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Lattice Gauge Theory and the Origin of Mass∗
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Andreas S. Kronfeld

Theoretical Physics Department, Fermi National Accelerator Laboratory,

Batavia, Illinois, USA

Most of the mass of everyday objects resides in atomic nuclei; the total of the
electrons’ mass adds up to less than one part in a thousand. The nuclei are com-
posed of nucleons—protons and neutrons—whose nuclear binding energy, though
tremendous on a human scale, is small compared to their rest energy. The nu-
cleons are, in turn, composites of massless gluons and nearly massless quarks. It
is the energy of these confined objects, via M = E/c2, that is responsible for ev-
eryday mass. This article discusses the physics of this mechanism and the role of
lattice gauge theory in establishing its connection to quantum chromodynamics.

1. Introduction

With the recent observation of a Higgs-like particle,1–3 people from all walks of life

are talking about the origin of mass. Careful accounts note that this new object’s

underlying field generates mass neither for luminous matter nor for dark matter

but for standard-model particles. Among these, the top quark and the W and Z

bosons are especially intriguing, the storyline goes, because their masses are similar

to those of whole atoms of gold or silver. But where does the mass of a gold ring

or a silver spoon come from? This article reviews our understanding of the origin

of mass of these and all other everyday objects, starting from first principles.

The density of gold metal is around 20 g cm−3. At the beginning of the twenti-

eth century, no one knew how mass is distributed within atoms, and several ideas

had been put forth.4,5 Then an experiment carried out by Hans Geiger and Ernest

Marsden found an astonishing rate of wide-angle scattering of a beam α particles

incident on a gold foil.6 Their laboratory director, New Zealander Ernest Ruther-

ford, realized that their findings could be understood if atoms contain a massive

nucleus surrounded by a cloud of electrons.7 The density of nuclear material ranges

from 20×1013 g cm−3 for a gold nucleus to 60×1013 g cm−3 for an isolated proton.

One cubic millimeter (the size of a coarse grain of sand) of such nuclear material

weighs about as much as two aircraft carriers.

The discovery of the neutron8 showed that atomic nuclei consist of protons and

neutrons, bound together by the so-called strong force. The forces in the nucleus
∗Prepared for One Hundred Years of Subatomic Physics, edited by Ernest Henley and Stephen
Ellis.
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generate tremendous energy, yet nuclear fission releases only around one part in a

thousand of the total rest energy. Nuclear fusion producing 4He releases a larger

fraction of the total nuclear rest energy, but still less than 1%. Thus, the origin of

the bulk of nuclear mass lies beyond nuclear chemistry and more deeply within the

nucleons themselves.

Of course, the nucleon has structure too. Indeed, deeply inelastic electron-

nucleon scattering measurements (wide angles again) are modeled well with weakly

interacting constituents known as partons.9,10 To obtain a full appreciation of

the interior of the nucleon, however, one must to turn to the modern theory of

the strong interactions, namely quantum chromodynamics (QCD). QCD merges

the ideas of the quark model (introduced to account for the plethora of strongly-

interacting hadrons11–13), the quantum number “color” (introduced to reconcile

spin and statistics14,15), and partons into a self-contained theory.16

The Lagrangian of QCD17 looks like that of quantum electrodynamics (QED).

In both cases, the interactions are specified by a gauge symmetry, SU(3) for QCD

and U(1) for QED. SU(N) is the nonabelian group of N ×N unitary matrices with

unit determinant. As a consequence of the nonabelian, i.e., noncommuting, nature

of SU(N), the quanta of the gauge field—known in QCD as gluons—carry color.18,19

Because QED’s U(1) group of phase factors commutes, the gauge quantum is electri-

cally neutral, in accord with the natural behavior of the photon. The self-coupling of

the gluon is responsible for the markedly different dynamics in QCD. In particular,

quantum effects, which can be examined in one-loop perturbation theory, render

the QCD coupling smaller and smaller at short distances.20,21 This “asymptotic

freedom” means that QCD reproduces the simplicity of the parton model.

The flip side of asymptotic freedom is that the strong interaction strengthens at

large distances. A “typical mass scale ΛQCD” separates weak from strong coupling.

At distances large enough so that the coupling is strong, perturbative techniques

are insufficient to understand fully what happens. Nevertheless, the strengthening

of the force provides a hint that it is possible to explain not only the origin of

hadronic mass but also why isolated quarks are never observed (known as confine-

ment). This article discusses how, a century after the Geiger-Marsden experiment,

we have established a connection from the QCD Lagrangian to the mass of the

atomic nucleus and, hence, all everyday objects. Indeed, this connection sheds light

on confinement as well. The central theoretical and conceptual tool is lattice gauge

theory,22 which enables nonperturbative calculations via a mathematically rigorous

definition of quantum field theory. The calculations lie beyond the scope of pencil

and paper and, in fact, rely on leadership-class supercomputers.

