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ABSTRACT

We construct mock catalogs of galaxy groups using subhalo abundance match-
ing (SHAM) and undertake several new tests of the SHAM prescription for the
galaxy-dark matter connection. All SHAM models we studied exhibit significant
tension with galaxy groups observed in the Sloan Digital Sky Survey (SDSS). The
SHAM prediction for the field galaxy luminosity function is systematically too
dim, and the group galaxy luminosity function systematically too bright, regard-
less of the details of the SHAM prescription. SHAM models connecting r-band
luminosity, Mr, to V acc

max, the maximum circular velocity of a subhalo at the time
of accretion onto the host, faithfully reproduce the abundance of galaxy groups as
a function of richness, g(N). However, SHAM models connecting Mr with V peak

max ,
the peak value of Vmax over the entire merger history of the halo, over-predict
the abundance of galaxy groups. Our results suggest that SHAM models for the
galaxy-dark matter connection may be unable to simultaneously reproduce the
observed group multiplicity function and two-point projected galaxy clustering.
Nevertheless, we also report a new success of the abundance matching prescrip-
tion: an accurate prediction for Φ(m12), the abundance of galaxy groups as a
function of magnitude gap m12, defined as the difference between the r-band
absolute magnitude of the two brightest group members. We demonstrate that
it may be possible to use joint measurements of g(N) and Φ(m12) to provide
tight constraints on the details of the SHAM implementation. Additionally, we
show that the hypothesis that the luminosity gap is constructed via random
draws from a universal luminosity function provides a poor description of the
data, contradicting recent claims in the literature. Finally, we test a common
assumption of the Conditional Luminosity Function formalism, that the satel-
lite luminosity function Φsat(L) need only be conditioned by the brightness of
the central galaxy Lcen. We find this assumption to be well-supported by the
observed magnitude gap distribution.

Key words: cosmology: theory – galaxies: structure – galaxies: evolution

1 INTRODUCTION

The centers of dark matter halos are the natural sites
for galaxy formation, as these are the locations of the
deepest gravitational potential wells in the universe (e.g.,
White & Rees 1978). The development of a theory of
galaxy formation that encompasses the complex array of
physical processes known to contribute to cosmic struc-
ture formation is one of the fundamental goals of astro-
physics, and ennumerating the connection between galax-
ies and dark matter halos may help to establish the foun-

dations of any such theory. Additionally, such a connec-
tion can serve as an empirical link between large-scale
survey data and theoretical predictions. Our contempo-
rary theory of cosmology, ΛCDM, makes precise, quanti-
tative predictions for the distribution of dark matter in
the universe over a wide range of scales, and so estab-
lishing the galaxy-dark matter connection is a key step
toward unlocking the predictive power of ΛCDM.

One of the most commonly used techniques for con-
necting dark matter halos to galaxies is subhalo abun-
dance matching (SHAM). The fundamental tenet of all
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SHAM models is that there is a monotonic mapping
between some elementary property of galaxies (usually
luminosity or stellar mass) and an elementary prop-
erty of halos. SHAM models determine this mapping
through the implicit relation defined by matching the pre-
dicted abundance of halos with the observed abundance
of galaxies. When used in concert with numerical sim-
ulations of cosmological structure formation, abundance
matching techniques have been shown to predict accu-
rately galaxy clustering statistics (Kravtsov et al. 2004;
Tasitsiomi et al. 2004; Conroy et al. 2006; Behroozi et al.
2010; Moster et al. 2010), the Tully-Fisher relation
(Trujillo-Gomez et al. 2011), and the conditional stellar
mass function (Reddick et al. 2012). To date, the vast
majority of tests of the SHAM algorithm have been based
upon clustering. We will present new tests of SHAM
based on statistics that are distinct from the widely
quoted clustering tests.

In ΛCDM, gravitationally self-bound structures form
hierarchically, with tiny peaks in the initial cosmic
density field collapsing into very small dark matter
halos that gradually merge together to form groups
and clusters of galaxies. Galaxy groups are thus in-
teresting environments for testing theories of struc-
ture formation in general, and the galaxy-halo connec-
tion in particular. Indeed, the influence of the group
environment on galaxy properties has a long history
and has received considerable attention in the re-
cent literature, (e.g., Yang et al. 2005; Zandivarez et al.
2006; Robotham et al. 2006; Yang et al. 2008, 2009;
Blanton & Berlind 2007; Tinker et al. 2011; Gerke et al.
2012).

In this paper we investigate SHAM predictions for
the assembly of galaxies into groups and test these predic-
tions against galaxy groups observed in SDSS. By com-
paring properties of observed galaxy groups and those of
a SHAM-based mock sample, we provide a series of new
tests of the abundance matching prescription connecting
galaxies to dark matter halos.

One of the fundamental properties of any catalog
of groups is the multiplicity function, the abundance
of groups as a function of richness, N, the number of
members in a group. Previous studies of galaxy group
catalogs (Berlind & Weinberg 2002; Berlind et al. 2006;
Vale & Ostriker 2006) have demonstrated that measure-
ments of the group multiplicity function g(N) may con-
tain valuable information about how galaxies populate
dark matter halos. Motivated by this, we use the group
multiplicity function as one of our primary, new tests of
SHAM. As an additional group-based statistical test, we
compare the SHAM prediction for the galaxy luminosity
function conditioned on whether or not the galaxies are
members of a group.

One galaxy group property that has received at-
tention from a rapidly growing body of literature is the
luminosity gap, m12, the difference in r-band absolute
magnitude between the two most luminous members of a
galaxy group. Significant investigation has been focused
on a class of systems known as fossil groups, usually
defined as an X-ray bright (LX,bol > 1042erg/s) group
of galaxies with m12 ≥ 2. The prevailing theoretical
paradigm for fossil group formation is that these systems

have evolved quiescently for a significant fraction of a
Hubble time, during which dynamical friction has had
sufficient time to cause the biggest satellites to merge
with the central galaxy, resulting in a massive, bright
central galaxy with few bright satellites (Ponman et al.
1994; Jones et al. 2003; D’Onghia et al. 2005, 2007;
Dariush et al. 2007; von Benda-Beckmann et al.
2008; Milosavljević et al. 2006; Vikhlinin et al. 1999;
Miller et al. 2012; La Barbera et al. 2012; Tavasoli et al.
2011; Aguerri & et al 2011). For a recent paper on
fossil groups that includes an excellent review of the
history of their study, we refer the interested reader to
Harrison et al. (2012). To test this paradigm within the
SHAM framework, we study Φ(m12), the abundance of
our mock and observed groups as a function of m12,
finding that this statistic has the potential to constrain
the manner in which galaxies populate dark matter
halos. This conclusion is consistent with previous work
(Skibba et al. 2007), showing that the relative brightness
of the central galaxy in a group and its brightest satellite
is influenced by parameters governing the conditional
luminosity function.

In a paper studying a very similar galaxy group cat-
alog to the one we use here, Paranjape & Sheth (2012)
found that the observed Φ(m12) is consistent with the hy-
pothesis that the brightness distribution of galaxy group
members is determined by a set of random draws from a
universal luminosity function. This finding implies that,
for a galaxy population of a given luminosity function,
the gap abundance is uniquely determined by knowledge
of the abundance of groups as a function of richness. This
result is particularly surprising in light of recent results
(Hearin et al. 2012) demonstrating that the magnitude
gap contains information about group mass that is inde-
pendent of richness (see also Ramella et al. 2007). A pos-
sible resolution to this apparent discrepancy was recently
pointed out in More (2012): the global gap abundance
Φ(m12) is a mass function-weighted sum over the mass-
conditioned gap abundance, Φ(m12|M), and so it is possi-
ble in principle that the magnitude gap depends on both
mass and richness in such a way that the mass function-
weighting washes out any statistically-significant mass
dependence in the global Φ(m12).

In § 5 we show that the global gap abundance ex-
hibited by galaxy groups in SDSS is inconsistent with
the random draw hypothesis, contradicting the claims in
Paranjape & Sheth (2012) that derive from their mea-
surements of one-point statistics. As discussed in Ap-
pendix B, we find that the treatment of fiber colli-
sions in the group catalog used by Paranjape & Sheth
(2012), together with the definition of the magnitude
gap adopted in the Paranjape & Sheth (2012) measure-
ment of Φ(m12), are responsible for the difference be-
tween our conclusions. These findings are in keeping
with the marked correlation function analysis appearing
in Paranjape & Sheth (2012), which also suggested that
group galaxy brightnesses are inconsistent with the ran-
dom draw hypothesis. Additionally, we generalize these
data randomization techniques to conduct a direct test
of a common assumption of the Conditional Luminosity
Function (CLF) formalism, namely that the satellite lu-
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minosity function need only be conditioned on the bright-
ness of the central galaxy.

1.1 Outline

This paper is organized as follows. We briefly describe
the SDSS catalog of galaxy groups against which we com-
pare our predictions in § 2. We describe our methods for
constructing our mock catalogs in § 3, and provide a de-
tailed description of some novel features of our SHAM
implementation in Appendix A. In § 4.1 we compare the
observed multiplicity function to that which is exhibited
by our mocks. In § 4.2 we present our predictions for and
measurements of the group-membership-conditioned lu-
minosity function. We test the abundance matching pre-
diction for luminosity gap statistics in § 4.3. Our tests of
several random draw hypotheses appear in § 5; conclu-
sions based on such statistics are sensitive to the treat-
ment of fiber collisions, which we describe in detail in
Appendix B. We discuss our results and compare them
to those in the existing literature in § 6, and conclude
with a brief overview of our primary findings in § 7. In
Appendix C we demonstrate the robustness of our group
multiplicity function results to possible systematic errors
caused by edge effects and fiber collisions.

2 DATA

We study galaxy group properties in a volume-limited
catalog of groups identified in Sloan Digital Sky Sur-
vey (SDSS) Data Release 7 (Abazajian et al. 2009, DR7
hereafter) using the algorithm described in Berlind et al.
(2006). This catalog is an update of the Berlind et al.
(2006) group catalog (which was based on SDSS Data
Release 3). The galaxies in this sample are all members
of the Main Galaxy Sample of SDSS DR7. Groups in this
galaxy catalog are identified via a redshift-space friends-
of-friends algorithm that takes no account of member
galaxy properties beyond their redshifts and positions
on the sky. Our groups are constructed from galaxies
in a volume-limited spectroscopic sample (Veff ≃ 5.8 ×
106(h−1Mpc)3) in the redshift range 0.02 ≤ z ≤ 0.068
with r-band absolute magnitude Mr − 5 log h < −19. We
refer to this catalog as the “Mr19” group catalog. Each
of the 6439 groups in the Mr19 catalog contains N ≥ 3
members. We refer the reader to Berlind et al. (2006) for
further details on the group finding algorithm.

Fiber collisions occur when the angular separation
between two or more galaxies is closer than the minimum
separation permitted by the plugging mechanism of the
optical fibers used to measure galaxy spectra in SDSS
(see Guo et al. 2012, and references therein). We briefly
note here that fiber collisions in the DR7-based galaxy
sample we use in this paper are treated differently than
in the catalog presented in Berlind et al. (2006), which
was based on DR3 data. As we will see in § 5, this differ-
ent treatment has important consequences for the mea-
surement of magnitude gaps. In Appendix B we discuss
these differences in detail and argue that the convention
adopted in the DR3-based catalog induces systematic er-
rors in magnitude gap measurements that can be avoided

if fiber collisions are instead modeled as we do in this
work. Throughout this paper, when we refer to the rich-
ness N and the velocity dispersion σv of a group, we in-
clude the fiber-collided members. When we compute the
magnitude gap of a group (see § 4.3) and the luminosity
function of galaxies in our sample (see § 4.2), we exclude
fiber-collided galaxies.

3 MOCK CATALOGS

We compare the SDSS DR7 group data to a mock catalog
of galaxy groups based on the Bolshoi N-body simula-
tion (Klypin et al. 2011). The Bolshoi simulation models
the cosmological growth of structure in a cubic volume
250 h−1Mpc on a side within a standard ΛCDM cosmol-
ogy with total matter density ΩM = 0.27, Hubble con-
stant h = 0.7, power spectrum tilt ns = 0.95, and power
spectrum normalization σ8 = 0.82. The Bolshoi data are
available at http://www.multidark.org and we refer the
reader to Riebe et al. (2011) for additional information.
Our analysis requires reliable identification of self-bound
subhalos within the virial radii of distinct halos. We uti-
lize the ROCKSTAR (Behroozi et al. 2011) halo finder in
order to identify halos and subhalos within Bolshoi.

We utilize the subhalo abundance matching (SHAM)
technique to associate galaxies with dark matter halos.
Although abundance matching is widely used to con-
struct mock galaxy catalogs (e.g., Kravtsov et al. 2004;
Tasitsiomi et al. 2004; Conroy et al. 2006; Watson et al.
2012; Hearin et al. 2012; Reddick et al. 2012), our partic-
ular implementation of SHAM is novel and so we describe
it in detail in Appendix A. In this section we provide a
brief sketch of our SHAM prescription and review the
primary advantages of our implementation.

SHAM models assume a monotonic relationship be-
tween the stellar masses of galaxies and the maximum
circular speeds of test particles within their host dark

matter halos, Vmax ≡ max
[

√

GM(< r)/r
]

, where r is

the distance from the halo center and M(< r) is the
halo mass contained within a distance r of the halo cen-
ter. Inferring galaxy stellar masses is non-trivial, so in
practice galaxy luminosities are often used to associate
galaxies with halos using SHAM, though this may intro-
duce important biases that are less prevalent for samples
selected by stellar mass. For example, simulation stud-
ies suggest that satellite galaxies may be assigned halo
masses that are biased low due to the fact that satel-
lite galaxies have older stellar populations than central
galaxies (e.g., Simha et al. 2012). It is most common to
construct SHAM assignments for SDSS data using the r-
band absolute luminosities of the galaxies as rough prox-
ies for stellar mass. We follow this approach in this paper
and numerous previous authors have shown that SHAM
based on r-band luminosity is surprisingly reliable to de-
scribe halo clustering (Kravtsov et al. 2004; Conroy et al.
2006) and group statistics (Reddick et al. 2012) despite
the fact that there are several effects that can lead to
differing luminosities at fixed stellar mass.

