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Impedances and wake functions for non-ultrarelativistic beams in circular chambers

Alexandru Macridin, Panagiotis Spentzouris, James Amundson
Fermilab, P.O. Box 500, Batavia, Illinois 60510, USA

We obtain general expressions for the longitudinal and the transverse impedances in circular
chambers, valid for all types of walls as long as the wall surface impedance can be defined. We
numerically calculate the resistive-wall wakes for metallic and laminated chambers and discuss the
validity of the ultrarelativistic approximation for non-ultrarelativistic beams. We find that the
ultrarelativistic approximation fails to describe the wake effects at distance smaller than ≈ 0.1 m
for chambers with radius of a few centimeters at small and intermediate γ. In this small distance
region, the non-ultrarelativistic wake is nonzero ahead of the source and is strongly overestimated by
the ultrarelativistic approximation behind the source. Non-ultrarelativistic beams yield transverse
wake terms which couple with the displacement of both the source and the affected particles. The
latter wake term is of order O(γ−2) and acts in the small distance region both ahead of and behind
the source.

I. INTRODUCTION

Wakefields are a leading cause of losses and instabilities in high intensity accelerators. The calculation of non-
ultrarelativistic wakefields and impedances is of major importance since there are a large number of machines, espe-
cially at the beginning of the acceleration cycle, which run beams with velocity significantly smaller than the speed
of light.
There is a vast literature addressing the calculation of wakefields and impedances in accelerators, see for example

Ref. [1–3] and references therein. Most of the studies consider ultrarelativistic beams. Nevertheless, in the recent
years, a number of papers have recognized the importance of non-ultrarelativistic effects [3–9]. These papers calculate
the monopole longitudinal and the dipole transverse impedance for metallic or multilayer circular chambers. General
expressions for the impedance in multilayer chambers are calculated in Ref [8, 9]. Approximate analytical expressions
for the metallic chamber wake functions are given in [5].
In this paper we provide general expressions for longitudinal and transverse impedances in circular chambers,

valid for all types of walls as long as the wall surface impedance can be defined. While in most of the previous
investigations the impedance is expressed as function of wall conductivity or skin penetration depth, we express
our results as function of wall surface impedance. Similar expressions for the impedance as function of wall surface
impedance are also given by Hahn [9]. The wall’s electrical properties are contained implicitly in the wall surface
impedance which can be determined separately for each specific problem and does not constitute the subject of
this paper. In many cases, such as the thick metallic wall [10, 11], thin metallic wall [10], multilayered wall [9] or
laminated structure [12] the wall surface impedance is already known. For example, by plugging into our equations
the laminated chamber surface impedance, we can immediately calculate the non-ultrarelativistic impedance for
laminated structures. Note that, since the laminated chambers walls are not made by a continuum electrical medium
characterized by a well defined conductivity, the formalism of [4–8] cannot be applied in this case. We find that, in
addition to the longitudinal impedance, the monopole channel also yields a transverse impedance. This term, which
vanishes in the ultrarelativistic limit, had not previously appeared in the literature to our knowledge.
Complex numerical simulations require the knowledge of the space-time wake functions rather than of the frequency-

dependent impedance. It is especially useful to have the resistive-wall wakes which originate only from the the wall
finite resistivity, since in most algorithms (SYNERGIA [13], IMPACT [14], ORBIT [15]) the direct space charge
wake and the wake originating from the ideal image charges and currents are already implemented by employing
sophisticated Poisson solvers. The resistive-wall wakes are exactly the extra effects which should be added to these
simulations. Here we numerically calculate the resistive-wall wake functions for metallic and laminated chambers,
then investigate the validity of the ultrarelativistic approximation for non-ultrarelativistic beams.
We find that the ultrarelativistic approximation to non-ultrarelativistic beams fails to accurately describe wake

effects at distances smaller than ≈ 0.1 m for chambers with radius of a few centimeters for small and intermediate γ.
This small distance region, which is roughly proportional to b

γ
, extends both ahead of and behind the source. Unlike

the ultrarelativistic wake, which vanishes in front of the source, we find for the non-ultrarelativistic case a repulsive
wake ahead of the source, a consequence of the fact that the electromagnetic field propagates faster than the source
itself. In the small distance region behind the source, the ultrarelativistic approximation strongly overestimates
the wake fields. Aside from the familiar transverse wake term which couple to the source particle displacement,
non-ultrarelativistic beams in circular chambers are also characterized by a transverse wake which couples with the
displacement of the affected particle. This transverse wake term is O(γ−2) and acts in the small distance region both
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ahead of and behind the source.
The paper is organized as follows. In Sec.II we introduce the general definitions of the quantities used throughout

the paper. The longitudinal and transverse impedances and wakes are calculated in Sec.III. The validity of the
ultrarelativistic approximation is also discussed in this section. We end with a summary and conclusions in Sec.IV.