The rest of this article is organized into two main parts. Section 2 recalls the

early (and prehistoric) development of lattice gauge theory. Section 3 reviews QCD

calculations based on lattice gauge theory, with special attention to calculations the

shed light on the origin of (everyday) mass. The Appendix recounts a tale about

lattice field theory, Werner Heisenberg, and a children’s puzzle.
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2. Lattice Gauge Theory

Before turning to lattice gauge theory itself, it is helpful to discuss asymptotic

freedom a bit more. Let us start with the relation between the bare gauge coupling

and a renormalized coupling. A physical renormalization scheme comes from the

force F (r) between static source and sink of color, separated by a distance r,

r2F (r) = −CF
4π

g2
F (r), (1)

where CF = 1 for U(1), CF = (N2 − 1)/2N for SU(N). In perturbation theory,

the force arises from one-gluon exchange and from Feynman diagrams with loops.

To define the loop integrals, one must have an ultraviolet cutoff. A lattice with

spacing a builds one from the outset. Adopting lattice notation, the relation between

g2
F and the bare coupling g2

0 can be written as follows:

g−2
F (r) = g−2

0 (a) + β0 ln(a2/r2) + cF←0 + O(g2). (2)

The constants β0 and cF←0 stem from the one-loop diagrams, and the omitted

terms from diagrams with two or more loops. For what follows, cF←0 is not very

important, but the sign of β0 is key. Direct calculation in SU(N) gauge theories

yields20,21

β0 = −2

3

nf
16π2

+
11

3

N

16π2
, (3)

where nf is the number of quark flavors. In QED, the second term, which stems

from the gluon loop, is absent, and nf is replaced with 2
∑
l q

2
l , where ql is the

electric charge of charged particle l (e.g., the electron qe = −1). In QCD with

nf ≤ 16, one finds β0 > 0, which yields asymptotic freedom, namely g2
F (r) decreases

as r decreases. In QED (and in QCD with nf > 16), β0 < 0.

Renormalization of the bare gauge coupling g2
0(a) makes the right-hand side of

Eq. (2) independent of the lattice spacing a. Then one can write

g−2
F (r) = β0 ln(r−2/Λ2

F ), (4)

where a scale ΛF appears

ΛF = a−1 e−1/2β0g
2
0(a)e−cF←0/2β0 . (5)

If β0 < 0 as in QED, this scale is commensurate with the ultraviolet cutoff.23 On

the other hand, if β0 > 0, as in QCD with the six observed quark flavors, the

scale ΛF is much smaller than the cutoff. Such hierarchies of scale are an essential

feature of renormalization in a more general, nonperturbative context.24,25

Different renormalization schemes lead to different scales.26 In a scheme “R”,

ΛR = ΛF e
−cR←F /2β0 , (6)

where cR←F = cR←0 − cF←0 is regulator independent. For small exponents, such

scales are quantitatively similar. Qualititatively, the range of such scales marks the

transition from weak to strong coupling and is usually called ΛQCD.
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The discovery of asymptotic freedom spawned widespread interest in all aspects

of QCD, including applications to high-energy scattering processes27 as well as

puzzles such as the nonobservation of isolated quarks.28 Kenneth Wilson, who

had been working on critical phenomena, was one of those who (re)directed his

attention to the strong interactions. When reading his 1974 paper introducing

lattice gauge theory,22 it may look as though he developed lattice gauge theory to

study confinement. In 2004, however, he reminisced29

The discovery of asymptotic freedom, made possible by earlier develop-
ments on the renormalizability of non-Abelian gauge theories by Velt-
man and ’t Hooft,[30,31] made it immediately clear, to me as well as many
others, that the preferred theory of strong interactions was [QCD]. . . .

Unfortunately, I found myself lacking the detailed knowledge and skills
required to conduct research using renormalized non-Abelian gauge the-
ories. My research prior to 1973 had not required this knowledge so I
had never spent the time necessary to acquire it.

What was I to do, especially as I was eager to jump into this research
with as little delay as possible? I realized that from my prior work in
statistical mechanics[a] I knew a lot about working with lattice theories,
including the construction of high temperature expansions for such theo-
ries. I decided I might find it easier to work with a lattice version of QCD
than with the existing continuum formulation of this theory. Moreover,
this meant I could be doing original research immediately, rather than
having to spend weeks or months absorbing other people’s research.

In gauge theories, the “high-temperature expansion” of statistical mechanics devel-

ops a strong-coupling series in powers of 1/g2
0 .