Assuming a monotonic relationship between Vmax

and r-band absolute magnitude Mr, the SHAM galaxy-
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halo assignment follows by requiring the cumulative num-
ber density of halos with circular velocity Vmax to be
equal to the cumulative number density of the galaxies
with brightness Mr. As a further complication, subhalos
within host dark matter halos evolve significantly due to
interactions within the dense environments of the larger
host halos. As a result, the present values of Vmax, which
we denote V z=0

max , may be a poor proxy for stellar masses or
r-band luminosities. It is now common practice to assign
luminosities to subhalos based on their values of Vmax

evaluated at the time at which they merged into their dis-

tinct host halos, V acc
max (Conroy et al. 2006). Often, a halo

can be significantly affected by interactions prior to enter-
ing the virialized region of a distinct host halo, so it is also
interesting to explore using the maximum value of Vmax

ever attained by a subhalo as the stellar mass/luminosity
proxy, V peak

max (Behroozi et al. 2012; Reddick et al. 2012).
Tthe SHAM assignment of r-band luminosities to ha-

los and subhalos occurs through the implicit relation

ng(< Mr) = nh(> VL), (1)

where ng(< Mr) is the number density of observed
galaxies with r-band magnitudes brighter than Mr

(Blanton et al. 2005), and nh(> VL) is the predicted
number density of dark matter halos and subhalos with
assigned circular speeds > VL. As we mentioned in the
previous paragraph, the circular speeds assigned to sub-
halos are often not their circular speeds at the time of
observation. Following this common practice, the quan-
tity VL is conventionally evaluated as

VL = V z=0
max (host halos)

= Vsub (subhalos)

where Vsub = V z=0
max if one chooses to use V z=0

max to de-
scribe the luminosities of subhalos, Vsub = V acc

max if one
chooses to use the maximum circular velocity at accre-
tion for subhalos, and Vsub = V peak

max if one chooses to use
the maximum value of Vmax ever attained by the sub-
halo. Throughout this paper, we refer to mock catalogs
constructed in this fashion using V z=0

max as “SHAM0” cat-
alogs, those built with V acc

max as “SHAMacc”. However,
we follow a different convention for SHAM models con-
structed using V peak

max as the abundance matching prop-
erty. For V peak

max models, which we label as “SHAMpeak”,
we use V peak

max for both host halos and subhalos, rather
than only for the subhalos. Our reason for adopting this
convention is because this is the SHAM method which
Reddick et al. (2012) found to best describe galaxy clus-
tering and the conditional stellar mass function, and we
wish to test this model specifically with the set of observ-
ables we study here. We explore the predictions of each
of these three models for several previously unexplored
statistics describing the observed distribution of galaxies
at low-redshift.

The advantages of SHAM-like models is that they are
simple, they embody the fundamental theoretical preju-
dice that dark matter halos that represent deeper gravita-
tional wells should host larger (more luminous) galaxies,
and such models describe galaxy clustering over a range
of redshifts remarkably well (e.g., Kravtsov et al. 2004;
Tasitsiomi et al. 2004; Conroy et al. 2006; Behroozi et al.
2012). Specifically, there is significant empirical support

for SHAM models premised on V acc
max as well as V peak

max .
Trujillo-Gomez et al. (2011) showed that SHAMacc mod-
els provide an accurate prediction for the observed Tully-
Fisher relation, and (e.g., Conroy et al. 2006) found
that the projected two-point galaxy correlation func-
tion predicted by SHAMacc models is in good agree-
ment with the SDSS measurements of projected galaxy
clustering. However, a recent, more detailed analysis
(Reddick et al. 2012) showed that SHAMpeak models
provide more accurate predictions for clustering on small
scales (0.1h−1Mpc . rp . 0.5h−1Mpc).

In practice, some scatter between Vmax and Mr

is often introduced into the basic SHAM assignments.
The scatter accounts for the fact that galaxy forma-
tion is a complex process, so a single halo parame-
ter cannot specify a stellar mass (or luminosity). Per-
haps more importantly, scatter brings SHAM predic-
tions into better agreement with galaxy clustering statis-
tics (e.g., Tasitsiomi et al. 2004; Behroozi et al. 2010;
Reddick et al. 2012). Additionally, the observed Tully-
Fisher relation has intrinsic scatter (Pizagno et al. 2007),
and so SHAM models without scatter cannot accurately
describe the properties of the observed galaxy distribu-
tion.

We investigate the influence of scatter on our results
using three different models of scatter between circu-
lar velocity and absolute magnitude. Our fiducial model,
whose construction is described in detail in Appendix
A, is designed to be similar to the model explored in
Trujillo-Gomez et al. (2011). At fixed Vmax, our fiducial
model has 0.2dex of scatter in luminosity at the faint
end (−19.5 . Mr . −19) and 0.15dex of scatter at
the bright end (−22 . Mr . −21.5). However, we note
that our model cannot be precisely the same as that of
Trujillo-Gomez et al. (2011) because we use a different
SHAM algorithm to incorporate scatter. Second, we ex-
plore a model which has a constant scatter of 0.1dex. We
will refer to this as our “alternate” scatter model. Third,
we consider models with no scatter betweenMr and Vmax.

The SHAM construction summarized in Eq. (1) en-
ables luminosities to be assigned to dark matter halos in
a manner that can match any observed galaxy luminos-
ity function. A detail of SHAM implementation is that
a specific choice must be made for the galaxy luminosity
function to use for the SHAM assignments. A common
and convenient choice is to use a fit to observed lumi-
nosity functions, such as that provided by Blanton et al.
(2005). However, in order to ensure that our results are
not affected by the residuals of any such fit, the mock cat-
alogs that we construct match the global luminosity func-
tion of the Mr19 galaxies exactly. Enforcing the require-
ment that the SHAM galaxy catalog have a luminosity
function that matches the observed luminosity function
exactly complicates the introduction of scatter into the
SHAM prescription. To enforce the observed galaxy lu-
minosity function on our SHAM assignments with scatter
in the VL-Mr relation, we use a novel implementation of
SHAM, the details of which are given in Appendix A. The
important features of this implementation are as follows.

1. Our mock galaxy catalog has a luminosity function
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that, by construction, matches the observed Mr19 lumi-
nosity function exactly, even after including scatter.

2. The amount of scatter in the VL-Mr relation can
be specified simply, so that implementing SHAM assign-
ments with differing amounts of scatter is straightfor-
ward.

3. Even when the above two requirements are met, the
algorithm is very fast, lending itself to applications that
require the construction of a large number of mock cat-
alogs. This advantage is significant compared to, for ex-
ample, the algorithm of Trujillo-Gomez et al. (2011).

Once galaxies with r-band luminosities have been as-
signed to dark matter halos and subhalos, we proceed to
find groups as follows. First, the galaxies inherit the spa-
tial positions of their host (sub)halos in the simulation.
We use the distant observer approximation and make the
z-axis of the simulation cube into the line-of-sight, and
then use the (sub)halo mean velocities in the z-direction
to move the mock galaxies into redshift space. At this
point, each mock galaxy has a redshift coordinate and two
spatial coordinates, and so we identify groups of mock
galaxies using the same algorithm that was applied to
the observational data. This guarantees that our mock
groups are subject to the same redshift-space projection
effects as the Mr19 catalog.

Once groups have been found, we introduce fiber col-
lisions to our mock galaxies as follows. For each mock
group of richness N we randomly select a Mr19 group
with a similar richness. If the number of fiber-collided
members of the randomly selected group is Nfc, then we
randomly choose Nfc of the members of the mock group
and assign fiber collisions to these members. This proce-
dure ensures that the fraction of fiber-collided galaxies in
our mock groups scales with richness in the same way as

it does in the data, a feature that is important for cor-
rect, detailed predictions of the magnitude gap (see § 4.3
and Appendix B). For all the statistics described in this
paper, we include or exclude fiber-collided mock galaxies
according to the same conventions that we do with the
data, as described at the end of § 2.

Of course, the treatment described above does not
account for the spatial biases of fiber collisions, but we do
not focus on spatial clustering in the current study. Ad-
ditionally, this modeling does not encode the influence of
fiber collisions on group identification, which is relevant
to our study of the group multiplicity function (see § 4.1).
However, as discussed in Appendix C, we find that the
change to g(N) induced by fiber collisions is sufficiently
small that it does not influence any of our conclusions,
and so our treatment of fiber collisions suits the aims of
this paper.

We conclude this section by noting that none of the
SHAM tests studied in this work include the possible
influence of so-called orphan galaxies, defined as galaxies
occupying a dark matter halo whose mass has dropped
below the resolution limit of the simulation. We return
to this point in § 6.4.

4 NEW TESTS OF ABUNDANCE

MATCHING

In this section, we scrutinize the abundance matching
prescription for the mapping between galaxies and dark
matter halos in several novel ways. In § 4.1, we consider
the number density of groups as a function group rich-
ness, in § 4.2 we study the group and field luminosity
functions of galaxies, and in § 4.3 we investigate the dis-
tribution of galaxy luminosities within groups, concen-
trating significant attention on the magnitude gap statis-
tic. As discussed in § 3, we explore three distinct assign-
ments for the effective maximum circular velocities Vmax

to be used in the luminosity assignments of subhalos.
Briefly, we refer to mocks based on Vmax at the time ac-
cretion as “SHAMacc”, mocks based on the redshift-zero
value of Vmax as “SHAM0,” and mocks based on the peak
value of Vmax over the entire merger history of the halo as
“SHAMpeak.” We also analyze SHAM predictions based
upon three distinct models for the amount of scatter be-
tween Mr and circular velocity. Throughout this paper
we refer to the SHAMacc model with 0.2dex of scatter at
the faint end and 0.15dex of scatter at the bright end, fol-
lowing Trujillo-Gomez et al. (2011), as our default model.
We refer explicitly to results from the other models where
relevant.

4.1 Multiplicity Function

In this section, we compare the predictions of abundance
matching for the average number density of groups as a
function of the number of group members, N . We refer
to this abundance as the group multiplicity function and
represent it as g(N). The differential multiplicity func-
tion, dg(N)/d logN, of the the observed SDSS Mr19 sam-
ple is plotted in blue diamonds in the top panel of Fig. 1.
We use nine bins evenly spaced in logN over the range
3 ≤ N ≤ 100. In all but the smallest richness bin, the
observed multiplicity function is consistent with a power-
law of g(N) ∝ N−2.5.

The errors in Fig. 1 were computed by bootstrap re-
sampling of the group catalogs. For all of the results in
this paper, our bootstrap errors are computed as the dis-
persion over 104 bootstrap realizations of our group sam-
ple, where each realization is constructed by randomly
selecting1 Ns groups from the original sample, where Ns

is the number of groups in the original sample. An al-
ternative error estimation technique to bootstrapping is
jackknifing, in which subsamples are drawn from spe-
cific sub-volumes of the simulation or survey. In jackknif-
ing, the variations between the sample realizations are
more closely tied to large-scale spatial variations than
in the bootstrapped realizations, and so jackknifing is
commonly used for statistics in which cosmic variance
is thought to be the dominant source of error. We ex-
plored our error estimation using both jackknifing and
bootstrapping, and found that for the group multiplic-
ity function the errors are generally larger for the case

1 We bootstrap resample with replacement, that is, we allow
for the possibility of repeated draws of the same object.
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Figure 1. Group abundance as a function of the number of group members. In the top panel we illustrate a comparison of the

differential group multiplicity function, dg(N)/d logN seen in the Mr19 SDSS catalog (blue diamonds) and that in our fiducial
mock catalog (red triangles). Our fiducial mock was made with abundance matching on V acc

max. We also display results when the

abundance matching is done on V peak
max (top dashed curve) as well as V z=0

max (bottom dashed curve). Error bars for these alternate
SHAM models have been omitted as they are very similar to those in our fiducial model. In the bottom panel we plot the fractional
difference between the predicted and observed dg(N)/d logN for each of these three models. All models depicted in this figure
pertain to our fiducial scatter model, though we find no qualitative change to these results when exploring our alternate scatter
model, or SHAM models without scatter.

of bootstrapping. This suggests that random errors in
our group-finding algorithm due to, e.g., redshift-space
projection effects dominate the variance in our sample.
Regardless, the larger errors in the bootstrapping esti-
mation method make this the more conservative choice
between the two techniques.

In addition to depicting the SDSS Mr19 group mul-
tiplicity function, Fig. 1 shows how these data may be
used to scrutinize empirical methods to assign galaxies
to halos, such as SHAM. To illustrate this, we plot with
red triangles the differential multiplicity function predic-
tion of our fiducial SHAMacc mock catalog. The upper
(lower) dashed curve in the top panel of Fig. 1 shows
the SHAMpeak (SHAM0) prediction for the multiplic-
ity function; error bars for these two models have been
omitted as they are similar to those from our fiducial
SHAMacc model. To further facilitate the illustration of
the potential of g(N) measurements to discriminate be-
tween different abundance matching prescriptions, in the
bottom panel of Fig. 1 we plot the fractional difference
between the predicted and observed differential multi-
plicity functions. All the points appearing in Fig. 1 trace
models with our fiducial amount of scatter between Mr

and Vmax.
Our fiducial SHAMacc model is consistent with the

observed multiplicity function (the difference between the
two distributions is less than 1.5σ).2 On the other hand,

2 Here and throughout, when we quote the statistical sig-
nificance of a difference between two distributions, xi and
yi, i = 1, . . . , Ndof , we refer to the results of the following
exercise. We measure the difference between the distribu-
tions in each bin, di ≡ (xi − yi), and estimate the errors as
σ(di) =

√

σ(xi)2 + σ(yi)2. With ∆χ2 = Σi[di/σ(di)]
2, we es-

timate the statistical significance of the difference between x
and y as P (∆χ2, Ndof ), where P (x,N) is a χ2 distribution
with N degrees of freedom.

the SHAM0 assignment with Vsub = V z=0
max is a signifi-

cantly poorer description of the data. SHAM0 underesti-
mates the abundances of all groups with N ≥ 5. The sig-
nificance of the difference between the SDSS group data
and the predicted SHAM0 multiplicity function is greater
than 5σ. These discrepancies hold true at similar levels
in the alternate scatter models we studied.