II. GENERAL FORMALISM

The wake functions describe the effect of the electromagnetic field created by a particle moving through an acceler-
ator beam pipe upon the other particles in the beam. Consider a beam flowing with velocity βc along the z-direction
in a circular pipe. If the distance between the source and the affected particle is z, the momentum of the affected
particle traversing a structure of length L will be modified by [16, 17]:

βc∆pz = −qQW
||
0 (z) (1)

βc∆px = −qQ(W⊥
1 (z)X +W⊥

0 (z)x) (2)

βc∆py = −qQ(W⊥
1 (z)Y +W⊥

0 (z)y) . (3)

Here Q (q) and (X,Y ) ((x, y)) represent the charge and transverse displacement of the source (affected) particle
respectively. || and⊥ denote the longitudinal and the transverse directions. The higher-order terms in the displacement
are neglected.
Note that, in the ultrarelativistic limit, the second term describing the transverse kick proportional to the affected

particle displacement, W⊥
0 , is zero. For non-ultrarelativistic beams, as it will be shown, it is of order O(γ−2).

The impedance and the wake functions are related via Fourier transforms,

W
||
0 (z) =

1

2π

∫ ∞

−∞
dωZ

||
0 (ω)e

−j ω
βc

z (4)

W⊥
0,1(z) =

j

2π

∫ ∞

−∞
dωZ⊥

0,1(ω)e
−j ω

βc
z . (5)

It is convenient to distinguish two different contributions to the wake field

W = W∞ +W σ . (6)

W∞ is due to the direct space charge contribution together with the contribution of the image charges and image
currents in the wall as if the wall were a perfect conductor, and is obtained by setting the wall resistivity to zero. W σ

is the resistive-wall wake due to the wall’s finite resistivity. This separation is especially useful in complex numerical
beam dynamics simulations. In most codes [13–15] W∞ is already taken into account by considering the effects of
the electromagnetic field obtained by numerically solving the Poisson equation in chambers with ideally conducting
walls. The remaining contribution of the wake field, described by the resistive-wall wake W σ, has to be incorporated
separately.
We are going to derive the impedance functions by solving the Maxwell’s equations in the frequency domain and

then obtain the wake functions via Fourier transforms. Because one of the main goals of this paper is to address
the validity of using the ultrarelativistic impedance in the calculation of the non-ultrarelativistic wake function, we
define, for the purpose of comparison,

W̃
||
0 (z, γ) =

1

2π

∫ ∞

−∞
dωZ

||
0 (ω, γ = ∞)e−j ω

βc
z (7)

W̃⊥
0,1(z, γ) =

j

2π

∫ ∞

−∞
dωβZ⊥

0,1(ω, γ = ∞)e−j ω
βc

z . (8)

Thus the ultrarelativistic approximate wake function W̃ is obtained after a Fourier transform with the modulation
factor e−j ω

βc
z of the ultrarelativistic impedance. In the definition of the transverse wake W̃⊥ an additional factor of

β is included in front of the ultrarelativistic impedance, since in the first order the transverse impedance at finite γ
is approximated with the ultrarelativistic impedance multiplied by a factor of β [18].

The electromagnetic field is related to the electric potential Φ and the magnetic vector potential ~A by

~E = −∇Φ− ∂ ~A

∂t
(9)

Z0
~H = c∇× ~A , (10)
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where Φ and ~A satisfy

∇2φ− 1

c2
∂2Φ

∂t2
= − ρ

ǫ0
(11)

∇2 ~A− 1

c2
∂2 ~A

∂t2
= −µ0

~j (12)

∇ ~A+
1

c2
∂φ

∂t
= 0 . (13)

Eq. 13 is the Lorentz gauge condition. The potentials can undergo a gauge transformation

~A′ = ~A−∇χ (14)

Φ′ = Φ +
∂χ

∂t
(15)

where the gauge field should satisfy

∇2χ− 1

c2
∂2χ

∂t2
= 0 . (16)

The source charge and current are moving along the z-direction with velocity βc. Thus

ρ, jz ∝ δ(z − βct) ∝ ej(ωt−kz) (17)

where k = ω
βc
. We are looking for synchronous solutions

~E(x, y, z, t) = ~E(x, y)ej(ωt−kz) (18)

~H(x, y, z, t) = ~H(x, y)ej(ωt−kz) . (19)

The longitudinal (transverse) impedance is proportional to the longitudinal (transverse) force acting on the affected
particle. According to the definition of the wake function in Eq. 1 (Eqs. 2, 3) it should be defined as

Z
||
0 (ω) = −Eσ

z (ω)|X,Y,x,y=0

Qβc
(20)

Z⊥
0 (ω) = −

∂Fx

∂x
(ω)|X,Y,x,y=0

jqQβc
(21)

Z⊥
1 (ω) = −

∂Fx

∂X
(ω)|X,Y,x,y=0

jqQβc
. (22)

where Fx is the transverse Lorentz force along x direction acting on the affected particle.
The calculation of the impedance reduces to the calculation of the electromagnetic field inside the vacuum chamber.