Wilson’s 1974 paper22 showed how to preserve local gauge invariance when

spacetime is replaced with a lattice. The main mathematical ingredient is straight-

forward. Matter fields transform under local gauge transformations as

φ(x) 7→ g(x)φ(x), (7)

where g(x) is an element of a Lie group G, e.g., U(1) or SU(N). It is not hard to

show that the so-called parallel transporter

Us(x, y) = Ps exp

∫ y

x

dz ·A(z) (8)

transforms as

Us(x, y) 7→ g(x)Us(x, y)g−1(y). (9)

Here Aµ(x) is the gauge potential, taking values in the Lie algebra of G. The path-

ordering symbol Ps prescribes the order of matrix factors in the power series of the

exponential function to lie along the path s from x to y. From Eqs. (7) and (9),
aWilson’s work in statistical mechanics started out as an application of his renormalization-group

ideas from particle physics24,25 to critical phenomena.32,33 It was very successful, leading to

a renormalization-group solution of the Kondo problem of magnetic impurities in nonmagnetic
metals34 that earned him the 1982 Nobel Prize in Physics.35
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products of the form φ†(x)U(x, y)φ(y) clearly are gauge invariant. On a lattice, any

U(x, y) can be built out of one-link parallel transporters U(x, x′), where x and x′

are nearest-neighbor lattice sites. The dynamical variables of lattice gauge theory

are, thus, matter fields on sites and gauge-group variables on nearest-neighbor links.

Note that this construction works for a lattice of any geometry.36

Wilson was not the first to consider lattice gauge theory. Wilson knew35 about

work on lattice field theories by Gregor Wentzel37 and by Leonard Schiff38 for the

strongly-coupled meson-nucleon system. He did not know, until later,39 about the

Ising gauge theory of Franz Wegner,40 or about the (unpublished) nonabelian lattice

gauge constructions of Jan Smit41 and of Alexander Polyakov.43

Wentzel’s and Schiff’s lattice field theories can be traced, via their text-

books,44,45 back to Werner Heisenberg and Wolfgang Pauli’s first paper on the

quantization of electrodynamics. To lend rigor to several (then brand new) mathe-

matical manipulations, they introduced a spatial lattice, writing:46

In der Tat kann man den Fall kontinuierlich vieler Freiheitsgrade, wo
die Zustandsgrößen Raumfunktionen sind, stets durch Grenzübergang aus
dem Fall endlich vieler Freiheitsgrade gewinnen.

Indeed, one can always obtain the case of continuously many degrees of
freedom, where the state variables are functions of space, through a limit
of the case of finitely many degrees or freedom. (Author’s translation.)

Heisenberg and Pauli thus introduce fields on a discrete set of cells, whose centers

form a lattice, and use the limit of smaller and smaller cells to establish the func-

tional equations of motion from their discrete counterpart. They further employ

the lattice to derive the Dirac δ function in equal-time commutators in field theory

from the Kronecker δ symbol in quantum mechanics for a finite collection of degrees

of freedom. They do not revisit the lattice when considering local gauge symmetry,

so they did not need Eqs. (7)–(9). They also did not discuss electron fields on the

lattice—as we shall see below, prudently. Heisenberg later pondered the lattice as

the fundamental structure of space, as discussed in the Appendix.

Despite the antecedents, Wilson’s 1974 paper22 was a watershed for at least three

reasons. First, Wilson discussed very clearly how to understand color confinement

via the energy stored between a source and sink of color separated by larger and

larger distances. Furthermore, he showed that lattice gauge theories confine in the

strong-coupling limit (according to his criterion). Second, the spacetime lattice

provides a mathematically sound definition of the functional integral. As with

canonical quantization,46 the functional integral for a countable set of degrees of

freedom is straightforward to define, and the one for continuously many degrees of

freedom is obtained as a limit. Third, Wilson’s earlier work on the renormalization

group, both in critical phenomena and in the strong interactions, lent credence to

the proposal that the lattice formulation of gauge theory could be connected to the

gauge-fixed, perturbative formulation of gauge theory. Moreover, all these aspects

provided a starting point for others to begin research on lattice gauge theory,47
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particularly after an influential series of papers48–50 explained the techniques of

statistical mechanics in particle physics language.

Wilson’s criterion for color confinement starts with the parallel transporters

in Eq. (8). The interacting quark propagater from x to y consists of a properly

weighted average of Us(x, y) over all paths s. A meson propagator consists of an

average of a similar object, Us(x, y)Us̄(y, x) = Us∪s̄(x, y), where s (s̄) is the path

taken by the quark (antiquark). Such closed loops of parallel transport are now

known as Wilson loops, and even open parallel transporters Us(x, y) of shortest

path are often known as Wilson lines. Note that the trace, trUloop(x, x), of a closed

loop is gauge invariant.