This discrepancy may not be surprising because
SHAM assignments based upon V z=0

max have already been
shown to be less effective at describing independent
data than SHAM assignments based upon V acc

max (e.g.
Conroy et al. 2006; Berrier et al. 2011; Watson et al.
2012; Reddick et al. 2012). More interestingly, our
SHAMpeak assignments of galaxies to halos with Vsub =
V peak
max do not describe the data as well as SHAMacc ei-

ther. SHAMpeak models significantly overestimate the
abundances of rich groups. The statistical significance of
this discrepancy is greater than 4σ.

These results are interesting as a demonstration that
the multiplicity functions of groups can be used as valu-
able statistics with which to constrain the connection be-
tween dark matter and galaxies. We can understand why
g(N) is a useful statistic to discriminate between SHAM
mocks based on different halo properties as follows. Sub-
halos in the SHAMpeak model will have larger Vmax val-
ues than subhalos in SHAMacc models, which in turn
will have larger Vmax values than those in SHAM0 mod-
els. Subhalos with larger Vmax values will be assigned
brighter luminosities, implying that there will be more
satellite galaxies in SHAMpeak (SHAMacc) models rela-
tive to SHAMacc (SHAM0) models, boosting the richness
N in host halos. This increase must come at the expense
of a decrease in field (N = 1) galaxies, and, indeed, we
find that there are more field galaxies in SHAM0 mod-
els than in SHAMacc models, and more SHAMacc field
galaxies than in SHAMpeak models.

The group multiplicity function test illustrated in
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Fig. 1 clearly indicates that the SHAMacc assignment
with Vsub = V acc

max is consistent with SDSS group data
while the alternative SHAM0 and SHAMpeak assign-
ments cannot describe the SDSS group data adequately.
In particular, note that the SHAMacc results are strad-
dled by the SHAMpeak and SHAM0 results, suggesting
that it may be possible to use g(N) measurements to con-
strain models of the mass stripped from satellite galaxies
(e.g. Watson et al. 2012). The success of our SHAMmod-
els with Vsub = V acc

max motivates the choice of SHAMacc
as our fiducial model.

We have also investigated the role that scatter plays
in the abundance matching prediction for g(N). Each
of the models depicted in Fig. 1 pertain to our fidu-
cial model of scatter, which has 0.2dex of scatter at the
faint end and 0.15dex at the bright end. However, we
find no qualitative change to our results when using our
alternate scatter model (which has a constant 0.1dex of
scatter) or models with no scatter. In particular, we find
that for all the scatter models we explored, SHAMpeak
models significantly overestimate the abundances of rich
groups and SHAM0 models significantly underestimate
the abundances of rich groups. Accordingly, we do not ex-
plicitly show the results for the alternative scatter models
for the sake of brevity.

In this subsection only, we study an alternate SDSS
catalog that is complete to Mr ≤ −20, spans the red-
shift range 0.02 < z < 0.106, and has an effective volume
of Veff ≃ 2.3 × 107 Mpc3/h3 to test the sensitivity of
our conclusions to the sample selection. We constructed
mock catalogs for this Mr20 catalog in exactly the same
fashion as for Mr19, except that we imposed a bright-
ness cut of Mr ≤ −20 for the mock galaxies. Our find-
ings for the Mr20 catalog are the same as for Mr19: the
observed g(N) is well-fit by a power law with exponent
∼ −2.5 in all but the smallest richness bin; the multiplic-
ity function predicted by our fiducial model of the Mr20
groups exhibits less than 1σ discrepancy with the data;
SHAMpeak (SHAM0) significantly over-(under-)predicts
the abundances of rich groups, with differences between
these models and the data being greater than 4.5σ in each
case.

The robustness of our conclusion that SHAM-
peak models over-predict the abundance of rich groups
is particularly interesting in light of recent results
(Reddick et al. 2012) demonstrating that SHAMpeak
models provide a much more accurate prediction for
projected galaxy clustering on small scales relative to
SHAMacc models. In fact, the authors in Reddick et al.
(2012) specifically trace the difference in the clustering
predictions of these two models to the lower abundance of
satellite galaxies in SHAMacc models. Yet, it is precisely
this behavior that results in SHAMacc models providing
more accurate predictions for the group multiplicity func-
tion in the regime N & 20. These two results thus seem
to be puzzlingly at odds with one another.

One possible explanation for the apparent discrep-
ancy between our multiplicity function results and the
clustering results in Reddick et al. (2012) is that group
identification is sensitive to observational systematics
that we may be inadequately accounting for. The two
most likely candidates for such systematics are fiber col-

lisions and effects due to the survey edges in the SDSS
galaxy sample that do not influence our mock galaxy
sample. We have estimated the influence of both of these
systematics on g(N) and discuss our findings in detail in
Appendix C. Briefly, we find that neither fiber collisions
nor edge effects have nearly a significant enough impact
on the multiplicity function to bring the SHAMpeak pre-
diction for g(N) in line with observations.

An additional possible explanation is that, once the
effect of orphan galaxies are included in the construc-
tion of the mock catalogs, the clustering prediction of
SHAMacc models is brought into better agreement with
the SDSS measurements of the two-point function. We
provide further discussion of this caveat in § 6.4.

We propose the following reconciliation between our
results and those in Reddick et al. (2012): two-point

galaxy clustering is insensitive to dark matter halos that

host N & 20 galaxies. We support this claim in Fig. 2,
in which we study the contribution to the two-point cor-
relation function ξ(r) from samples of halos in Bolshoi
with different richness threshold cuts. For our fiducial
SHAMacc mock catalog, we plot the three-dimensional
real-space correlation function ξ(r) (solid black line). We
also plot the 1-halo term, which only counts pairs of
galaxies that reside in the same halo (dot-dashed black
line), and the 2-halo term, which only counts pairs of
galaxies that reside in distinct halos (dotted black line).
Finally, we show the separate contributions to the 1-halo
term of galaxies that live in N < 20 halos (long-dashed
blue line) and N ≥ 20 halos (short-dashed red line). At
scales smaller than ∼ 0.5h−1Mpc, the correlation func-
tion is dominated by 1-halo pairs of galaxies in small
(N < 20) halos, while at larger scales, the correlation
function is dominated by the 2-halo term. 1-halo pairs in
large (N ≥ 20) halos only contribute significantly to ξ(r)
in a narrow range of scales, and even in this regime they
are subdominant.

The failure of SHAMpeak models at predicting the
group multiplicity function in theN & 20 regime is not at
odds with the Reddick et al. (2012) finding that SHAM-
peak provides the most accurate prediction for ξ(r) on
small-scales, because this failure only occurs in halos
that have very little influence on the correlation func-
tion. However, combining the Reddick et al. (2012) result
that SHAMacc models do not adequately describe two-
point clustering with our result that SHAMpeak models
do not adequately describe the group multiplicity func-
tion implies that no previously explored SHAM model suc-

cessfully predicts both ξ(r) and g(N). In § 6 we discuss
the implications of this finding, as well as an important
caveat concerning orphan galaxies.

4.2 Field & Group Galaxy Luminosity

Functions

The SHAM method for assigning galaxies to halos results
in mock luminosity functions that match observed lumi-
nosity functions by construction. However, this procedure
does not guarantee agreement between luminosity func-
tions that are conditioned on a specific galaxy property or
environment. In this section, we consider a simple distinc-
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Figure 2. The correlation function of mock galaxies in the
Bolshoi simulation using our fiducial SHAMacc abundance
matching model. The solid black line shows the correlation
function of all mock galaxies, while the thinner dot-dashed
and dotted black lines show the 1-halo (pairs of galaxies re-
siding in the same halo) and 2-halo (pairs of galaxies residing
in separate halos) contributions to the correlation function,
respectively. The blue long-dashed and red short-dashed lines
break the 1-halo term into contributions from galaxies that
live in halos with N < 20 and N ≥ 20 galaxies, respectively.
The figure shows that galaxies in N ≥ 20 halos never dominate
the correlation function.

tion in galaxy environment based directly on our group
catalogs. Specifically, we explore the luminosity function
of galaxies conditioned upon whether or not the galaxy
is identified as a member of a group. We refer to the lu-
minosity function constructed from all galaxies residing
in groups as Φgroup(L). For group galaxies, we explore
several different richness threshold cuts defining group
membership; where applicable, we will explicitly state
the particular richness threshold used in the definition of
group galaxies. Likewise, we refer to all galaxies that we
do not identify as members of a group as “field” galax-
ies; to be explicit, thoughout this paper “field” galax-
ies are defined as those galaxies found in groups with
only a single member. We denote the luminosity func-
tion conditioned on the galaxy being a member of the
field as Φfield(L). SHAM predictions for Φgroup(L) and
Φfield(L) are not guaranteed to match observational de-
terminations of these quantities, so this is a test of the
allocation of galaxies to group and field environments by
SHAM methods.

Figure 3 shows comparisons between our predicted,
SHAM luminosity functions for group galaxies and field
galaxies and the corresponding observed luminosity func-
tions. To highlight differences, the quantity shown on
the vertical axis of all panels in Fig. 3 is the frac-
tional difference ∆Φ/ΦSDSS between the predictions of
the SHAM mocks and the observations, where ∆Φ(L) ≡
Φmock(L)−ΦSDSS(L), so that points in Fig. 3 with posi-

tive vertical axis values correspond to luminosities where
SHAM over-predicts the abundance of galaxies of that
brightness, and conversely for negative values of ∆Φ(L).
Blue diamonds show ∆Φ/ΦSDSS for field galaxies, red tri-
angles show the same for group galaxies. Group galaxies
defined by a richness cut of Ngroup ≥ 3 appear in the left
columns, Ngroup ≥ 10 appear in the right columns. Our
fiducial model, SHAMacc, which abundance matches on
V acc
max, appears in the top panels; the alternate, SHAM-

peak model, which uses Vsub = V peak
max , appears in the

bottom panels; all abundance matching prescriptions in
Figure 3 were constructed with our fiducial scatter. The
error bars on ΦSDSS(L) and Φmock(L) have each been
estimated by bootstrap resampling as in § 4.1. We reit-
erate that the differences shown in this plot are strictly
due to the separation of field galaxies from group galaxies
because our SHAM implementation guarantees that the
overall luminosity function matches the data exactly.3

As Fig. 3 shows, our fiducial SHAMacc model, the
baseline SHAM procedure which provided an accurate
description of the group multiplicity function in § 4.1,
systematically overestimates the abundance of dim, field
galaxies and overestimates the abundance of bright,
group galaxies. At virtually all luminosities, SHAMacc
models fail to predict both Φgroup(L) and Φfield(L) at
the level of 10−20%; the biggest failures occur in SHAM-
peak models, which fail at the 40% level in large groups.
Notice that this qualitative conclusion holds irrespective
of the choice for the minimum number of member galaxies
required in order to have the group members be included
in the group luminosity function. In fact, the discrepan-
cies grow larger as the number of group members grows,
emphasizing that the SHAM excesses of bright, group
galaxies grow more egregious for larger groups (partic-
ularly for SHAMpeak). These results highlight at least
one weakness of the SHAM procedure for exploring the
connection between galaxies and dark matter halos. The
widely-used SHAM procedure that adequately describes
low-redshift galaxy clustering does not allocate luminosi-

ties to group and field halos in a manner consistent with

observations.
We also explore the influence that scatter between

absolute magnitude and halo circular velocity has on
the SHAM predictions for the group and field luminosity
functions. In Figure 4, we again plot the fractional differ-
ence between the observed and predicted Φgroup(L) (left
panel) and Φfield(L) (right panel), this time comparing
results between mocks made with different amounts of
scatter. The SHAMacc abundance matching procedure
was used for all models depicted in Figure 4. Blue di-
amonds in Fig. 4 give results pertaining to our fiducial
scatter model, which has 0.2dex of scatter at the faint

3 Since the overall Φ(L) is exactly correct in our mocks, the
reader may wonder why the sum Φgroup(L)+Φfield(L) appears
to be inconsistent with zero in Fig. 3. The reason is due to
our definition of group galaxies: in the left panels, galaxies in
groups with richness N = 2 are not included in Φgroup; in the
right panels, galaxies in N = 2, . . . , 9 groups are not included.
When Φgroup(L) is defined so that galaxies in groups of all
richnesses N ≥ 2 are included, the sum Φgroup(L) + Φfield(L)
is, indeed, consistent with zero.
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Figure 3. Fractional differences between the field and group galaxy luminosity functions predicted by abundance matching and
observed in SDSS. The sign convention adopted in the vertical axes is defined by ∆Φ ≡ Φmock −ΦSDSS. Results pertaining to our
fiducial SHAM model, SHAMacc, based on abundance matching with Vsub = V acc

max, appear in the top panels. Results pertaining to

SHAM using V peak
max , SHAMpeak, appear in the bottom panels. The group (field) galaxy luminosity functions in all of our SHAM

mocks is systematically too bright (dim). No SHAM model predicts either the group or field galaxy luminosity function to better
than ∼ 10% at almost any luminosity.

end and 0.15dex of scatter at the bright end, magenta
squares designate our alternate model with a constant
0.1dex of scatter, and red triangles depict our SHAMacc
mock without scatter. Group galaxies in Fig. 4 have been
defined by the richness cut Ngroup > 4.

Evidently, the amount of scatter in SHAM sig-
nificantly influences the predictions for Φgroup(L) and
Φfield(L) at the bright end, but has little role in the
group and field luminosity functions at the faint end. A
more exhaustive exploration of different prescriptions for
the scatter may yield a model that correctly predicts the
abundance of bright group and field galaxies. Any such
model would require significantly larger scatter than the
fiducial model we have used in this work, which is, in turn,
based on the success of Trujillo-Gomez et al. (2011) in de-
scribing galaxy clustering and a variety of other proper-
ties using SHAM. However, the robustness of our results
to differences at the faint end of the luminosity functions
indicates that this is a generic weakness of SHAM that
cannot be overcome by adding scatter alone. We discuss
this point further in § 6, as well as the role that orphan
galaxies may play in mitigating this discrepancy.