The electromagnetic field is determined by the boundary conditions at the chamber walls. In general this also requires
the calculation of the field inside the walls and then imposing the field continuity conditions at the wall boundary,
at is done in [4–8]. We find it convenient to express the field inside the vacuum chamber as function of the surface
wall impedances. The surface wall impedances are defined as ratios of the transverse electric field and the transverse
magnetic field at the wall. Of course, the calculation of the surface wall impedances requires the calculation of the
field inside the wall. However, the advantage is that we separate the problem into two distinct parts. The first part,
which is the focus of this paper, is to write the impedance as function of the wall surface impedance. This part
does not care about the wall’s electrical properties; it only assumes a chamber with circular geometry. The second
part is the calculation of the wall surface impedance, which can be addressed separately for each specific problem.
However, for many types of accelerator chambers (e.g. thick metallic wall [10], thin metallic wall [10], layered wall [9],
laminated wall [12], etc.) there are well known solutions for the surface impedance which can just be plugged in the
wake formalism described in this paper.

III. CALCULATION OF THE IMPEDANCE AND THE WAKE

Consider a particle which moves through a circular chamber of radius b with an offset r = a in the Θ = 0 direction
from the central axis. In cylindrical coordinates, (r, θ, z), the charge density can be written as [19]

ρ(r, θ, z, t) =
∑

m=0

ρm
δ(r − a)

a
cosmθ ej(ωt−kz) (23)
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where

ρm =
Im

πam(1 + δm,0)
(24)

Im = ρam = Qam . (25)

The potentials can be written as

[φ(r, θ, z, t), Ar(r, θ, z, t), Az(r, θ, z, t)] =
∑

m=0

[φm(r), Arm(r), Azm(r)] cosmθ ej(ωt−kz) (26)

Aθ(r, θ, z, t) =
∑

m=0

Aθm(r) sinmθ ej(ωt−kz) . (27)

For a particular multipole moment number m, the equations 11, 12, 13 become

d2φ

dr2
+

1

r

dφ

dr
−
(

m2

r2
+ k2r

)

φ = − ρm

ǫ0

δ(r−a)
a

(28)

d2Ar

dr2
+

1

r

dAr

dr
−
(

m2 + 1

r2
+ k2r

)

Ar −
2m

r2
Aθ = 0 (29)

d2Aθ

dr2
+

1

r

dAθ

dr
−
(

m2 + 1

r2
+ k2r

)

Aθ −
2m

r2
Ar = 0 (30)

d2Az

dr2
+

1

r

dAz

dr
−
(

m2

r2
+ k2r

)

Az = −β
c
ρm

ǫ0

δ(r−a)
a

(31)

with kr = k
γ
, where for clarity we drop the subscript m for the potentials. The Lorentz gauge reads

dAr

dr
+

Ar

r
+

m

r
Aθ − jk

(

Az −
β

c
φ

)

= 0 , (32)

while gauge fields obeys

d2χ

dr2
+

1

r

dχ

dr
−
(

m2

r2
+ k2r

)

χ = 0 . (33)

The general solution for the homogeneous equation of type Eq. 33 is

χ(r) = c1Km(krr) + c2Im(krr) , (34)

where Im and Km are the modified Bessel functions of the first and the second kind, respectively, and of order m. c1
and c2 are arbitrary constants.
The electric and magnetic fields can be expanded as

[Er(r, θ, z, t), Ez(r, θ, z, t), Hθ(r, θ, z, t)] =
∑

m=0

[Erm(r), Ezm(r), Hθm(r)] cosmθ ej(ωt−kz) (35)

[Eθ(r, θ, z, t), Hr(r, θ, z, t), Hz(r, θ, z, t)] =
∑

m=0

[Eθm(r), Hrm(r), Hzm(r)] sinmθ ej(ωt−kz) . (36)

By again omitting the subscript m, one has

Er = −dφ

dr
− jkβcAr (37)

Eθ =
m

r
φ− jkβcAθ (38)

Ez = jk (φ− βcAz) (39)

Z0Hr = c
(m

r
Az + jkAθ

)

(40)

Z0Hθ = c

(

−jkAr −
dAz

dr

)

(41)

Z0Hz = c

(

dAθ

dr
+

Aθ

r
+

m

r
Ar

)

. (42)
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The transverse Lorentz forces are

Fr

q
= Er − βZ0Hθ = − d

dr
(Φ− βcAz) = j

1

k

dEz

dr
(43)

Fθ

q
= Eθ + βZ0Hr =

m

r
(Φ− βcAz) = −j

m

k

Ez

r
. (44)

In the following sections we are going to separately treat the monopole (i.e. m = 0) and dipole (i.e. m = 1) cases.
The higher-order multipole channels yield wake effects of second or higher order in the particle displacement which
are beyond the scope of this investigation.