It is instructive to consider loops for which the spatial coordinates of x and y

are the same and set |x − y| = t. Furthermore, imagine loops for which s and s̄

separate a distance r apart (away from the points where they join). Let us denote

such a Wilson loop Ur×t, because the shape is more pertinent than the path names

s and s̄. If the expectation value (when t� r)

〈trUr×t〉 ∼ e−V t (10)

with V independent of r for large r, then quark and antiquark lines can easily sep-

arate to large r. Such behavior obtains in electrodynamics and signals the absence

of confinement. On the other hand, if the expectation value

〈trUr×t〉 ∼ e−σrt, (11)

then large separations of quark and antiquark are highly improbable. Such behavior

is known as the “area law” and corresponds to confinement.22

To compute 〈trUr×t〉, one employs the functional-integral formulation of field

theory. In general, the central objects are correlation functions, so let us introduce

several composite, color-singlet fields Φi, where the subscript labels both spacetime

and internal indices, as well as distinguishing one composite field from another. The

n-point correlation function is given by

〈Φ1 · · ·Φn〉 =
1

Z

∫ ∏
x,µ

dUx,µ
∏
x

dψxdψ̄x Φ1 · · ·Φn e−S(U,ψ,ψ̄), (12)

Z =

∫ ∏
x,µ

dUx,µ
∏
x

dψxdψ̄x e
−S(U,ψ,ψ̄). (13)

Once invariant measures have been specified for the SU(N) variables51 Ux,µ and for

the fermion (quark) variables52 ψx and ψ̄x, the right-hand sides of these equations

are well-defined finite integrals. Mathematicians would say, “they exist.” In the

limit of infinite temporal extent, such a correlation function yields the vacuum-

expectation value of the time-ordered product of the Φis. Note, however, that lattice

gauge theory is well-defined in Euclidean spacetime. The Euclidean signature also

leads to minus signs, rather than factors of i, in several formulae, but it is not a

limitation in principle.
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Equations (12) and (13) specify a canonical average and partition function in

classical statistical mechanics. Such systems can exhibit second-order phase tran-

sitions,53 which are characterized by a large correlation length ξ � a, where ξ

measures the falloff of a correlation function, e−|x−y|/ξ. Correlation functions with

different symmetry-group representations can have different correlation lengths, but

all ξα � a. At second-order phase transitions, the details of the lattice (e.g.,

whether the crystal is triclinic, hexagonal, or cubic) become unimportant and the

long-distance behavior depends only on the internal symmetries of the interactions.

These phenomena translate into particle physics language as follows. One identifies

the inverse correlation lengths ξ−1
α with particle masses Mα, because a particle two-

point function behaves like e−Mα|x−y|. Thus, to define a continuum quantum field

theory via lattice field theory, one seeks a point in the space of couplings, such that

a hierarchy between the particle masses and the inverse lattice spacing emerges.

The hierarchy of scale is the key feature, while Eq. (5) gives the specific example

relevant to asymptotically free theories. It means that Mα ∝ ΛF , with coefficients

that depend on the chromodynamics of quarks and gluons, but not on the lattice.

Because the integrals in Eqs. (12) and (13) exist, they provide a platform for

a rigorous construction of quantum field theory.54 To reconstruct a quantum-

mechanical Hilbert space from a Euclidean field theory, the functional integrals

must enjoy certain properties, such as a positive action, known as the Osterwalder-

Schrader axioms.55,56 The simplest lattice actions satisfy these conditions.57 That

said, the challenge is to lend mathematical rigor to the limiting procedure of the

renormalized continuum limit, i.e., one requires a rigorous understanding of critical

phenomena. For a historical review of this field, including the role of the renormal-

ization group, see Ref. 58.

Let us return to Eq. (12) and examine the average of the Wilson loop to learn

whether (lattice) gauge theory confines. Taking a hypercubic lattice and a simple

gauge-invariant lattice Lagrangian, chosen to reduce to Yang-Mills Lagrangian18,19

in the classical continuum limit, Wilson found

〈trUm×n〉 = (2N/g2
0)mn = e− ln(g20/2N)mn. (14)

for an m× n rectangular Wilson loop. In fact, the same calculation shows that for

any planar Wilson loop, the (dimensionless) area replaces mn in Eq. (14).

The area law follows from a simple property of invariant integration over the

gauge group, which states ∫
dU U = 0, (15)

for example,
∫ π
−π dθ e

iθ = 0 for U(1), and
∫ π
−π dθ

∫
d2n̂ ein̂·σθ = 0 for SU(2). Equa-

tion (15) generalizes to say that any color-nonsinglet average over the gauge group

vanishes. Color singlets can propagate, while would-be states with color can be

considered to have infinite mass. Thus, lattice gauge theory confines.
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Owing to Eq. (15), the area law holds for both abelian as well as nonabelian

gauge theories. The salient question, however, is whether the confining behavior

persists into the relevant regime of weak coupling. In QED, the long-distance cou-

pling in nature is weak, α = e2/4π = 1/137, and in QCD weak (bare) coupling

corresponds to aΛQCD � 1. In fact, the strong-coupling dynamics of (compact)

U(1) lattice gauge theory are influenced by a tangle of magnetic monopoles,59,60

unlike what one has in QED. The monopoles provide the crucial insight to prove

rigorously61,62 that a first-order phase transition separates the confining, strong-

coupling region from a phase with a massless photon and Coulomb interactions.

The latter phase is QED, while the confining phase of U(1) lattice gauge theory has

nothing to do with QED.