4.3 Magnitude Gap Statistics

In § 4.2, we compared the luminosity functions of group
galaxies predicted by SHAM to that exhibited in SDSS
group data. In this section, we explore a group statistic
that is related to the group luminosity function known as
the “magnitude gap.” We define the magnitude gap to be
the difference in r-band absolute magnitude between the
two brightest non-fiber collided members of any group,
m12 = Mr,2 − Mr,1, where Mr,i is the r-band absolute
magnitude of the ith brightest non-fiber collided group
member. In particular, we will be interested in Φ(m12),
the statistical distribution of magnitude gaps, defined
so that Φ(m12)dm12 represents the number density of
galaxy groups with magnitude gap m12 in a bin of width
dm12.

As we discussed in § 1, the magnitude gap abundance
statistic has received significant attention in recent liter-
ature. Of course, it is possible to enumerate the absolute
magnitudes of all group members, but the magnitude gap
has received particular attention for a number of reasons.
These include: (1) the simplicity of a single statistic; (2)
dynamical friction timescales vary in inverse proportion
to galaxy mass, so the largest satellites merge the most
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Figure 4. Fractional difference between the group environment-conditioned luminosity functions seen in SDSS and the predictions

for SHAMacc with our fiducial scatter model (blue diamonds), our alternate scatter model (magenta squares), and no scatter (red
triangles). The sign convention adopted in the vertical axes is defined by ∆Φ ≡ Φmock − ΦSDSS. This figure is similar to Fig. 3,
but here we address the influence of scatter in the SHAMacc predictions for the group and field luminosity functions. Regardless
of the amount of scatter, errors at levels of & 10% persist in all SHAM model predictions for Φfield(L) and Φgroup(L).

quickly, making magnitude gap a possible indicator of
the dynamical age of a group; and (3) the magnitude gap
may help to refine mass estimates for optically-identified
clusters (Hearin et al. 2012; More 2012).

We will be particularly interested in testing the suc-
cess of SHAM models at predicting Φ(m12), and so we
begin our investigation in 4.3.1 by first studying the the
luminosity function of the brightest and next-brightest
group galaxies, as it is these galaxies from which the
magnitude gap of a group is computed. We discuss the
natural, statistical correlation between m12 and group
richness in 4.3.2, motivating the multiplicity function-
matching technique that we use throughout the rest of
this section. We present results for the predicted and ob-
served Φ(m12) in 4.3.3, and focus on the large-gap tail of
this distribution in 4.3.4.

4.3.1 Luminosity Function of Brightest and

Next-Brightest Group Galaxies

As discussed above, the magnitude gap of a group is de-
fined as the difference in r-band magnitude between the
group’s two brightest (non-fiber collided) members. Thus
in our study of magnitude gaps, the luminosity function
of brightest and next-brightest group galaxies is of in-
terest. To measure these functions, we proceed by first
rank-ordering the members of each group by their bright-
ness; for convenience, we denote the luminosity of the ith

brightest group member as Li. After this rank-ordering,
we proceed to measure the luminosity function of the
brightest and next-brightest members of each group, de-
noted by Φ(L1) and Φ(L2), respectively.

We illustrate our results in Figure 5, in which we
show the fractional difference between the predicted and
observed Φ(L1) in the left panel and between the pre-
dicted and observed Φ(L2) in the right panel. We re-
strict attention to the rank-ordered luminosity function
of galaxies found in groups with N > 4 members, though
plots made from samples with different richness cuts are

very similar. Qualitatively, the trends in both panels re-
flect the sense of the errors on Φgroup(L) shown in the left
panel of Fig. 4. SHAM predicts brightest group galaxies
and next-brightest group galaxies that are significantly
too bright on average, compared to observations. More-
over, this conclusion is insensitive to scatter, so it is,
again, a generic weakness of the SHAM assignments.

We present the results in Fig. 5 in large part because
our results in the following sections focus on Φ(m12), the
relative luminosity of the brightest and next-brightest
group members, and so the errors illustrated in Fig. 5 are
germane to all of our results pertaining to the SHAM pre-
diction for Φ(m12). Before proceeding, we explicitly note
that Φ(L1) and Φ(L2) do not determine a unique distribu-

tion of magnitude gaps Φ(m12). Galaxy luminosities can
be partitioned among group members in an infinite vari-
ety of ways that all lead to the same average group lumi-
nosity function. The magnitude gap distribution Φ(m12)
is determined not only by the global distributions Φ(L1)
and Φ(L2) exhibited by the group sample, but also by the
correlation between L1 and L2 within the groups. Such
correlations encode, for example, whether groups with a
brighter-than-average L1 tend also to have a brighter-
than-average L2. Thus measurements of Φ(m12) provide
additional information about the imprint of group assem-
bly on the luminosity of galaxies that is not contained in
the distributions Φ(L1) and Φ(L2). We will return to this
point and expand upon it in § 5.

4.3.2 Magnitude Gap and Richness

The abundance of groups by magnitude gap is a rapidly
declining function of the gap, with approximately 90%
of all groups with N ≥ 3 members in the Mr19 sam-
ple having a magnitude gap smaller than m12 = 1.5.
However, gap abundance depends sensitively on group
richness, as demonstrated in Figure 6, where we show
a histogram (normalized to have unit area) of Φ(m12)
exhibited by galaxy groups in two different richness
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Brightest Group Galaxies: N > 4
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Figure 5. After rank-ordering the members of each group by their brightnesses, we have measured the luminosity function of the

brightest groups members, Φ(L1), as well as that of the next-brightest group members, Φ(L2). In the left (right) panel we plot
the fractional difference between the observed and predicted Φ(L1) (Φ(L2)) . The sign convention adopted in the vertical axes is
defined by ∆Φ ≡ Φmock − ΦSDSS, as in Fig. 3. The group galaxy sample is defined by requiring that each galaxy in the sample
reside in a group with N > 4 members. The luminosity function of the brightest and next-brightest group members predicted
by SHAM models is systematically too bright, a trend that is qualitatively similar to the errors in the SHAM predictions for
Φgroup(L), discussed in § 4.2.
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Figure 6. Trend of magnitude gap with richness. The blue
(red) histogram traces the abundance of groups as a function
of magnitude gap, Φ(m12) (normalized to have unit area), ex-
hibited by groups with richness N = 3 (9 < N < 16). The
blue diamonds and red triangles trace Φ(m12) of the corre-
sponding Monte Carlo randomizations of the groups, in which
the brightness of group members are randomly drawn from
a universal luminosity function. This figure demonstrates the
basic trend of m12 with N, that richer groups tend to have
smaller magnitude gaps, motivating the multiplicity function-
matching methodology employed throughout the rest of this
section.

ranges. The blue histogram traces Φ(m12|N = 3), the
gap abundance of groups with N = 3 members, while
the red histogram traces Φ(m12|9 < N < 16). A
comparison of the two histograms provides a demon-
stration of the richness-dependence of m12 abundance:
richer groups tend to have smaller magnitude gaps.
This trend has been demonstrated previously in the lit-
erature (e.g., Paranjape & Sheth 2012; D’Onghia et al.
2005; Tavasoli et al. 2011).

A simple way to gain insight into the sense of this

trend is to consider a toy model universe in which galaxy
groups are assembled by randomly drawing galaxy lumi-
nosities from a global luminosity function Φglobal(L) (for
example, a Schechter function). As the richness N of the
toy groups increases, the number of random draws from
Φglobal increases, and the probability that a very bright
member is drawn increases. Denoting the luminosity of
the ith brightest members as Li, the expectation value of
Li becomes brighter with increasing N. As the number
of random draws increases, the expectation value of L1

is the first to become brighter than L∗, the exponential
cutoff of Φglobal, and when this occurs there is a rapid
decrease in the rate at which the expectation value of L1

brightens with increasing N. The reason for this rapid
decrease is because of the exponential suppression in the
luminosity function for galaxies with luminosties exceed-
ing L∗; most draws correspond to lower luminosities. A
relatively larger number of draws is required for the ex-
pectation value of L2 to exceed L∗, and so as N continues
to increase the expectation value of the ratio L1/L2 de-
creases.

To illustrate this point explicitly, the blue diamonds
and red triangles in Figure 6 show histograms of Φ(m12)
in Monte Carlo (MC) realizations of this toy universe.
For each observed Mr19 group of richness N , we have
constructed 1000 realizations of the group by randomly
drawing N times from the observed Φ(L|N ≥ 3) (note
that the exact, observed luminosity function of Mr19
galaxies is used and not a Schechter function approxima-
tion). Thus, for group samples in each richness bin plotted
in Fig. 6, the multiplicity functions of the observed and
MC groups match exactly. The difference between the
r-band magnitudes of the brightest two draws gives the
m12 value of the MC group. We then estimate Φ(m12|N)
of the random-draw universe simply by computing the
mean abundance of the MC groups in bins of m12. Blue
diamonds give the Φ(m12|N = 3) that results from this
exercise, red triangles represent Φ(m12|9 < N < 16).
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Of course, the toy model we illustrate with our
Monte Carlo ignores any evolution of, or interactions
between, group members during the process of group
formation, and so it should not be surprising that the
Monte Carlo predictions do not exactly trace the his-
tograms in Figure 6. However, the broad similarity be-
tween Φ(m12|N) in the MC and in Mr19 data demon-
strate that this model nonetheless provides a reasonable
approximation of the relationship between richness and
magnitude gap.

Paranjape & Sheth (2012) emphasized the critical
role that richness plays in any detailed study of m12,
pointing out that N is the appropriate group property
to use to condition the group sample whose magnitude
gap distribution is under consideration. We follow this
methodology throughout paper. This distinguishes our
work from previous measurements of the magnitude gap
(e.g., Yang et al. 2008), and is one of the salient features
that make our measurements of gap abundance the most
precise and complete in the literature to date.

4.3.3 Magnitude Gap Distribution

One of the chief goals in this paper is to demonstrate
the utility of the observed gap abundance Φ(m12) for
constraining the galaxy-dark matter connection, with a
particular focus on SHAM-based models. A basic conse-
quence of the relationship between gap and richness is
that the multiplicity function g(N) plays a critical role
in φ(m12). As shown in § 4.1, SHAMpeak and SHAM0
models over- and under-predict g(N) at moderate and
large values of group richness, respectively. Therefore,
we should expect that these models will not predict the
correct gap abundance function, Φ(m12). However, it is
still useful to explore the distribution of magnitude gaps,
given a common richness or distribution of richness. Such
a statistic that properly accounts for the influence of the
multiplicity function g(N) can serve as a pure test of the
ability of the SHAM formalism to allocate the brightest
galaxies into physically associated, group-sized systems.

We proceed to perform such a test by randomly se-
lecting a subsample of mock groups from our SHAM cat-
alogs with a multiplicity function that matches that of
the observed, SDSS Mr19 sample.4 Specifically, we com-
pare the observed number density of groups as a function
of magnitude gap, ΦSDSS(m12) to that in a subsample of
our SHAM mocks restricted to have an identical group
multiplicity function, Φmock(m12|g(N) = gSDSS(N)).

In the bottom panel of Figure 7, we show the gap
abundance Φ(m12) predicted by our fiducial mock cat-
alog and compare it to the observed Mr19 abundance.
As described above, the subsample of mock groups has
been chosen to match the observed multiplicity function.
Thus Fig. 7 illustrates the results of a direct test of the

4 Our sample selection proceeds by drawing at random from
the mock group sample, assigning a probability to each drawn
group of richness N based on gSDSS(N) and gmock(N), and
then either including or rejecting each drawn group based on
the value of an independent draw from a distribution of real
numbers uniformly distributed between zero and one.

abundance matching prediction for the relative bright-
nesses of the two brightest group galaxies, independent
of the observed group multiplicity function. There is less
than a 1σ difference between the observed Φ(m12) and
our fiducial prediction, which constitutes a new success
of SHAM-based models for the galaxy-dark matter con-
nection.

With the same model of scatter, the matched g(N)
prediction for Φ(m12) when abundance matching with
either V peak

max or V z=0
max results in less than a 2σ discrep-

ancy with the data. We show this in the top left panel
of Fig. 7, in which we plot the fractional difference be-
tween the predicted and observed magnitude gap abun-
dance for each of the three classes of SHAM models we
studied, each with our fiducial model of scatter. The
sign convention of the fractional difference is given by,
∆Φ(m12) = Φmock(m12) − ΦSDSS(m12), as in previous
plots. The magnitude gap is therefore not an effective
statistic with which to discriminate between the com-
mon choices for the halo property used in the abundance
matching algorithm.

For the case of our fiducial mock, we obtain sim-
ilar results for Φ(m12) whether or not we employ our
g(N)−matching procedure. This is because SHAMacc-
based mocks correctly predict the group multiplicity
function. However, the SHAMpeak and SHAM0 predic-
tions for Φ(m12) are in stark disagreement with the data
if the comparison is done without first matching the pre-
dicted g(N) to the observed group multiplicity function,
demonstrating the importance of multiplicity function-
matching when one is interested solely in the relative lu-
minosities of the brightest group galaxies.

The success with which SHAM describes the distri-
bution of magnitude gaps may seem less interesting be-
cause we have already shown that SHAM does not ac-
curately predict the luminosities of our group galaxies
(§ 4.2, Figs. 3 & 4). However, we reiterate that although
these results are related, the gap abundance prediction
does not follow directly from the group galaxy luminos-
ity function. For example, one could have imagined the
average luminosities of group galaxies to have been cor-

rectly predicted, while the distribution of magnitude gaps
was incorrect due to a failure of SHAM to correctly ar-
range bright galaxies within groups. In this way, one can
see that magnitude gaps test not just the mean condi-
tional luminosity function (CLF) of group galaxies, but
also correlations between the luminosities of group mem-
bers.