A. Monopole channel, m = 0

1. Electromagnetic field solution

In this channel Aθ ∝ sinmθ = 0. The potentials satisfy

d2φ

dr2
+

1

r

dφ

dr
− k2rφ = − ρ

2πǫ0

δ(r−a)
a

(45)

d2Ar

dr2
+

1

r

dAr

dr
−
(

1

r2
+ k2r

)

Ar = 0 (46)

Aθ = 0 (47)

d2Az

dr2
+

1

r

dAz

dr
− k2rAz = −β

c
ρ

2πǫ0

δ(r−a)
a

(48)

dAr

dr
+

Ar

r
− jk

(

Az −
β

c
φ

)

= 0 . (49)

The radial component of the vector potential Ar is

Ar(r) = c1K1(krr) + c2I1(krr) . (50)

By applying a gauge transformation with χ = − c1
kr
K0(krr) +

c2
kr
I0(krr), and using the Bessel functions properties

K ′
0 = −K1 and I ′0 = I1, one can set Ar = 0. The Lorentz condition, Eq. 49, becomes

Az =
β

c
φ . (51)

In order to determine the electric potential φ, note that the solution to the equation

d2G0

dr2
+

1

r

dG0

dr
− k2rG0 = −δ(r − a)

a
(52)

is

G0(r, a) =

{

K0(kra)I0(krr), r < a
I0(kra)K0(krr), r ≥ a .

(53)

The justification uses the Bessel functions wronskian properties

I0(x)K
′
0(x) − I ′0(x)K0(x) =

1

x
(54)

and is similar to the one given in [3].
The solution for the potentials is therefore

φ(r) =
ρ

2πǫ0
G0(r, a) + a0I0(krr) (55)

Ar(r) = 0 (56)

Aθ(r) = 0 (57)

Az(r) =
β

c
φ(r) . (58)
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We write the constant a0 as a function of the wall surface impedance, defined as

Rz = −Ez

Hθ

|r=b (59)

Using Eq. 37 and Eq. 41, for r > a one gets

Ez(r) = j
kr

γ
φ = j

kr

γ

[

ρI0(kra)

2πǫ0
K0(krr) + a0I0(krr)

]

(60)

Z0Hθ(r) = −β
dφ

dr
= βkr

[

ρI0(kra)

2πǫ0
K1(krr) − a0I1(krr)

]

(61)

Eqs. 59, 60 and 61 imply

a0 = −ρI0(kra)

2πǫ0

K0(krb)− jβγRz

Z0
K1(krb)

I0(krb) + jβγRz

Z0
I1(krb)

. (62)

For an ideally conducting wall (Rz = 0),

a∞0 = −ρI0(kra)

2πǫ0

K0(krb)

I0(krb)
, (63)

while the electric field is given by

E∞
z (r) = j

kr

γ

ρ

2πǫ0

[

G0(r, a)−
K0(krb)

I0(krb)
I0(krr)I0(kra)

]

(64)

in agreement with Eq. 4.1 of [3].
The resistive-wall impedance is produced by the electric field

Eσ
z (r) = Ez(r) − E∞

z (r) = −ρI0(kra)

2πbǫ0
β
Rz

Z0

1

I0(krb)
[

I0(krb) + jβγRz

Z0
I1(krb)

]I0(krr) (65)

where the wronskian property of the Bessel functions, Eq. 54, was used. Note that the expressions of the electromag-
netic field agree with the ones derived in [9].

2. Impedance

The monopole longitudinal impedance is

Z
||σ
0 = −Eσ

z (r = 0, a = 0)

ρβc
=

Rz

2πb

1

I0(krb)
[

I0(krb) + jβγRz

Z0
I1(krb)

] . (66)

The monopole transverse impedance is given by the derivative of the radial transverse force with respect to the
affected particle displacement

Z⊥σ
0 = −

∂Fr

∂r
(r = 0, a = 0)

jqρβc
= −

∂2Eσ
z

∂r2
(r = 0, a = 0)

kρβc
. (67)