The rigorous proofs fail in the nonabelian case, however. At present, there is no

accepted rigorous analytic proof that confinement persists for nonabelian theories

into the weak-coupling regime. Several analytical and nonperturbative calculations,

taken together, provide strong evidence that the confinement of the strong-coupling

limit of lattice gauge theory survives to continuum QCD. First, consider how the

exponent in Eq. (11) depends on g2
0 . At strongest coupling, Eq. (14) implies

σa2 = ln[g2
0(a)/2N ], (16)

whereas at weakest coupling, Eq. (5) requires

σa2 ∝ e−1/β0g
2
0(a). (17)

The issue at hand is whether these two asymptotic behaviors are connected by

a smooth function. Michael Creutz’s pioneering numerical calculations63,64 of

〈trUm×n〉 and, hence, σa2, demonstrated a smooth connection between the two

functional forms, with a knee around g2
0 ≈ 1. Moreover, Padé extrapolations of

high-order strong-coupling expansions anticipate the knee.65,66 These results thus

show no evidence for a first-order transition, so the simplest interpretation is that

confinement persists to weak coupling.

The absence of evidence for a phase transition is not the same as evidence for the

absence of a phase transition. Indeed, numerical studies do find first-order transi-

tions in SU(N) lattice gauge theory.67,68 To do so, one searches in a general space of

lattice couplings, including irrelevant couplings. In SU(N) in four dimensions, a line

of phase transitions ends, and various trajectories in the space of couplings smoothly

connect the strongly and weakly coupled regimes. In U(1), the phase-transition line

never ends, so the first-order phase transition cannot be circumvented. It seems

unlikely that numerical work has missed a key piece of information about the bulk

phase structure of lattice gauge theory. The tool’s suitability and the community’s

expertise seem up to the task.

Adding quarks to lattice gauge theory changes the picture of confinement some-

what. (Lattice-fermion constructions are discussed below.) If the source-sink sep-

aration is long enough, it is energetically preferable for a quark-antiquark pair to

pop out of the glue and screen the color sink and source. This behavior can be seen
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in a double “high-temperature” series in 1/g2
0 and 1/m0. Terms varying with the

area (from the 1/g2
0 series) and with the perimeter (from the 1/m0 series) arise,

with the former remaining important for small and intermediate separations, and

the latter dominating for large separations.

In addition to the string tension, strong-coupling expansions can be used to

compute hadron masses. QCD is expected to have bound states that lie outside

the quark model, such as glueballs, which are composed of gluons but no valence

quarks. At leading order in strong coupling, various glueballs are degenerate with

common mass

Ma = 4 ln[g2
0(a)/2N ]. (18)

The series have been extended through order g−16
0 for scalar (JPC = 0++), tensor

(2++), and axial-vector (1+−) glueballs,69,70 yielding ratios71,72 M2++/M0++ ≈ 1,

M1+−/M0++ = 1.8 ± 0.3 (Euclidean spacetime lattice), with similar results from a

continuous time Hamiltonian formulation.73

One can also compute meson and baryon masses. The simplest approach74

takes both 1/g2
0 and 1/m0 to be small, but the latter would be far from the up and

down quarks. Another approach is to exploit mean-field theory techniques from

statistical mechanics, which permit the resummation of the 1/m0 expansion. This

trick amounts to an expansion in 1/d, where d is the dimension of spacetime; for

d = 4 the expansion parameter is reasonable small. At strongest coupling, the

disorder of the gauge field drives chiral symmetry breaking,75,76 and the Goldstone

boson (pion) mass satisfies M2
π ∝ m0〈ψ̄ψ〉. These calculations also find that non-

Goldstone meson masses satisfy M ∝ const + O(m0) and baryon masses (for N

colors) satisfy M ∝ N × const + O(m0).77,78 We shall return to the implications of

spontaneous chiral symmetry breaking at the end of Sect. 3.

To end this section, let us discuss the uneasy relationship between fermions and

the lattice.b (The level of these paragraphs is somewhat higher, and readers can

skip them and proceed to Sect. 3 without much loss.) In the 1974 paper,22 Wilson

used a lattice fermion Lagrangian with (inverse) free propagator

S−1(p) = ia−1
4∑

µ=1

γµ sin(pµa) +m0, (19)

where each component of the momentum p lies in the interval (−π/a, π/a]. This

expression looks like its continuum counterpart not only for p ∼ 0 but also at the

15 other corners of the Brioullin zone, pµ ∼ 0 mod π/a. In the continuum limit,

all 16 modes correspond to physical states, which is known as the “fermion doubling

problem.” The extra states appear everywhere.79 For example, they multiply by

16 the fermion-loop contribution to β0 [the term proportional to nf in Eq. (3)], and

they contribute to the axial anomaly with a pattern of signs 1− 4 + 6− 4 + 1 = 0

(in four dimensions). The Lagrangian corresponding to Eq. (19) has an exact chiral

bWhence the remark that Heisenberg and Pauli were prudent not to take up the issue.
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symmetry in the massless limit; hence, the anomaly must vanish in this case (even

though this is not desired for QCD).