Additionally, magnitude gap abundance observa-
tions provide constraints on the SHAM models that are
complementary to measurements of group multiplicity.
We illustrate this in the top right panel of Fig. 7. In
that panel, we show the fractional difference between the
observed abundance of groups as a function of magnitude
gap and that predicted by SHAM for our different scatter
models. The red triangles show results from our fiducial
scatter model (0.2dex of scatter at the faint end, 0.15dex
at the bright end), the magenta squares depict our alter-
nate scatter model (constant scatter of 0.1dex), and the
blue crosses show SHAMacc with no scatter.

It is evident that Φ(m12) is a sensitive probe of the
underlying scatter between luminosity and Vmax. The al-
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Figure 7. In the bottom panel we plot the magnitude gap abundance Φ(m12), exhibited by groups with N > 4 members.
The observed Φ(m12) is illustrated with blue diamonds; we have chosen a random subsample of our fiducial (SHAMacc) mock
groups with a multiplicity function matching that of the observed groups and plotted the gap abundance exhibited by this
random subsample with red triangles. The prediction for Φ(m12) by our fiducial scatter model is less than 1σ discrepant with
the observed distribution, a new success of the SHAM paradigm. In the top right panel we show the fractional difference between
the observed gap abundance and that predicted by SHAMacc models for different amounts of scatter between Mr and Vmax,
where ∆Φ ≡ Φmock(m12)−ΦSDSS(m12). In the top left panel we again show the fractional difference between mock and observed
Φ(m12), this time comparing results for mocks where different halo properties were used in the abundance matching. All models
shown in the top left panel have the same amount of scatter as that in our fiducial mock catalog. Together with Figure 1, these
results illustrate that it may be possible to use joint measurements of g(N) and Φ(m12) to place tight constraints on the details
of the SHAM implementation. See text for details.

ternate scatter model is discrepant with the data at a
level of 2.7σ, the no scatter model is greater than 5σ dis-
crepant, and, again, our fiducial model is less than 1σ
discrepant; these results strongly suggesting that Φ(m12)
observations can be exploited to constrain the scatter
between luminosity and halo circular velocity. We reit-
erate that the gap abundance prediction has been de-
coupled from the group multiplicity prediction for each
model, so the complementarity of the constraints on the
SHAM model provided by Φ(m12) and g(N) can be re-
alized as these statistics can be used concurrently and
independently. Magnitude gap or related statistics may
thus prove to be useful to constrain scatter in galaxy-
halo assignments, but we relegate a detailed study of this
possibility to future work.

We repeated this entire exercise for mock groups
identified in real space (as opposed to redshift space),
and found that the resulting Φ(m12) and that predicted
by our (redshift-space) fiducial mock are different at a

level of ≃ 4.1σ. This demonstrates the importance of
redshift-space group-finding in making the prediction for
the gap abundance. To our knowledge, we have performed
this analysis for the first time; all previous studies rely-
ing on numerical simulations to predict gap abundances
have used “halo-level” abundances as the prediction, in
which halo membership is used to define group mem-
bership. However, real-space predictions systematically
under-estimate the abundance of low-gap systems found
in observations, a fact that we find to hold true regard-
less of the SHAM prescription. This is sensible since in-
terlopers occur more often in redshift-space groups, and
interlopers can only reduce the gap, so it is natural to ex-
pect that including interlopers by finding the groups in
redshift-space should boost the low-gap abundance. Since
systematic errors due to projection effects play a critical
role in group- and cluster-finding, any theoretical study
of the magnitude gap abundance must properly account
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for interlopers due to redshift-space projection effects in
order to make reliable predictions for magnitude gaps.

4.3.4 Fossil Group Abundance

Having studied the full gap distribution in § 4.3.3, we
now focus on the high-gap tail of this distribution. Plot-
ted as blue diamonds in Figure 8 is the richness-threshold
conditioned fossil fraction Ffos(> N), defined as the frac-
tional abundance of SDSS Mr19 galaxy groups with more
than N members that have m12 ≥ 2:

Ffos(> N) ≡

∫

∞

2
dm12Φ(m12| > N)

∫

∞

0
dm12Φ(m12| > N)

. (2)

The fossil fraction is a measure of the size of the large-
gap tail of the magnitude gap distribution; the decrease
of Ffos(> N) with increasing N reflects the relationship
between richness and gap discussed in § 4.3.2: large gap
systems are rarer in systems of larger richness. Galaxy
groups with m12 ≥ 2 whose X-ray brightnesses are
greater than some threshold value (commonly LX,bol >
1042erg/s) are often referred to as fossil groups, and are
conventionally thought to be galaxy systems that assem-
bled most of their mass at high redshift, representing the
end products of galaxy group evolution. We address the
consistency of this interpretation with our findings in § 6.

Plotted in red triangles in Fig. 8 is the SHAMacc pre-
diction for Ffos(> N) from our fiducial mock catalog after
selecting a random subsample with a g(N) distribution
that matches the observed Mr19 multiplicity function.
For both the mock and observed data points the error
bars come from bootstrap resampling. In the case of the
SHAMacc groups, each bootstrap realization corresponds
to a new, random selection of a subsample of the mock
groups with a matched g(N) distribution. Whatever rich-
ness cut N one uses to define the group sample, the dif-
ference between the observed and predicted Ffos(> N) is
less than 2σ, showing that our fiducial mock accurately
predicts the observed abundance of galaxy groups in the
large-gap extreme tail of the magnitude gap distribution.

Our approach to both measuring and predicting Ffos

differs considerably from much of the existing literature
on this subject. In § 6 we discuss how our methods and
results compare to previous work. We note here, though,
that our methodology for selecting our group sample and
measuring magnitude gaps results in the tightest sta-
tistical constraints on Ffos in the literature, as well as
the best understood systematics, and so the results il-
lustrated with the blue diamonds in Fig. 8 represent the
most precise measurement to date of fossil group abun-
dance. For reference, we note that for a group sample
with a richness threshold cut of N > 2 members, we
measure the fossil fraction Ffos(N > 2) = 0.015± 0.0016;
for a richer sample that only includes groups with N > 5
members, Ffos(N > 5) = 0.0018 ± 0.001.
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Figure 8. Plot of the fossil fraction Ffos(> N), defined as

the fraction of systems in a group sample with magnitude gap
m12 ≥ 2. The richness-threshold defining the samples used
in the fossil fraction measurements appears on the horizontal
axis. Blue diamonds (red triangles) show the fossil fraction of
the observed (Bolshoi with SHAMacc and a matched g(N))
group samples for a range of richness cuts. The fossil frac-
tion decreases as the richness threshold defining the group
sample increases, another manifestation of the trend of m12

with N discussed in § 4.3.2. Regardless of the richness cut,
the SHAMacc prediction for Ffos(> N) is within 2σ of the
observed value, a new success for the abundance matching
paradigm.

5 TESTS OF GALAXY GROUP

FORMATION HYPOTHESES WITH DATA

RANDOMIZATIONS

In the previous section, we explored SHAM predictions
for a variety of properties of galaxy groups. As we pointed
out in our discussion of Figure 6 in § 4.3.2, it is natu-
ral to expect the number of group members to be corre-
lated with, for example, the luminosity of the brightest
group galaxy or the magnitude gap. The reason is sim-
ple. Consider a toy model in which the luminosities of
group members are consistent with being random draws
from a universal group luminosity function. In this case,
the typical luminosity of the brightest group galaxy will
increase with the number of group members because a
richer group will draw from the luminosity function more
times, and hence have more opportunity to include rare,
bright galaxies. Likewise, the magnitude gap will de-
crease with the number of group members as the greater
number of galaxies will populate the luminosity function
more densely (see § 4.3.2 for a fuller discussion of these
trends). The fidelity with which such a toy model repre-
sents the real universe has been explored previously by
Paranjape & Sheth (2012), and it is interesting to deter-
mine whether observed galaxies are consistent with such
a simple hypothesis.

We proceed as follows. For a given set of groups,
let Φ(m12| > N) be the abundance of groups of a given
magnitude gap subject to the condition that the group
has greater than N members (of course, other conditions
could be placed on this distribution as well, see below
for further discussion). Assume some luminosity function
of galaxies within such groups, Φ(L| > N). If we as-
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sume that galaxy luminosities are consistent with random
draws from Φ(L| > N), then under this random-draw
hypothesis there is a definite prediction for the distri-
bution of magnitude gaps, Φrand(m12| > N), given only
this luminosity function and the group multiplicity func-
tion g(N). Additionally, there is a definite prediction for
Φrand(Li| > N), the luminosity function of the ith bright-
est galaxies found in groups with more than N members.
Of course, real data need not be consistent with this hy-
pothesis, so it is interesting to examine deviations from
the random draw hypothesis. We do this by defining the
fractional deviations from the random-draw prediction
for gap abundance,

Ψ(m12| > N) ≡
Φ(m12| > N) − Φrand(m12| > N)

Φrand(m12| > N)
, (3)

and fractional deviations from the random-draw predic-
tion for the luminosity function of the ith brightest group
galaxies,

Ψ(Li| > N) ≡
Φ(Li| > N)− Φrand(Li| > N)

Φrand(Li| > N)
. (4)

Of course, one can make different assumptions about
the luminosity function from which the galaxies are being
drawn in order to test different hypotheses. For example,
one could draw the luminosities from the all-galaxy lu-
minosity function Φ(L), rather than a richness threshold-
conditioned LF. We intend to explore these and related
details in a future follow-up paper. Before presenting our
measurements of Ψ(Li| > N) and Ψ(m12| > N), we pause
briefly to pinpoint the specific hypothesis that is be-
ing tested by comparing the data to this randomization:
the physics of group assembly influences the brightness of

galaxies in such a way that Φ(L| > N) is distinct from

the global, unconditioned luminosity function, Φglobal(L),
but no other imprint is made on galaxy luminosities.

With the blue diamonds in Figure 9, we plot our
measurements of Ψ(m12| > N) for SDSS Mr19 groups in
the top panels, and Ψ(L1 > N) in the bottom panels;
results for groups with N > 2 members appear in the
left panels of Fig. 9, N > 9 members in the right panels.
These results are very similar to the case that was tested
in Paranjape & Sheth (2012), except those authors used
an analytical fit (Bernardi et al. 2010) to Φ(L| > N), and
restricted attention to N > 9. To make Fig. 9, we employ
different methods that are based on the exact Φ(L| > N)
exhibited in our sample, which we describe as follows.
For each group of richness Nj > N, we construct 1000
realizations of the group by repeatedly drawing Nj times5

from the observed Φ(L| > N), allowing us to calculate
Φrand(m12) and Φrand(Li) directly from the randomized
data.

The Ψ(m12| > N) plotted with blue diamonds in the
top panels of Fig. 9 are clearly inconsistent with zero.
The statistical significance of this difference is ≃ 4.8σ

5 In our data analysis we compute the values of m12 and Li in
each group by first excluding the group’s fiber-collided mem-
bers (see Appendix B). Accordingly, the random draw predic-
tions should be made with the variable Nnfc, the number of
non-fiber-collided members of the group.

for N > 2 groups and ≃ 3.2σ for N > 9 groups. Alterna-
tively, the p-values from two-sided KS tests are . 10−4 in
both cases. These tests yield the clear conclusion that the
allocation of galaxy luminosities amongst SDSS groups is
not consistent with random draws from a global group-
galaxy luminosity function. This is a direct contradiction
of the conclusions drawn in Paranjape & Sheth (2012)
based on the same statistical test. The primary source of
the discrepancy between these two conclusions lies in the
treatment of fiber collisions, which we provide a detailed
account of in Appendix B.

As for the results plotted in the bottom panels, we
find that Ψ(L1|N > 2) is distinct from zero at a level
of 4.0σ, but that Ψ(L1|N > 9) is consistent (within 1σ)
with zero. Thus, our results support the conclusion of
Paranjape & Sheth (2012) that, in groups with N > 9
members, the luminosity function of the brightest group
galaxies is well described by Φrand(L1|N > 9); as pointed
out in More (2012), the sample size of groups with N > 9
members is quite limited, and so only quite strong differ-
ences would be evident in this sample. Evidently, how-
ever, in groups with only a few members some additional
variable besides the richness of groups is clearly neces-
sary to encode the influence that the physics of group
assembly has on the luminosities of the brightest group
members. We further discuss the interpretation and con-
sequences of this result in § 6.

We have also measured the Ψ(m12| > N) that re-
sults from an alternative data randomization procedure,
which we describe as follows. First, we divide our SDSS
Mr19 sample of galaxies into “centrals” and “satellites”;
the set of centrals is defined to be those galaxies that are
the brightest among the galaxies in the group of which
they are a member; the set of satellites is the comple-
ment to the set of centrals. For each group of richness N
in the sample being randomized, we construct 1000 real-
izations of the group. For each realization, we fix Lran

1 ,
the luminosity of the “first” randomized group member,
to be equal to L1, the luminosity of the central galaxy
in the group that is being randomized. The luminosities
of the remaining N − 1 members are drawn at random
from Φsat(L|L1), the luminosity function of all satellite
galaxies that are found in groups whose central galaxy
has a luminosity within 0.2dex of L1.

This randomization scheme may appear unfamiliar
at first glance, but in fact it is well-motivated by and quite
similar to the most commonly used method by which
mock catalogs of galaxies are constructed from N-body
simulations in the standard Conditional Luminosity func-
tion (CLF) formalism (e.g., Yang et al. 2003, 2004; More
2012). CLF-based mocks distinguish between central and
satellite galaxies, although the distinction is not defined
by a rank-ordering of galaxies by brightness. Instead, the
brightness of the central galaxy, Lcen, is assumed to be
drawn at random from a log-normal luminosity function
whose mean and spread are governed by the mass of the
dark matter halo, and the luminosities of the remaining
galaxies associated with the halo are chosen from a mod-
ified Schechter function whose form is governed by Lcen.

Our approach to the construction of our random-
ized groups is very similar except that (1) we know the
richnesses of the groups rather than their masses, and
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(2) we suppose that the brightest galaxy in the group
has the same luminosity as the galaxy embedded in the
group’s most massive halo, that is, L1 ≈ Lcen. By keeping
fixed the luminosity of the central galaxy in each random-
ized group, our randomization preserves the relationship
between Lcen and N exhibited by the observed groups.
Rather than using an analytical fit to Φsat, we use the
data itself to determine this distribution; our choice to
condition Φsat with the luminosity of the central galaxy
mirrors the convention commonly utilized in standard im-
plementations of the CLF formalism.