Since I ′′0 (0) =
1
2 ,

Z⊥σ
0 = Z

||σ
0

k

2γ2
. (68)
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FIG. 1: Monopole longitudinal impedance for a metallic pipe (a and b) (σ = 2.3 × 106Ω−1m−1, µr = 100) and a laminated
chamber (c and d). (The specific parameters are the same as in [12].) The solid (dashed) lines represent the real (imaginary)
part of the impedance. For the metallic pipe, the imaginary and real parts of the impedance are equal in the frequency domain
shown. The difference between the impedance and the ultrarelativistic impedance increases with increasing frequency and pipe

radius. In the insets, the relative difference
Z

||
0
(γ=∞)−Z

||σ
0

(γ)

Z
||
0
(γ=∞)

is shown. The dashed green line represents the second-order

correction to the ultrarelativistic limit for γ = 1.42, which is equal to
k2
rb

2

2
according to Eq. 71. At large frequency the second-

order approximation overestimates the impedance. At 1GHz, for both metallic pipe and laminated chamber with radius b = 3
cm (b = 6 cm), we find ≈ 18% (≈ 50%) relative difference between the γ = 1.42 ultrarelativistic impedances.

3. Comparison with previous calculations and discussion of the ultrarelativistic approximation

In the frequency region of interest for beam dynamics kb
γ

≪ 1, the small argument approximation for the Bessel

functions, I0(x) ≈ 1 + x2

4 and I1(x) ≈ x
2 + x3

16 , can be used. Up to O(γ−2) the impedance can be written as

Z
||σ
0 =

Rz

2πb

1 + k2b2

2γ2 + jβRz

Z0

(

kb
2 + 3k3b3

16γ2

) . (69)

In the ultrarelativistic limit, γ → ∞, one gets

Z
||σ
0 =

Rz

2πb

1

1 + jRz

Z0

kb
2

(70)

in agreement with the ultrarelativistic derivation of [12, 20].
If only the first order terms is Rz are considered in Eq. 69,

Z
||σ
0 ≈ Rz

2πb

1

1 + k2b2

2γ2

≈ Rz

2πb

(

1− k2rb
2

2

)

, (71)

in agreement with [5]. Note that the impedance in this approximation exhibits poles at k = ±j
√
2γ
b

. This implies

that the corresponding wake function is nonzero for positive z and decays as exp(−
√
2γ
b

z).



8

-0.2 -0.1 0 0.1
z(m)

W
0||σ

, W
0||σ

   
/(

Z
0L

)(
m

-1
s-1

10
7 )

W
0

||σ

W
0

||σ

-0.2 -0.1 0 0.1
z(m)

0

20

40

Zimmermann et al

-6

-4

-2

0

2

4
a) b)

b=3 cm b=6 cm

b=3 cm b=6 cm

c) d)

γ=1.42 γ=1.42

~

~

metallic wall

laminated chamber laminated chamber
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FIG. 2: Monopole longitudinal wake W
||σ
0 (z) (black) and the ultrarelativistic approximate wake W̃

||σ
0 (z)(red) for metallic walls

(a and b) and laminated chambers (c and d) for γ = 1.42. For the pipe radius of b = 3 cm (b = 6 cm) and at distances smaller
than 0.1 m (0.2 m), both behind and in front of the source, the ultrarelativistic approximation fails to describe the wake. The
approximation of Zimmermann et al for the metallic wall, (Eq. 64 in Ref [5], dashed blue) differs from our results.

In the following figures we show plots for two different types of vacuum chambers. One chamber type has a thick
metallic wall with the well-known relation for the wall surface impedance, Rz = 1+j

δσ
[11, 20], where δ is the skin

penetration depth and σ is the conductivity. The other chamber type has a laminated wall as studied in [12, 20].
Except for the chamber radius, all the others parameters are identical with those in [12]. The surface impedance
in the laminated wall is qualitatively different and about two orders of magnitude larger than the metallic surface
impedance; see Fig. 6 in [12].

In Fig. 1 we plot the longitudinal impedance Z
||σ
0 for three different values of γ: ultrarelativistic (γ = ∞), interme-

diate (γ = 3) and small (γ = 1.42), which corresponds to the Fermilab Booster injection energy. Circular chambers
with two different radii, b = 3 cm and b = 6 cm, are considered. It can be seen (insets) that the difference between
the impedance at finite γ and the ultrarelativistic approximation increases with both increasing frequency and pipe
radius. This is expected from Eq. 71, which shows that the second order non-ultrarelativistic corrections are equal to
k2
rb

2

2 .