Several formulations have been introduced to amelioriate the doubling problem.

In a Hamiltonian formulation with discrete space and continuous time (and, hence,

only 8 states to start with), John Kogut and Leonard Susskind80 put the upper two

and lower two components of a Dirac spinor on the even and odd sites of the lattice,

respectively, reducing the number of degrees of freedom by two. Susskind81 later

devised a method with one component per site. A Euclidean spacetime lattice ver-

sion of this method82,83 is now referred to as staggered fermions. This formulation

exactly preserves a subset of chiral symmetry but still has four fermion states for

every fermion field. A non-Noether flavor-singlet axial current is anomalous.83,84

Wilson85 introduced a dimension-five term that yields a large mass to the 15

extra states. The axial anomaly is obtained correctly, which is possible because the

Wilson term breaks the axial symmetries. In practice, one has a fine-tuning problem

here: the mass term and the Wilson term must balance each other to provide the

small amount of explicit axial-symmetry breaking of QCD. After this fine-tuning,

which can be carried out nonperturbatively, the residual chiral-symmetry breaking

is proportional to the lattice spacing. One can add to the action a Pauli term,86

which is also of dimension five, and then impose Ward identities87,88 to reduce

discretization effects to O(a2). For two flavors of Wilson fermions, it is also possible

to remove the leading-order discretization effect via an isospin off-diagonal mass

term,89,90 which is known as “twisted mass.”

On a lattice, chiral symmetry and the doubling problem are deeply connected,

which is encapsulated in the Nielsen-Ninomiya theorem.91,92 A way around this

theorem comes from the Ginsparg-Wilson relation,93 which uses renormalization-

group ideas to derive a minimal condition on lattice chiral symmetry (for Dirac

fermions). The Ginsparg-Wilson relation reads

γ5D +Dγ5 = aDγ5D, (20)

where D is the lattice Dirac operator. The Nielsen-Ninomiya theorem assumes

the right-hand side vanishes and, thus, does not apply. Solutions to the Ginsparg-

Wilson relation94–96 are compatible with a suitably modified chiral transformation97

but are computationally more demanding than the other methods. This setup allows

a rigorous derivation of soft-pion theorems.98 These ideas are also closely99,100 or

intimately101,102 related to ideas to formulate chiral gauge theories (such as the

standard electroweak interaction) on the lattice.

Staggered,81–83 twisted-mass Wilson,89,90 improved Wilson,86 domain-wall,94

and overlap95 fermions are all used in the large-scale computations discussed below.

3. The Origin of (Your) Mass

Although strong-coupling expansions provided new insight into gauge theories, it

became clear that they would not offer a path to small, robust error bars. Today, a
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set of numerical Monte Carlo techniques are the largest focus of research in lattice

gauge theory. In many cases, for example, the computation of hadronic matrix

elements in electroweak processes, the goal is to provides a solid number with a

full error budget. To understand mass, however, one would like to have more

than numbers, but also a qualitative understanding. As we shall see, numerical

calculations have played a key role here too.

Let us begin with a short explanation of the numerical methods. In all cases of

interest, the action in Eq. (12) can be written S = Sgauge + ψ̄(D+m)ψ, where D is

a matrix with spacetime, color, flavor, and Dirac indices, and m is a mass matrix

(diagonal in all indices). To obtain a nonzero result, the number of fermion and

antifermion fields in Eq. (12) must be the same. Suppose the number is A; that

means that the product of Φs can be re-expressed as

n∏
i=1

Φi = φ(U)

A∏
a=1

f̄a(U)ψ ψ̄fa(U), (21)

where f̄a(U) and fa(U) account for all structure attached to fermions and an-

tifermions on the left-hand side, and φ(U) stands for whatever remains. To cal-

culate hadron masses, we need two-point functions (n = 2 on the left-hand side)

for mesons (A = 2 on the right-hand side) and baryons (A = 3). These two-point

functions can be expressed as (x4 > 0)〈
Φ†i (x4)Φj(0)

〉
=

∞∑
r=0

〈
0
∣∣∣Φ̂†i ∣∣∣ r〉〈r ∣∣∣Φ̂j∣∣∣ 0〉 exp (−Mrx4) , (22)

where the Φi have specific three-momentum and flavor quantum numbers, and Mr

is the energy of the rth radial excitation with the quantum numbers of Φi. For

three-momentum p = 0, energy means mass. For simple actions, Eq. (22) is a

theorem53,57,83,103,104 and, for more general lattice actions, essentially a theorem.105

Given the left-hand side from a numerical computation, the masses are extracted

by fitting the numerical data to the right-hand side. These fits can be improved by

choosing x4 large enough to suppress highly excited states and by choosing the Φi
to project mostly onto one specific state.