A non-negligible fraction of the randomly-drawn
satellites prove to be brighter than the central galaxy
in the randomized group (as should be expected from
the results in Skibba et al. (2007)). However, in calcu-
lating the magnitude gap of each randomized group we
proceed exactly as we do with the data and define m12

to be Mr,1 −Mr,2, the magnitude difference between the
brightest two members. The resulting Ψ(m12| > N) is
plotted with red squares in the top panels of Fig. 9.6 Re-
gardless of the richness cut, this second data randomiza-
tion faithfully reproduces Φ(m12| > N) (by construction,
Φ(L1| > N) is exactly reproduced in this randomization).
This agreement provides new supporting evidence of a
common, underlying assumption of the CLF prescription
for constructing mock galaxy samples, namely that Φsat

need only be conditioned on Lcen in order to accurately
account for the luminosity function of satellite galaxies.

6 DISCUSSION

6.1 Conditional Luminosity Function Results

We have used a volume-limited catalog of galaxy groups
observed in SDSS DR7 to provide a number of new tests
of the abundance matching prescription for connecting
galaxies to dark matter halos. To perform these tests, we
have developed a novel implementation of SHAM that al-
lows for the construction of mock galaxy catalogs with a
luminosity function Φ(L) that exactly matches the Φ(L)
exhibited by an observed galaxy sample, even when scat-
ter between halo circular velocity and galaxy luminosity
is included. We have exploited this implementation to
test the ability of SHAM to predict the galaxy luminos-
ity function conditioned on whether the galaxies in the
sample are members of groups. We find that field (group)
galaxies in SHAM-based catalogs are systematically too
dim (bright), with differences at the level of & 10% at
virtually all luminosities, and that this behavior holds
true in all of the SHAM models we studied. This indi-
cates that none of the widely-used SHAM-based models
allocate galaxies to field and group environments to bet-
ter than ∼ 10% accuracy. These findings are particularly
interesting in the context of Neistein et al. (2011), whose
results suggest that subhalo environment may need to be
included in the abundance matching prescription in order
to accurately model galaxy clustering.

6 We do not include plots from this data randomization in the
bottom panels since keeping Lcen fixed results in the trivial
prediction that Ψ(L1| > N) = 0.

In a study closely related to ours, Reddick et al.
(2012) construct SHAM-based mock catalogs of galaxy
groups (using a different implementation of the abun-
dance matching prescription) and studied a wide range
of SHAM-based models of the galaxy-halo connection,
so it is useful to compare our results with theirs. For
detailed CLF comparisons we rely on private communi-
cations with Rachel Reddick, because our group-finding
algorithm differs from theirs in that ours does not have
group masses intrinsically built into it, and Reddick et al.
(2012) quote CLF results that are conditioned on group
mass. Both the field and group galaxy luminosity function
of their best-fit model is discrepant at the ∼ 20% level
with the data, a level of disagreement that is comparable
to ours. However, the character of the failure apparently
depends on both the SHAM implementation as well as
the group-finding algorithm. This emphasizes a need for
systematic and detailed examinations of the influences
of mock catalog construction, group finding, and other
methodological issues in order to understand the poten-
tial systematic differences induced by these choices. We
intend to explore these issues in future work.

6.2 Group Multiplicity Function Results

In § 4.1 we demonstrated that our fiducial mock galaxy
catalog, constructed by abundance matching using V acc

max

as the luminosity proxy for subhalos, accurately repro-
duces the observed group multiplicity function g(N),
that is, the abundance of groups as a function of group
richness. Furthermore, in § 4.1 we also showed that
mock catalogs using V peak

max (SHAMpeak models) or V z=0
max

(SHAM0 models) as the abundance matching parame-
ters incorrectly predict group multiplicity measurements
and straddle the g(N) predicted by V acc

max−based cata-
logs (Figure 1). We have checked that this qualitative
behavior holds true for models with very different (or
without) scatter between luminosity and Vmax, as well
as for volume-limited samples with different brightness
thresholds, indicating that this a generic conclusion.

The multiplicity function prediction constitutes a
new success of SHAM that is distinct from previous tests
that rely on measurements of galaxy clustering.7 First, we
note that because group identification occurs in redshift-
space, g(N)−based tests are sensitive to the Bolshoi pre-
diction for the velocity field, whereas measurements of
(projected) galaxy clustering, wp(rp), purely probe the
prediction for the spatial distribution of halos. This dif-
ference alone distinguishes our g(N)−tests from tests of
SHAM based on clustering. However, with Fig. 2 we
demonstrated an additional difference between the two
tests: galaxy clustering measurements on small scales are
insensitive to differences in g(N) in the N & 20 regime.

This second difference has important implications
for conventional tests of theories predicting how galax-
ies populate dark matter halos. While we find that no
SHAMpeak model provides an adequate description of

7 See also Skibba & Sheth (2009) for an alternative approach
to probing the galaxy-halo connection beyond galaxy cluster-
ing.
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Figure 9. Randomization tests of magnitude-gap statistics and rank-ordered luminosity functions. In blue diamonds we plot
results pertaining to the data randomization procedure in which we draw brightnesses for all the group members from the global
Φ(L| > N). With the red squares we plot results for a second data randomization, in which the brightest group galaxy, L1, is kept
fixed and we randomly draw brightnesses for the remaining galaxies in each group from Φsat(L|L1), allowing us to directly test
one of the most common assumptions of the Conditional Luminosity Function (CLF) formalism. See text for further details about
the data randomizations. In the top panels we plot our SDSS measurement of Ψ(m12| > N) (see Eq. 3), the fractional difference
between the observed gap abundance and that exhibited by the randomized data, (ΦSDSS − Φrand)/Φrand. In the bottom panels
we plot our SDSS measurement of Ψ(L1| > N) (see Eq. 4), the fractional difference between the observed luminosity distribution
of the brightest group galaxies and that in the randomized data set. We show results for a richness threshold of N > 2 in the left
panels, and N > 9 in the right panels.

the group multiplicity function in the N & 20 regime,
Reddick et al. (2012) showed that all SHAMacc models
under-predict wp(rp) on small scales8 (rp . 1h−1Mpc).
However, as we showed in Fig. 2, the small scale cluster-
ing measurements are insensitive to g(N) measurements
in the N & 20 regime.

Taking these results together, we tentatively con-
clude that no SHAM model studied in either of these

works can simultaneously predict small-scale galaxy clus-

tering and the group multiplicity function correctly. While
an exhaustive exploration of the parameter space used in
the SHAM implementation would be required to conclu-
sively establish this result, there is little room to amelio-
rate this mutual inconsistency by adjusting the amount

8 We have independently verified that this behavior occurs in
our mock catalogs, and so we confirm the conclusion drawn
in Reddick et al. (2012) that SHAMpeak models provide a
more accurate prediction for small-scale galaxy clustering than
SHAMacc models.

of scatter in the SHAM implementation: the scatter be-
tween Mr and Vmax must be similar to that in our fidu-
cial model in order to correctly predict Φ(m12), and the
SHAM prediction for g(N) is largely insensitive to the
amount of scatter. Moreover, by repeating our analysis on
catalogs constructed via the Reddick et al. (2012) SHAM
algorithm (Rachel Reddick, private communication), we
have shown that our multiplicity function results persist
regardless of the details of the abundance matching im-
plementation, including their modeling of tidal disrup-
tion. This conclusion is thus likely to be robust to any
conventional refinement of SHAM.9

It is interesting to consider these results in the con-
text of Halo Occupation Distribution (HOD) models,
which describe the probability that a halo of mass Mh is
populated with N galaxies of some type, P (N |Mh). Since

9 Although see § 6.4 for an important caveat related to orphan
galaxies.
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small-scale galaxy clustering is dominated by halos host-
ing only a few galaxies, and since such halos are typically
smaller in mass relative to halos that host a large number
of galaxies, the wp(rp)−based results in Reddick et al.
(2012) demonstrate that SHAMpeak models provide a
more accurate description of the HOD at the low-mass
end.

On the other hand, since dark matter halos host-
ing N & 20 galaxies are typically very massive, our
g(N)−based results demonstrate that SHAMacc mod-
els provide a more accurate description of the HOD at
the high-mass end. Taken together, these results illus-
trate that measurements of the group multiplicity func-

tion and small-scale galaxy clustering probe different re-

gions of HOD parameter space, in keeping with the find-
ings in Berlind & Weinberg (2002). It would therefore be
very interesting to constrain HOD models using joint

measurements of wp(rp) and g(N), although modeling
the covariance between these observables would be highly
non-trivial. Additionally, such an undertaking would re-
quire including the effect that cosmology has on g(N),
particularly in the high mass (large richness) regime. We
leave the investigation of this possibility as a task for
future work.

The possibility remains that both g(N) and wp(rp)
could be correctly predicted together by some previously
unexplored hybrid between the two models, perhaps in
which subhalos are assigned luminosities according to ei-
ther V acc

max or V peak
max , depending on the mass of their host

halo. While such a model would be quite contrived from
a theoretical standpoint, it may nonetheless prove useful
in the construction of mock galaxy catalogs. We leave the
development and exploration of such a model as a task
for future work.

Our multiplicity function results are also intrigu-
ing in the context of a recent study by Watson et al.
(2012), who showed that incorporating stellar mass loss
into SHAM-based models of galaxy formation improves
the predictions for galaxy clustering. Since a subhalo’s
Vmax value at the time of accretion represents an inter-
mediary stage of dark matter mass loss between V peak

max

and V z=0
max , our results point towards the possibility that

g(N) measurements may have the potential to constrain
evolution of stellar mass (both new star formation and
stellar mass loss) in satellite galaxies within group and
cluster halos.

6.3 Magnitude Gap Results

One of the most common statistics used to quantify mag-
nitude gap abundance is the fossil fraction, Ffos, defined
as the fraction of galaxy groups in a given sample with a
magnitude gap m12 ≥ 2. This is the statistic we present
in Figure 8. Our methodology for measuring Ffos differs
considerably from that which has been adopted in much
of the literature on fossil groups. Most significantly, our
group sample has not been limited by an X-ray thresh-
old. Thus it may not be surprising that our measurement
of the fossil fraction is quite different from the commonly
quoted 8− 20% value in Jones et al. (2003).

In their study of the Millennium Gas Simulation,

Dariush et al. (2007) studied the influence of the X-ray
cut on the magnitude gap distribution, finding that fossil
groups that meet the conventional X-ray threshold re-
quirement do not represent a distinct class of objects.
They also found that the variance about the mean m12

value of a group sample steeply increases as the X-ray
threshold defining the sample is relaxed.

Taken at face value, these results imply that the pri-
mary advantage in employing an X-ray threshold is a sim-
ple reduction in the intrinsic noise in the measurement.
On the other hand, abandoning the X-ray threshold rad-
ically increases the sample size of the groups, which, as
evidenced by Fig. 8, results in far more precise measure-
ments of Ffos than that which can be obtained from exist-
ing X-ray group samples. While there has been consider-
able recent progress towards understanding the influence
of an X-ray brightness cut on galaxy group properties,
(e.g., George et al. 2011), X-ray brightness selection ef-
fects remain to be a significant source of systematic un-
certainty in any measurement of the cosmic abundance of
magnitude gaps based on X-ray samples. This is the pri-
mary reason we advocate using an optical galaxy sample
in any detailed study of magnitude gaps based on cur-
rently available data.

Among the existing results in the literature,
the approach taken in Yang et al. (2008) and
van den Bosch et al. (2007) is the most similar to
ours: the authors employ their group-finding algorithm
on a volume-limited, optical sample of galaxies and
simply define m12 to be the difference in r-band magni-
tude between the brightest two group members. Thus
their definition of a fossil is very similar to ours, and
they quote fossil fractions for several different ranges
of group mass, ranging from 0.5% for groups of mass
∼ 1014.5M⊙ to 18 − 60% for groups of mass ∼ 1013M⊙.
Unfortunately, the mass-binning of these values makes
a direct, quantitative comparison impossible because,
unlike the group-finding algorithm in Yang et al. (2008),
our algorithm does not enforce the same assumptions
about dark matter halo properties, and so groups found
with our algorithm are not inextricably connected with
a unique prediction for group mass. Nonetheless, the
fossil fractions quoted in Yang et al. (2008) do appear
to be significantly higher than those we report in
Fig. 8, which may be another sign of the sensitivity
of group properties to the algorithms with which they
are identified. However, we reiterate a point first made
in Paranjape & Sheth (2012) that we have elaborated
upon in § 4.3.2: the natural statistical correlation
between group richness, N, and m12 implies that N is
the appropriate variable to use to condition the group
sample in studies of magnitude gaps, not group mass.

Our study of the magnitude gap statistic is closely
related to two recent investigations of the properties of
brightest group galaxies predicted by the CLF (More
2012; Skibba et al. 2011). Figure 3 of More (2012) demon-
strates quite clearly that Φ(m12) is a sensitive probe of
the properties of the satellite galaxy luminosity function.
Meanwhile, Skibba et al. (2011) showed that the prop-
erties of Φsat(L) strongly influence fBHNC, the fraction
of brightest-halo galaxies that are not central galaxies, a
statistic very closely related to m12. These results suggest
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that the magnitude gap statistic can be exploited to pro-
vide constraints on the treatment of Φsat(L) in the CLF.
We intend to explore this possibility in future work.

Recently, Proctor et al. (2011) claimed that the low
richness of the ten fossil groups they studied indicates a
problem for the standard scenario of fossil group forma-
tion. In particular, Proctor et al. (2011) argued that the
fact that their fossil groups are under-rich at all observed
luminosities is difficult to understand within the stan-
dard theoretical framework for the formation and evolu-
tion of fossil systems. Our results are a direct refutation
of this claim. First, one should expect that groups with a
large magnitude gap should typically be low-richness sys-
tems, an expectation that is highlighted in Fig. 6. Second,
the magnitude gap abundance and fossil fraction exhib-
ited by our fiducial mock catalog constitutes the simplest
prediction for these statistics that is consistent with the
standard theoretical framework for predicting fossil abun-
dance, namely ΛCDM. We have shown that the predic-
tions of this standard framework are in good agreement
with the data. We thus find no evidence that the abun-
dance or properties of fossil systems presents a problem
for the ΛCDM picture of structure formation.

