2e−iδc12c13 − (e−iδ + eiδ)s12s23) + s23(2c13s12c12 + c2

12s
2
13s23)]

+
1

m2
e−i2ξ1 [c2

12c
2
23 − (e−iδ + eiδ)c12c23s12s13s23 − s12(2e−iδc23s12s13c13 + s23(2c12c13 − s12s

2
13s23))]

+
1

m3
e−i2ξ2 [c13(2e−iδc23s13 + eiδc13s23)]

)
, (A5)

〈χ〉 =
F

3

(
1

m1
[−2c13c23s12c12 − (e−iδ + eiδ)c12c23s12s13s23 + s2

12s
2
23 − c2

12(−c2
23s

2
13 + 2e−iδs13c13s23)]

+
1

m2
e−i2ξ1 [c2

12s
2
23 + s2

12s13(c2
23s13 − 2e−iδc13s23) + c12c23s12(2c13 + (e−iδ + eiδ)s13s23)]

+
1

m3
e−i2ξ2 [c13(c13c

2
23 + 2e−iδs13s23)]

)
, (A6)

where F =
v2
Hλ

2
N

ΛRR
. We invert Eq. (A1), Eq. (A2), and Eq. (A3) to solve for the neutrino masses

in terms of the triplet vev components (φa, φb, φc)
T . Then, we constrain the one-dimensional

flavons and the neutrino masses by assuming a particular triplet vev pattern and scanning over

the mixing angles and phases, applying the constraint on mass squared differences from [12] and
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the cosmological bound on the sum of absolute neutrino masses from [14].
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