The integration over fermionic variables can be carried out by hand, yielding〈
φ(U)

A∏
a=1

f̄aψ ψ̄fa

〉
=

1

Z

∫ ∏
x,µ

dUx,µ φ(U) det
a,b

{
f̄a[D(U) +m]−1fb

}
×

Det[D(U) +m] e−Sgauge(U), (23)

where deta,b is a normal determinant over the enumeration of fermion fields, while

Det denotes a determinant over spacetime, color, flavor, and Dirac indices. Physi-

cally, deta,b f̄a[D(U) + m]−1fb represents the propagators of valence quarks in the

n-point function, while Det[D(U)+m] denotes sea quarks—virtual quark-antiquark

pairs bubbling out of the stew of gluons.



September 28, 2012 0:32 World Scientific Review Volume - 9.75in x 6.5in kronfeld

12 A. S. Kronfeld

The number of independent variables of integration is huge if the spatial extent

is to be larger than a hadron and the lattice spacing much smaller than a hadron.

The only feasible numerical technique for computing such integrals is a Monte Carlo

method with importance sampling. That means to generate C configurations of

{Ux,µ, ∀x, µ}(c) chosen randomly with weight Det[D(U) +m] e−Sgauge(U). Then〈
φ(U)

∏
a

f̄aψ ψ̄fa

〉
= lim
C→∞

1

C

C∑
c=1

φ(U (c)) det
a,b

{
f̄a[D(U (c)) +m]−1fb

}
. (24)

In practice, C is finite but as large as possible. The details of the numerical algo-

rithms lies beyond the scope of this article; for a pedagogical review, see Ref. 106.

The second-most computationally demanding part of this procedure is to obtain

the valence-quark propagators f̄a[D(U) + m]−1fb. The most demanding part is

to account for the sea-quark factor Det[D(U) + m] in the importance sampling.

Early mass calculations thus used a valence approximation,107 computing each

f̄a[D(U (c)) + m]−1fb while replacing Det[D(U (c)) + m] with 1. In addition, the

elimination of bare parameters in favor of physical quantities absorbs an implicitly

specified part of the physical effects of the sea quarks. The valence approximation

is better known as the quenched approximation, from an analogy with condensed-

matter systems.108

There are too many quenched calculations of hadron masses in the literature

to provide a useful survey. Nowadays, the inclusion of sea quarks is commonplace.

Indeed, in some important applications, such as the thermodynamics of QCD, the

sea quarks play an absolutely crucial role. The remainder of this article focuses,

therefore, on numerical calculations that include the sea of up, down, and strange

quarks; these are usually called 2+1-flavor calculations. In some cases, charmed sea

0.9 1.0 1.1
quenched/experiment

Υ(1P-1S)

Υ(3S-1S)

Υ(2P-1S)

Υ(1D-1S)

ψ(1P-1S)

2m
B

s 
− mΥ

mΩ

3mΞ − m
N

f
K

fπ

0.9 1.0 1.1
(n

f
 = 2+1)/experiment

Fig. 1. Comparison of quenched and 2 + 1 lattice-QCD calculations, showing only statistical

errors (to assess the systematics of quenching).109 Free parameters (g20(a), 1
2

(mu+md),ms) fixed
with the 2S-1S splitting of bottomonium, Mπ , and MK .
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quarks are included as well, and these are known as 2+1+1-flavor calculations.

Figure 1 shows a comparison of quenched and 2+1 calculations for a wide variety

of masses and pseudoscalar-meson decay constants.109 The results of the lattice-

QCD calculations are divided by their corresponding entries in the (2002 edition

of the) review of particle physics from the Particle Data Group (PDG).110 Results

should ideally lie close to 1. The quenched results lie with 10–15% of PDG values,

sometimes closer, but the pattern of (nonstatistical) variation is hard to understand.

Upon adding 2+1 flavors of sea quarks, the discrepancies disappear.

Computational science often develops in a way that festoons the basics with

many specialized methodological improvements. Nonexperts often react by putting

the whole process into a black box to shield themselves from the details. They are

then comforted by genuine predictions: calculations for which the correct result

was not known in advance, but which are then confirmed by other means, e.g.,

experimental measurements.

Soon after the publication of in Fig. 1, lattice QCD enjoyed several such predic-

tions, including the shape of form factors in semileptonic D decays,111 the mass of

the Bc meson (composed of a bottom quark and a charmed antiquark),112 the decay

constants of charmed mesons,113 and the mass of the ηb meson (the lightest bot-

tomonium state).114 Figure 2 shows measurements of the form factors for D → K`ν

and D → π`ν by the CLEO experiment115 overlaying a lattice-QCD calculation111

with an improved visualization of systematic errors.116 The CLEO data115 are the

most precise among several experiments confirming the lattice-QCD calculation;

cf. FOCUS,117 Belle,118 BaBar,119 and earlier CLEO measurements.120,121

Before turning to hadron-mass calculations, let us take stock of the numerical

results discussed so far. Section 2 noted that Monte Carlo calculations of simple