6.4 Orphan Galaxies

Orphan galaxies are defined as galaxies occupying dark
matter halos with a mass that has fallen below the reso-
lution limit of the simulation; orphans are typically asso-
ciated with subhalos that have experienced strong tidal
forces through their orbital history inside the virial radius
of their host halo. The influence of the orphan popula-
tion has not been accounted for in the construction of our
mock catalogs, but may be relevant to some of our con-
clusions concerning the SHAM model that is preferred by
observations. In this section we discuss how orphans may
influence our results and conclusions.

Recently, Guo et al. (2011) applied a semi-analytic
model of galaxy formation to the Millennium Simula-
tion to demonstrate that the inclusion of orphan galax-
ies is required to accurately predict the number density
profile of galaxies in clusters. Another related result ap-
pears in Watson et al. (2012), who showed that on small
scales the two-point correlation function is affected at
the ∼ 20% level when the Vmax completeness limit of a
simulation changes from 80 km/s to 20 km/s (for refer-
ence, the Bolshoi simulation is complete to ∼ 53 km/s.
Reddick et al. (2012) found that the satellite fraction pre-
dicted by SHAMacc models is too small to correctly pre-
dict small-scale clustering, and used these findings to rule
out SHAMacc models in favor of SHAMpeak models.
However, since Reddick et al. (2012) did not model the
orphan population, and since including orphans will in-
crease the number of subhalos in the mock catalog and
thereby boost the satellite fraction, it is possible that the
inclusion of an orphan population would bring SHAMacc
models into better agreement with galaxy clustering mea-
surements.10 These results motivate the treatment of or-

10 Although see Appendix B of Reddick et al. (2012) for their
tests of resolution effects.

phans in precision studies of the galaxy-dark matter con-
nection, and suggests that small-scale clustering may also
be sensitive to the orphan population.

One approach to this problem appears in
Moster et al. (2010), who model the effect of orphan
galaxies by following the evolution of the most-bound
particle in the subhalo after the subhalo falls below the
resolution limit of the simulation. Alternatively, an or-
bital evolution code (e.g., Zentner et al. 2005) might be
employed for the same purpose. However, comparative
tests of the consequences of different modeling choices
would need to be conducted before conclusive statements
could be made concerning the true importance of the
impact of the orphan population. Such an investigation
is beyond the scope of the present work, but we intend
to explore this possibility in a future paper.

The boost to the satellite fraction provided by mod-
eling orphan galaxies may also influence the group mul-
tiplicity function since this would generally lead to an
increase in group richness. However, since SHAMpeak
models already over-predict g(N & 20), this effect is
unlikely to change our qualitative conclusion that our
V peak
max −based mocks generically fail to correctly predict

the abundance of rich groups.
Including the orphan population in our mocks will

tend to boost Φgroup(L), particularly at the faint end,
resulting in a concomitant decrease in faint field galaxies.
As can be seen by inspection of Fig. 3, this is the correct
sense of the change to Φgroup(L) that would be necessary
to bring the SHAMacc prediction into agreement with the
data, but it appears unlikely that agreement between the
SHAMpeak predictions and the data could be brought
about by such a change.

Finally, we consider it unlikely that luminosity gap
statistics will be strongly affected by the treatment of or-
phans because this statistic is dominated by the bright-
est galaxies in the group environment, whereas including
orphans will primarily influence the faintest galaxy pop-
ulation.

6.5 Data Randomization Results

Data randomization techniques similar to the ones we
use in § 5 have been used previously in the literature.
For example, Jones et al. (2003), Dariush et al. (2007),
and Tavasoli et al. (2011), all addressed the connection
between richness and magnitude gap with Monte Carlo
(MC) realizations of a group sample.11 These authors
constructed a population of 104 − 106 Monte Carlo
groups by drawing a fixed number of times from a global
Schechter luminosity function to populate each MC group
with a set of galaxies. In finding that the fraction of their
MC groups with m12 ≥ 2 was lower than that of the
groups in their sample, they each concluded that fossil
groups do not have a “statistical origin.” The authors
interpreted these exercises as evidence that fossil groups

11 See also Vale & Ostriker (2008) and references therein for
early attempts to use the magnitude gap and other statistics to
characterize the “specialness” of the central galaxy luminosity.
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do not arise as extreme realizations of a Poisson pro-
cess based on the global galaxy luminosity function, but
through a dynamical process that preferentially elimi-
nates satellite galaxies with large luminosities, namely
mergers driven by dynamical friction.

More recently, Paranjape & Sheth (2012) applied a
statistical technique first introduced by Lin et al. (2010)
to the galaxy sample we study in this work to construct
a Monte Carlo realization of a group sample with the
same multiplicity function as the observed group sample,
finding that Φ(m12), the abundance of groups as a func-
tion of magnitude gap, is well-described by their Monte
Carlo population. As discussed in § 5 and in Appendix
B, we repeat the Paranjape & Sheth (2012) analysis with
an improved treatment of fiber collisions and reach the
opposite conclusion. We find that the distribution of mag-
nitude gaps is inconsistent with galaxy luminosities be-
ing drawn randomly from a group luminosity function,
Φgroup(L| > N).

Tests based on the Monte Carlo realizations de-
scribed above, including our own, can only determine
whether or not knowledge of the richness of groups to-
gether with a universal galaxy luminosity function pro-
vides sufficient information to predict the magnitude gap
distribution. In § 5 we established that such information
is insufficient. However, from this we can only conclude
that knowledge of some other group property besides
richness is required to predict the observed Φ(m12). This
insufficiency does not, taken by itself, reveal the physical
origin of systems with a large gap.

However, our mock galaxy catalogs provide more
compelling evidence in favor of the dynamical picture
of fossil group origins. The cosmological simulation on
which our mock catalog is based traces the evolution of a
ΛCDM universe from the initial seeds of structure forma-
tion through to the present day, including the dynamical
processes conventionally thought to determine the mag-
nitude gap. The successful prediction for Φ(m12) of our
fiducial mock catalog thus provides strong supporting evi-
dence that the magnitude gap exhibited by galaxy groups
is influenced by dynamical processes. We thus agree with
the conclusions that are commonly drawn in the litera-
ture about the origin of fossil groups (e.g., Dariush et al.
2007), and we have extended these results to the full mag-
nitude gap distribution, rather than just its high-gap tail.

We have generalized these data randomization tech-
niques to test an underlying assumption that is made in
common implementations of the Conditional Luminosity
Function (CLF) formalism. In constructing mock cata-
logs of galaxies from an N-body simulation with the CLF,
each host halo of mass Mh is associated with a “central
galaxy” whose brightness is drawn at random from a log-
normal luminosity function, Φcen(L|Mh), with mean de-
noted by Lc(Mh). The brightness of satellite galaxies is
presumed to be drawn from an independent distribution,
Φsat(L|Mh), which is conventionally modeled as a modi-
fied Schechter function that is, in principle, conditioned
only by Mh. In practice, however, Φsat(L) is commonly
assumed (e.g., Cacciato et al. 2012; More et al. 2012;
van den Bosch et al. 2012) to be sufficiently conditioned
by the brightness of the central galaxy, so that Lc(Mh)
effectively determines the host halo mass-dependence of

the parameters specifying the brightness distribution of
satellite galaxies.

The second data randomization we pursued provides
a direct test of the sufficiency of the assumption that the
conditioning of Φsat(L) can be adequately encoded by
Lc(Mh). We accomplish this by constructing mock re-
alizations of group galaxies by using the luminosity of
the brightest group member as Lc, and drawing bright-
nesses for the remaining members, the satellites, at ran-
dom from the set of all galaxies that are found in groups
whose brightest member is within 0.2dex of Lc. This
mimics the CLF construction method described above,
but is more general because we do not assume an analyt-
ical form for the luminosity functions of either central or
satellite galaxies. Thus this randomization is predicated
upon two assumptions, 1) Φcen(L) ≈ Φ(L1), that is, the
luminosity distribution of central galaxies, in the sense of
the CLF formalism, is accurately approximated by that of
the brightest group galaxies, and 2) that Lcen is the only
property of a galaxy group that is required to describe
the brightness distribution of the group’s satellites.

One possible explanation for the good agreement be-
tween the predicted and randomized m12 distributions
shown with the red points in Figure 9 is that one or both
of the assumptions underlying the data randomization is
incorrect, but that Φ(m12) is a poor statistic to use to
discriminate between competing models of the imprint of
group assembly on galaxy brightness. However, the re-
sults of our first data randomization, plotted in blue dia-
monds, argue against this interpretation. With our mea-
surement of Ψ(m12| > N) in the first data randomization
we have unambiguously ruled out the hypothesis that
group galaxy brightnesses are drawn from a universal lu-
minosity function, demonstrating that the gap distribu-
tion can, indeed, provide valuable information about how
galaxies of a given brightness are arranged into groups.

We argue in favor of a second interpretation: knowl-
edge of the luminosity of the central galaxy is sufficient to

accurately describe the brightness distribution of satellite

galaxies. As far as we know, our confirmation of this un-
derlying assumption of the CLF formalism is the first of
its kind and is unique in at least two respects. First, our
test makes no assumptions whatsoever about the func-
tional form of Φsat(L), but relies on the data itself to
determine the precise form. Second, we make no use of
an N-body simulation, making our test completely inde-
pendent of any possible systematic errors related to, for
example, halo-finding or the fiducial cosmological param-
eter set of the simulation. Our results therefore provide
very general support for this common underlying assump-
tion of the CLF. In closing, we note that we have demon-
strated the success of this formalism by considering m12,
although other analogous tests are possible. For example,
we have not presented results concerning Ψ(Li), i ≥ 2,
nor alternative, gap-based statistics Ψ(mij); we intend
to further develop our data randomization methodology,
exploring these and other statistics, in future work.
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7 BRIEF SUMMARY OF RESULTS

We have used the SDSS Mr19 catalog of galaxy groups to
provide a series of new tests of subhalo abundance match-
ing (SHAM) models for the connection between galaxies
and dark matter halos. We conclude this paper with a
brief summary of our primary results.

(i) We have developed a novel implementation of
SHAM that allows for the rapid construction of a mock
galaxy catalog with a brightness distribution that exactly
matches any desired luminosity function, even after scat-

ter has been included.

(ii) Our fiducial SHAM model, based on abundance
matching on V acc

max with 0.2dex of scatter at the faint end
and 0.15dex at the bright end, accurately predicts the
group multiplicity function, the abundance of groups as
a function of richness, g(N), a new success for the abun-
dance matching prescription.

(iii) The g(N) predictions based on SHAM models us-
ing V peak

max and V z=0
max do not match the observed group

multiplicity function. In fact, these predictions straddle
the V acc

max prediction, so measurements of group multi-
plicity may provide a promising avenue for constraining
models of satellite mass stripping.

(iv) No SHAM model studied in either this work or
Reddick et al. (2012) can simultaneously account for the
observed group multiplicity function and two-point pro-
jected galaxy clustering measurements.

(v) The group galaxy luminosity function Φgroup(L)
and field galaxy luminosity function Φfield(L) are pre-
dicted rather poorly by our mock catalogs, with SHAM
group galaxies being systematically too bright and
SHAM field galaxies systematically too dim. Since our
all-galaxy luminosity function exactly matches that of
the observed catalog by construction, this shortcoming
must be due to an erroneous allocation of galaxies into
group and field environments. We find this to be true in
all of the variations of SHAM catalogs that we explored,
suggesting that this is a generic weakness of the SHAM

prescription.

(vi) Our fiducial SHAM model, as well as models us-
ing V peak

max and V z=0
max with the same amount of scatter,

accurately predicts the observed abundance of groups as
a function of magnitude gap, Φ(m12), suggesting that
the prediction for the relative brightnesses of galaxies in
groups is a new success of the SHAM paradigm.

(vii) The gap abundance prediction is quite sensitive
to the amount of scatter between luminosity and Vmax,
suggesting that Φ(m12) measurements may be a new way
to constrain the scatter in abundance matching.

(viii) The observed gap abundance is inconsistent
with the hypothesis that the gap is determined by
a set of random draws from a universal luminosity
function, contradicting recent claims in the literature
(Paranjape & Sheth 2012).

(ix) The hypothesis that satellite galaxy brightnesses
are drawn at random from Φsat(L|Lcen) is well-supported
by observations of magnitude gaps in the SDSS DR7
groups. We have demonstrated this in a way that is in-
dependent from any assumptions concerning the analytic
form of Φsat(L|Lcen), and without any appeal to numer-
ical simulations. We thus provide very general observa-

tional support for this common assumption of the CLF
formalism.
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APPENDIX A: SHAM METHOD

In this Appendix we give a detailed account of our im-
plementation of the abundance matching procedure to
assign galaxies with r-band luminosities to dark matter
halos. As discussed in § 3, a mapping from the maxi-
mum circular velocity of a halo, Vmax, to an r-band lu-
minosity Mr is provided by the implicit relation given by
Eq. 1. As we demonstrate in § 4, different choices for the
abundance matching parameter (that is, V z=0

max , V
acc
max, and

V peak
max ) result in mock galaxy catalogs with different prop-

erties, and so this choice has important consequences in
the modeling of the galaxy-halo connection. We remind
the reader that we denote mock catalogs constructed by
abundance matching with V z=0

max as “SHAM0”, with V acc
max

as “SHAMacc”, and with V peak
max as “SHAMpeak”, and

that the mock catalog referred to in the text as our fidu-
cial model is a SHAMacc catalog. Since the novel features
of our SHAM implementation method are the same re-
gardless of this choice, throughout this Appendix we sim-
ply refer to the abundance matching parameter as VL.