In Fig. 2 we plot the longitudinal wake W
||σ
0 (z), Eq. 4, and the ultrarelativistic approximate wake W̃

||σ
0 (z), Eq. 7,

for γ = 1.42. The wake differs significantly from the ultrarelativistic approximation in the small-|z| region (|z| <≈
0.1m− 0.2m in our example). This small-distance region is proportional to b

γ
as the imaginary part of the impedance

poles implies. Unlike the ultrarelativistic case, the wake is nonzero in the small distance region ahead of the source.
For small negative z the metallic pipe ultrarelativistic wake is larger and negative (attractive), displaying the familiar

|z|− 3
2 behavior [19]. The true wake, however, is much smaller and becomes positive with decreasing |z|. For the

laminated chambers with pipe radius of b = 3 cm (b = 6 cm), we find that the ultrarelativistic approximation strongly
overestimates the wake function at distances smaller than 0.005m (0.015m) behind the source and underestimates
it at at larger distances (but still in the small distance region). Note that the metallic wake behavior is also very
different from the one predicted by Zimmermann et al. in [5]. They predict, by integrating the non-ultrarelativistic

impedance truncated up to the second order in krb and first order in Rz , that W
||σ
0 (z) is proportional to |z|− 7

2 at
small z. However this approximation for the impedance is not valid at large frequency where both krb and Rz ∝ √

ω
are large.
The monopole transverse impedance, Eq. 68, vanishes in the ultrarelativistic limit. The finite-γ monopole transverse
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FIG. 3: Transverse monopole impedance Zσ⊥
0 and the corresponding wake W σ⊥

0 for γ = 3 (red) and γ = 1.42 (blue). For
a metallic wall the real (solid line) and imaginary (dashed line) parts of the impedance are approximately the same. The
impedance shows a wide peak at frequency of order of several GHz. With decreasing γ the peak magnitude increases and shifts
to smaller frequency. The wake function is noticeable both for negative and positive values of z, in the small distance region
proportional to b

γ
, although it is about one order of magnitude smaller than the dipole transverse wake.

impedance and the corresponding wake are displayed in Fig. 3 for both metallic and laminated chambers with radius
b = 3 cm. The impedance shows a wide peak at a frequency of several GHz. The peak increases and shifts to smaller
frequency with decreasing γ. The wake function is significant in the small distance region, in our example <≈ 0.1m
(<≈ 0.05m) for γ = 1.42 (γ = 3), for both positive and negative values of z. For small γ, compared with the dipole
transverse impedance (discussed in the next section), the monopole transverse impedance magnitude is about two
orders of magnitude smaller but spreads to much higher frequency. The monopole transverse wake is about one order
of magnitude smaller than the dipole transverse wake in the small distance region.

B. Dipole channel, m = 1

1. Electromagnetic field solution

In order to calculate the vector potential, we define, as in in Ref. [5],

A+ = Ar +Aθ (72)

A− = Ar −Aθ . (73)

The equations 29 and 30 imply

d2A+

dr2
+

1

r

dA+

dr
− (

2

r2
+ k2r)A+ = 0 (74)

d2A−
dr2

+
1

r

dA−
dr

− k2rA− = 0 (75)

with solutions

A+ = q+I2(krr) (76)

A− = q−I0(krr) . (77)
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A gauge transformation with

χ = vI1(krr) (78)

with v = q++q−
2kr

will make q+ = −q− ≡ q1. Therefore one has

Ar = q1(I2(krr) − I0(krr)) (79)

Aθ = q1(I2(krr) + I0(krr)) . (80)

The Lorentz condition, Eq. 32,

q1kr [I
′
2(krr)− I ′0(krr)] +

2q1
r

I2(krr)− jk

(

Az −
β

c
φ

)

= 0 , (81)

implies

Az =
β

c
φ , (82)

as in the m = 0 case. Here I ′2(x)− I ′0(x) = − 2
x
I2(x) was used.

Taking into account that the solution to the equation

d2G1

dr2
+

1

r

dG1

dr
− (

1

r2
+ k2r)G1 = −δ(r − a)

a
(83)

is

G1(r, a) =

{

K1(kra)I1(krr), r < a
I1(kra)K1(krr), r > a ,

(84)

the potentials become

φ(r) =
ρ

πǫ0
G1(r, a) + a1I1(krr) (85)

Ar = q1 (I2(krr)− I0(krr)) = − 2q1
krr

I1(krr) (86)

Aθ = q1 (I2(krr) + I0(krr)) = 2q1I
′
1(krr) (87)

Az =
ρβ

πǫ0c
G1(r, a) +

β

c
a1I1(krr) (88)

The electromagnetic field components are

Ez = j
kr

γ

(

ρ

πǫ0
G1(r, a) + a1I1(krr)

)

(89)

Eθ =
ρ

πǫ0r
G1(r, a) +

a1

r
I1(krr) − 2jq1kβcI

′
1(krr) (90)

Er = − ρ

πǫ0

dG1

dr
(r, a)− a1krI

′
1(krr) + 2jq1γβc

I1(krr)

r
(91)