Our SHAM procedure begins by using Eq. (1) to
match the distribution of luminosities assigned to dark
matter halos and subhalos to the double-Schechter func-
tion fit in Blanton et al. (2005). We refer to these lumi-
nosities as M init

r . SHAM models with scatter between VL

and Mr more successfully describe a variety of astronom-
ical data (see Klypin et al. 2011; Trujillo-Gomez et al.
2011; Watson et al. 2012, and references therein) than
models with no scatter. Accordingly, we introduce scat-
ter as follows. For the ith halo in the catalog, we assign an
independently chosen random variable δM i

r drawn from a
Gaussian distribution of width σi. We use these random
variables to assign new luminosities to the galaxies in the
catalog via M i,init

r → M i,init
r + δM i

r . In our fiducial cat-
alog, we choose σi = 0.5 for all halos, which introduces
roughly 0.2dex of scatter in the galaxy luminosities at the
faint end of the luminosity function and 0.15dex at the
bright end, which is very similar to the level of scatter
used in Trujillo-Gomez et al. (2011). We refer to these
brightnesses as M scatter

r .
Our goal is to construct a mock catalog with a lu-

minosity function that exactly matches that of the Mr19
catalog, rather than the Blanton et al. (2005) luminosity
function. To accomplish this, we rank-order all the ha-
los and subhalos in the simulation by their luminosities
M scatter

r . Because of the scatter we have introduced, this
ordering of the halos is non-monotonic in VL.

Rank-ordering the observed Mr19 galaxies by their
luminosity naturally provides a map from cumulative
number density ng(< Mr) to Mr. We use this mapping
to associate r-band magnitudes to halos in Bolshoi. The
ith halo in the list, ordered as described above, is as-
signed a rank-ordered cumulative number density nrank ≡
i/VBolshoi, where VBolshoi = (250h−1Mpc)3. We use nrank

to assign luminosities to the halos by linear interpola-
tion of the map from ng(< Mr) to Mr. Halos with rank-
ordered cumulative number densities larger than ng(<
Mr = −19) are discarded.12 This procedure gives a lumi-
nosity function of the mock galaxies that exactly matches

12 There are only two out of ∼ 105 Bolshoi halos with rank-

the Mr19 luminosity function, and which includes scat-
ter in the mapping between VL and Mr. The reason for
the initial abundance match to the Blanton et al. (2005)
analytical fit is simply that the exact luminosity function
of galaxies dimmer than Mr = −19 that are located in
the spatial region occupied by the Mr19 galaxies is not
known.

APPENDIX B: EFFECT OF FIBER

COLLISIONS ON MAGNITUDE GAP

MEASUREMENTS

Fiber collisions often occur when two or more galaxies
are located within an angular separation of 55 arcseconds
from one another. This is the minimum angular separa-
tion permitted by the plugging mechanism of the optical
fibers used in the SDSS spectral measurements. When
this occurs, the fiber is positioned to measure the spec-
trum of a randomly chosen galaxy from the two or more
“fiber-collided” galaxies.

In this appendix, we discuss how the treatment of
fiber collisions influences magnitude gap statistics. There
are two separate issues that are relevant to this discus-
sion. First, one must decide whether or not fiber-collided
galaxies should be included in the m12 measurement of a
galaxy group. Second, one must decide what brightness
is assigned to the fiber-collided galaxies. We argue below
that, for the purpose of measuring magnitude gaps, one
should either (1) exclude fiber-collided galaxies from the
m12 definition, or (2) include fiber-collided galaxies, but
assign them r-band absolute magnitudes according to the
prescription we adopt in the catalog used in this paper.
Thus when only a catalog with a treatment of fiber col-
lisions that differs from ours is available (as was the case
for Paranjape & Sheth (2012), hereafter PS12), one must
exclude fiber-collided galaxies in order to obtain unbiased
m12 measurements. Below we present our supporting ar-
gument for these recommendations. Throughout this ap-
pendix we focus on comparing the fiber collision method-
ology used in our paper to that in PS12 because we reach
different conclusions than they do based on the same sta-
tistical test, and we trace this difference to fiber collisions.

In the DR3-based group catalog used in PS12, the
remaining galaxies of a fiber-collided set are assigned the
redshift and brightness of the randomly-chosen galaxy.
In the DR7-based group catalog that we utilize in this
study, only the redshift of the randomly-chosen galaxy is
assigned to the remaining fiber-collided galaxies. The ab-
solute r-band magnitudes of the remaining galaxies in a
fiber-collided set are inferred from their apparent r-band
magnitudes using the redshift of the randomly-chosen,
spectroscopically-observed galaxy. For convenience, we
will refer to the choice to assign both the redshift and the
r-band absolute magnitude of the spectroscopically mea-
sured galaxy to the fiber-collided galaxy as “the DR3

ordered cumulative number densities less than the value of
ng of the brightest Mr19 galaxy. These halos are not reas-
signed a new luminosity, but keep the Mscatter

r value assigned
to them by the initial (post-scatter) abundance match to the
Blanton et al. (2005) luminosity function.
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treatment of fiber collisions”, and the choice to assign
only the redshift of the observed galaxy to the fiber-
collided galaxy as “the DR7 treatment”. We emphasize,
however, that this is a post-processing choice and that
either data set could be treated in either fashion.

The magnitude gap measurements presented in PS12
differ from ours in two important respects. First, we
define m12 to be the r-band magnitude difference be-
tween the two brightest non-fiber-collided members of the
group, whereas PS12 use fiber-collided galaxies in their
m12 definition. Second, the catalog used in PS12 employs
the DR3 treatment of fiber collisions, while we use a cat-
alog based on the DR7 treatment.

When using a catalog with the DR3 treatment of
fiber collisions and including fiber-collided galaxies in the
definition of m12, all groups with a member that is fiber-
collided with the brightest member are assigned magni-
tude gaps precisely equal to zero. This is a relatively com-
mon scenario since brightest group galaxies are typically
found in the densest regions of the sky. Thus with these
conventions there is an artificial “spike” in the magnitude
gap distribution at m12 = 0. In our magnitude gap mea-
surements, the m12 = 0 spike does not occur.13 In addi-
tion to incorrectly enhancing the abundance of m12 = 0
groups, this treatment of fiber collisions also results in
an abundance of large- and moderate-gap groups that is
systematically too low, since 100% of such groups with
a galaxy that is fiber-collided with the brightest member
are incorrectly removed from large- and moderate-gap
bins and assigned m12 = 0.

We have performed a simple test of our claim that
excluding fiber-collided galaxies from the m12 definition
yields unbiased magnitude gap measurements. We pro-
ceed as follows. Denoting the luminosity function exhib-
ited by the galaxies in the Mr19 galaxy group catalog
by Φglobal(L), we begin by assigning new r-band magni-
tudes to each galaxy in the catalog by randomly draw-
ing luminosities from Φglobal(L). These randomly selected
luminosities will be treated as the “true” brightnesses
throughout this exercise. In this fashion, we construct a
new, Monte Carlo group catalog in which the galaxies
have randomly selected brightnesses, but we retain the
information from the Mr19 catalog about each galaxy’s
group membership and fiber collision (where relevant).
To be clear, nowhere in this exercise do we use the mea-
sured brightnesses of the galaxies (except , of course, in
the construction of Φglobal(L).)

For each group in the Monte Carlo catalog, we mea-
sure the magnitude gap m12 in three different ways:

(i) We use each galaxy’s randomly assigned magni-
tude to measure m12, including the fiber-collided mem-
bers of the group. The resulting gap distribution Φ(m12)
is treated as the “true” distribution since in this exercise
the randomly assigned brightnesses are the true bright-
nesses.

(ii) As above, we include all members of the group

13 Although we note that when we run our analysis pipeline
on the DR3 data set and include fiber-collided galaxies in the
m12 measurement, we recover the Paranjape & Sheth (2012)
results in full quantitative detail.
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Figure 10. Monte Carlo test of the influence of fiber collisions

on the magnitude gap distribution, Φ(m12). The fractional
difference between the “true” (Monte Carlo) and “measured”
gap abundance is plotted for two different methods of treating
fiber collisions. Method 1, plotted with red asterisks, includes
fiber-collided galaxies in the m12 measurement, and employs
“the DR3 treatment” of fiber collisions, resulting in an erro-
neous “spike” at m12 = 0 that biases the gap measurement.
The Method 1 measurement of Φ(m12) differs from the true
distribution at 4.8σ. Method 2, our method, plotted in ma-
genta triangles, excludes fiber-collided galaxies in measuring
m12 and faithfully recovers the true gap distribution.

in the m12 measurement, but only after first assigning
to each fiber-collided member the luminosity of its non-
fiber-collided counterpart. This mirrors the DR3 treat-
ment of fiber collisions together with the definition for
m12 adopted by Paranjape & Sheth (2012). We will refer
to this as “Fiber Collision Method 1”.

(iii) We use each galaxy’s randomly assigned magni-
tude to measure m12, excluding the fiber-collided mem-
bers of the group. This mirrors the methodology we adopt
in this paper. We will refer to this as “Fiber Collision
Method 2”.

In Figure 10, we plot the fractional difference be-
tween the true (Monte Carlo) Φ(m12) and that which
is measured by the alternate methods (ii) and (iii), de-
scribed above. Results pertaining to the m12 measure-
ment using Fiber Collision Method 1 appear in red as-
terisks; results obtained via Fiber Collision Method 2 are
plotted in magenta triangles.

In the lowest Φ(m12) bin, the effect of the m12 = 0
“spike” that occurs in Method 1 is quite visible. The
Φ(m12) measurement obtained via Method 1 differs from
the true (Monte Carlo) distribution at a level of 4.8σ. On
the other hand, there is virtually zero statistically signif-
icant difference between the Method 2 measurement of
Φ(m12) and the true (Monte Carlo) distribution. More-
over, it is also evident that the m12 = 0 spike causes
Φ(m12) to be systematically too low in all of the other
bins. Even when the lowest m12 bin is excluded from the
χ2 test, the difference between the true and Method 1-
measured Φ(m12) persists at a level of 2σ.

Our Monte Carlo exercise demonstrates the follow-
ing: measuring the magnitude gap of a galaxy group
from the non-fiber-collided members yields an unbiased
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measurement of the group’s true m12. This justifies the
methodology we have adopted in this paper. The MC
additionally shows that, when including fiber-collided
galaxies in m12 measurements, the DR3 treatment of
fiber collisions results in biased measurements of the mag-
nitude gap. These differences entirely account for the dif-
ferences between the conclusions of this paper and those
drawn in PS12. In particular, with our unbiased mag-
nitude gap measurements we conclude that the global
distribution Φ(m12) is inconsistent with the distribution
that results from random drawing galaxy brightnesses
from a universal luminosity function (see § 5).

We note that Paranjape & Sheth (2012) were careful
to point out that their tests based on two-point statistics
were inconsistent with their conclusions concerning the
random draw hypothesis. Our results in this appendix
demonstrate that fiber collisions were the culprit for this
inconsistency.

We conclude this appendix by pointing out that it
is possible to include fiber-collided galaxies in m12 mea-
surements and still obtain unbiased results, but one must
use a catalog that is based on the DR7 treatment of fiber
collisions, not the DR3 treatment. The evidence for this
is simple: using our Mr19 SDSS group catalog, which
employs the DR7 treatment, we measure same distri-
bution Φ(m12) whether or not we include fiber-collided
galaxies in our gap measurements. Since we have al-
ready shown that excluding fiber-collided members re-
sults in unbiased m12 measurements, it follows that if
fiber-collided galaxies are assigned luminosities accord-
ing to the DR7 treatment, including these galaxies in gap
measurements also results in an unbiased m12. A group
catalog constructed from SDSS DR3 data that is based
on the DR7 treatment of fiber collisions can be found at
http://lss.phy.vanderbilt.edu/groups. An update to this
catalog that is based on DR7 data will be presented in a
forthcoming paper.

APPENDIX C: TESTS OF MULTIPLICITY

FUNCTION SYSTEMATICS

One of the primary conclusions of § 4.1 is that SHAMpeak
models overestimate the abundance of groups with N &

20 members. In this appendix we explore the influence of
two possible systematics that may influence this result.
First, effects due to the edges of the SDSS survey that
are not present in the periodic Bolshoi box may affect
measurements of group multiplicity. If the centroid of a
group of galaxies happens to be near an edge of the survey
volume of our Mr19 SDSS galaxy sample, the galaxies
beyond the survey edge will not be included as group
members. This would artificially deplete the richness of
all such groups.

To estimate the magnitude of the influence of edge
effects, we have excluded groups whose center is within
1h−1Mpc of the nearest survey edge and recomputed
g(N). This cut excludes 14% of the groups in our sam-
ple, and so we estimate the effective volume of this re-
duced sample as being 86% of the original survey vol-
ume. We find that the differential multiplicity function
of the reduced sample is within 1σ of the dg(N)/d logN

of the original sample, with fractional differences of
∆dg/d logN < 18% in all richness bins. Meanwhile, the
SHAMpeak discrepancy for the multiplicity function pre-
diction (see Fig. 1) differs at the level of 50 − 80% from
the observed g(N). We conclude that it is unlikely that
edge effects account for the erroneous prediction of the
multiplicity function in SHAMpeak models.

A second possible systematic in our analysis could
come from fiber collisions. In our mock galaxy sample,
we have only introduced fiber collisions after identifying
mock groups. Our procedure was designed to account for
the influence of fiber collisions on magnitude gaps, but
it does not account for any possible influence that fiber
collisions have on the multiplicity function.

We estimate the impact that fiber collisions could
have on the group multiplicity function by first exclud-
ing fiber-collided galaxies from our Mr19 SDSS galaxy
sample and then identifying groups on the reduced set
of galaxies. As ∼ 5% of galaxies in the Mr19 sample are
fiber-collided, we estimate the effective volume of the re-
duced data set as 95% of the original effective volume.
In this case, the fractional differences are at a level of
∆dg/d logN < 15% in all richness bins. We similarly
conclude that it is unlikely that fiber collisions account
for the erroneous prediction of the multiplicity function
in SHAMpeak models.
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