Z0Hz = 2q1ckrI1(krr) (92)

Z0Hθ = − βρ

πǫ0

dG1

dr
(r, a)− a1krβI

′
1(krr) + 2jq1γc

I1(krr)

r
(93)

Z0Hr = − βρ

πǫ0r
G1(r, a)−

β

r
a1I1(krr) + 2jq1kcI

′
1(krr) . (94)

The next step is to determine the constant a1. As in the monopole case we want to write it as function of the wall
surface impedances, defined as

Rz = −Ez

Hθ

|r=b (95)

Rθ =
Eθ

Hz

|r=b . (96)
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Employing Eqs. 89, 90, 92, 93, 95 and 96 we get a system of two linear equations

a1kr

(

j
I1(krb)

γ
− βRz

Z0
I ′1(krb)

)

+ 2jq1γc
Rz

Z0

I1(krb)
b

= kr
ρI1(kra)

πǫ0

(

β
Rz

Z0
K ′

1(krb)− j
K1(krb)

γ

)

(97)

a1
I1(krb)

b
− 2q1(jkβcI

′
1(krb) + ckr

Rθ

Z0
I1(krb)) = −ρI1(kra)

πǫ0b
K1(krb) . (98)

It follows that

a1 = −ρI1(kra)

πǫ0

[

K1

I1
+ RzRθ

Z2
0

K′
1

I′
1

− jγ Rz

βZ0

(

1
k2
rb

2

K1

I′
1

− β2 K′
1

I1

)

− j Rθ

βZ0γ
K1

I′
1

]

[

1 + RzRθ

Z2
0

− jγ Rz

βZ0

(

1
k2
rb

2

I1
I′
1

− β2 I′
1

I1

)

− j Rθ

Z0βγ
I1
I′
1

] (99)

where the Bessel functions are evaluated at krb, i.e. I1 ≡ I1(krb) and K1 ≡ K1(krb).
For ideally conducting walls, i.e. when Rz = Rθ = 0, one gets

E∞
z = j

kr

γ

ρ

πǫ0

(

G1(r, a)−
K1(krb)

I1(krb)
I1(kra)I1(krr)

)

. (100)

The wall finite-conductivity contribution to the electric field is

Eσ
z = Ez − E∞

z =
ρkrI1(kra)I1(krr)

πǫ0

βRz

Z0

(

K′
1

I1
− K1I

′
1

I2
1

)

+ RzRθ

Z2
0

(

K′
1

I′
1

− K1

I1

)

[

1− jγ Rz

βZ0

(

1
k2
rb

2

I1
I′
1

− β2 I′
1

I1

)

+ RzRθ

Z2
0

− j Rθ

Z0βγ
I1
I′
1

] . (101)

2. Impedance

According to Eqs. 22 and 43 and using I ′1(0) =
1
2 , the transverse impedance reads

Z⊥σ
1 = −

∂2Ez

∂a∂r
(r = 0, a = 0)

ρβck
= − k2r

4πγ

Rz

(

K′
1

I1
− K1I

′
1

I2
1

)

+ RzRθ

βZ0

(

K′
1

I′
1

− K1

I1

)

[

1− jγ Rz

βZ0

(

1
k2
rb

2

I1
I′
1

− β2 I′
1

I1

)

+ RzRθ

Z2
0

− j Rθ

Z0βγ
I1
I′
1

] . (102)

Note that the dipole longitudinal impedance (which effects are of second order in the particles displacement), is
related to the transverse impedance

Z
||σ
1 = −

∂2Ez

∂a∂r
(r = 0, a = 0)

ρβc
= Z⊥σ

1 k . (103)

Because
∂Fr,θ

∂r
(a = 0, r = 0) = 0, the dipole channel does not yield transverse wakes acting on the affected particle

displacement.

3. Comparison with previous calculations and discussion of the ultrarelativistic approximation

Using the small argument approximation of the Bessel functions

I1(x) ≈ x

2

(

1 +
x2

8
+

x4

192

)

(104)

I ′1(x) ≈ 1

2

(

1 +
3x2

8
+

5x4

192

)

(105)

I1(x)

I ′1(x)
≈ x

(

1− x2

4
+

59x4

192

)

(106)

I ′1(x)

I1(x)
≈ 1

x

(

1 +
x2

4
+

19x4

192

)

(107)

K1(x) ≈ 1

x
(108)

K ′
1(x) ≈ − 1

x2
(109)
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FIG. 4: Dipole transverse impedance divided by β for metallic (a and b) and laminated (c and d) chambers. The solid
(dashed) lines represent the real (imaginary) part of the impedance. For the metallic pipe the imaginary and the real part
of the impedance are equal in the frequency domain shown. The difference between the impedance and the ultrarelativistic

impedance increases with increasing frequency and pipe radius. In the insets, the relative difference
Z⊥

1
(γ=∞)−Z⊥σ

1
(γ)/β

Z⊥
1

(γ=∞)
is

shown. The dashed green line represents the second order correction to the ultrarelativistic limit for γ = 1.42, equal to
k2
rb

2

4
according to Eq. 112. At large frequency the second-order approximation overestimates the impedance. At 1GHz, for both the
metallic pipe and the laminated chamber with radius b = 3 cm (b = 6 cm) we find ≈ 9% (≈ 25%) relative difference between
the γ = 1.42 and ultrarelativistic impedances.

up to O(γ−2), the dipole impedance is

Z
||σ
1 = Z⊥σ

1 k =

Rz

πb3
− Rzk

2

4πbγ2 + RzRθ

βZ0

k
πb2γ

1− j Rz

βZ0

(

1
kb

− kb(1+β2)
4

)

+ RzRθ

Z2
0

− j Rz

Z0β

k3b3(59+19β2)
192γ2 − j Rθ

Z0β
kb
γ2

. (110)

In the ultrarelativistic limit

Z
||σ
1 = Z⊥σ

1 k =
Rz

πb3

1− jRz

Z0

(

1
kb

− kb
2

)

+ RzRθ

Z2
0

, (111)

in agreement with [12].
Up to first order in the wall surface impedance and to second order in γ−1

Z⊥σ
1 =

Rz

kπb3
− Rzk

4πbγ2
=

Rz

kπb3

(

1− k2rb
2

4

)

, (112)

in agreement with [5].
In Fig. 4 we plot the dipole transverse impedance for the metallic and the laminated chambers. For comparison

with the ultrarelativistic case the transverse impedance is normalized by a factor of β since it is proportional to
Fr ∝ k−1 ∝ β (see Eq. 43). Similar conclusions with the ones found for the longitudinal monopole impedance can be
drawn. The difference between the impedance and the ultrarelativistic approximation increases with both increasing
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laminated (c and d) chambers, for γ = 1.42. The ultrarelativistic approximation is not valid in the small distance region.

the frequency and the pipe radius. The second-order approximation. which predicts the relative difference to be
k2
rb

2

4 ,
Eq. 112, overestimates the impedance at large frequency.
In Fig. 5 the transverse wake, W⊥σ

1 , and the ultrarelativistic approximation W̃⊥
1 are shown for γ = 1.42. Significant

differences between the two wakes can be noticed at small distances. At small and negative z, |z| <≈ 0.1 m in our
example, the metallic ultrarelativistic wake displays the expected |z|−0.5 behavior [19], being large and negative.
However, in this region the real metallic wake is much smaller. The laminated wake also has a smaller magnitude
than the ultrarelativistic approximation in the small distance region behind the source. Ahead of the source, for
z <≈ 0.05 m, both metallic and laminated wakes are nonzero and decrease rapidly with increasing z.

IV. CONCLUSIONS

We calculated general expressions for the longitudinal and the transverse impedances in circular chambers, writing
them as function of the wall surface impedance. The equations are valid for all types of walls as long as the wall surface
impedance can be defined. The wall’s electrical properties are contained implicitly in the surface impedance. The
advantage of this approach is that the problems related to the wall properties are now separated from the impedance
calculation and can be addressed separately for each specific wall type.
We numerically calculated the resistive-wall wakes for the metallic and the laminated chambers and discussed the

validity of the ultrarelativistic approximation for the non-ultrarelativistic beams. We found that the ultrarelativistic
approximation fails to describe the wake effects at distances smaller than ≈ 0.1 m for chambers with radius of
a few centimeters at small and intermediate γ. Unlike the ultrarelativistic wake, which vanishes in front of the
source, the non-ultrarelativistic case includes a repulsive wake ahead of the source, which is a consequence of the
fact that the electromagnetic field propagates faster than the source. In the small distance region behind the source,
the ultrarelativistic approximation strongly overestimates the wake fields. Aside from the familiar transverse wake
term which couples to the source particle displacement, the non-ultrarelativistic beams in circular chambers are
characterized by a transverse wake which couples with the displacement of the affected particle. This transverse wake
term is of order O(γ−2) and acts in the small distance region both ahead and behind the source.
Our results imply that non-ultrarelativistic beam simulations using both space-charge and ultrarelativistic wakes

introduce strong artificial collective interactions at small distance. The artificial effects are expected to affect the
stability of short beams, of order of 0.1 m, most strongly. However other quantities such as beam size, emittance,
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phase space properties, tunes, are expected to be affected even for long beams. Investigation of the spurious effects
introduced by the ultrarelativistic wakes in non-ultrarelativistic beam simulations will be presented in future work.
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