quantities such as Wilson loops agreed with both strong-coupling and weak-coupling

expansions, in their respective domains of applicability. Here, we have seen that

quarkonium masses and some other properties of heavy-quark systems—as well as

leptonic decay constans fπ and fK—agree very well with experimental measure-

Fig. 2. Comparison115 of 2 + 1 lattice-QCD calculations of D-meson form factors111,116 (curves
with error bands) with measurements from CLEO115 (points with error bars).
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ments, even when those were not known ahead of time. When combined with the

numerous self-consistency checks that every modern large-scale lattice-QCD calcu-

lation undergoes, it is fair to say that the techniques for generating and analyzing

numerical data have matured. In particular, the standards for estimating full error

budgets have become, by and large, high.

With confidence bolstered by these remarks, let us now examine recent cal-

culations of the hadron mass spectrum. A summary is shown in Fig. 3. More

details about the underlying work can be found in the review from which this plot

is taken122 or in a comprehensive review of hadron mass calculations.134 The most

important features are as follows. Many different groups of researchers (symbol

shape and color) have carried out these calculations, and they all find broad agree-

ment with nature. They use different fermion formulations (symbol shape) and a

different range of lattice spacing and quark masses (symbol color). The total errors

in many cases are small. In particular, the nucleon mass—the main contributor to

everyday mass—has an error of around 2%.
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© 2012 Andreas Kronfeld/Fermi Natl Accelerator Lab.

Fig. 3. Hadron mass spectrum with 2+1 flavors of sea quarks, from Ref. 122. Results for many
light mesons and baryons are from MILC,123,124 PACS-CS,125 BMW,126 and QCDSF.127 Results
for the η and η′ mesons are from RBC & UKQCD,128 Hadron Spectrum,129 and UKQCD.130

Result for the ω meson is from Hadron Spectrum.129 Results for heavy-light mesons are from

Fermilab-MILC,131 HPQCD,132 and Mohler & Woloshyn.133 b-flavored meson masses are offset
by −4000 MeV. Circles, squares, and diamonds denote staggered, Wilson, and chiral sea quarks,
respectively. Asterisks represent anisotropic lattices, a4/ai < 1. Open symbols denote inputs;

filled symbols and asterisks denote output results. Red, orange, yellow, green, and blue denote
increasing numbers of ensembles (i.e., range of lattice spacing and depth of sea quark masse).

Horizontal bars (gray boxes) denote experimentally measured masses (widths).
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Figure 3 shows only the lowest-lying state in each channel, cf. Eq. (22). Excited

states pose more technical challenges, starting with a lower signal-to-noise ratio in

the Monte Carlo estimates of the two-point functions. Nevertheless, recent progress

in this area has been encouraging. An example for mesons is shown in Fig. 4.

A further noteworthy feature of these calculations is that the same techniques that

disentangle the excited-state spectrum also yield mixing angles. These mixing an-

gles agree well with corresponding experimental measurements.135 Figure 4 also

shows results for exotic mesons, which have JPC quantum numbers that are inac-

cessible from the quark model, and for glueballs (in the quenched approximation,136

though more recent glueball calculations with 2+1 sea quarks find similar glueball

masses137). These glueball masses validate the axial-vector/scalar but not the ten-

sor/scalar ratios of strong coupling. Excited baryon mass calculations have also been

carried out138,139 and will be tested by experiments at Jefferson Laboratory.140

Figure 3 shows that we have obtained a solid, quantitative understanding of the

mass of simple hadrons, and Fig. 4 shows that this understanding is improving for

more complicated hadrons. To understand how the mass is generated, however,

a qualitative understanding is also necessary. Here, let us return to the valence

approximation to obtain a physical picture.

In electrodynamics, one measures the force by varying the distance between two

static charges. The force arises from the energy stored in the electric dipole field

between the two charges. As a quantum system, the field actually has discrete

energy levels, the lowest being the (semiclassical) potential energy (whose gradient

yields the force). The same holds for the chromoelectric dipole field between a

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

Fig. 4. Excited-state meson spectrum,129 including isoscalar-s̄s mixing (shades of green) and
pure-gauge glueballs (pink).
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static source and static sink of color. Now, however, the shape of the dipole field is

influenced by the gluon self-interaction: chromoelectric field lines attract each other.

Figure 5 shows the excitation spectrum of the chromoelectric dipole field.141 At

short distances, the level spacing and ordering is in accord with asymptotic freedom.

For example, the lowest level, V (r) is Coulombic up to logarithmic corrections. As r

increases, the spacing between the levels changes. At a separation of around 2 fm,

the level ordering rearranges to that of a string, but the level spacing does not

become fully string-like until larger separations.142 At large distances, the potential

V (r) becomes linear in r; this behavior is the area law of Eq. (11), now, however,

near the continuum limit and only at large enough distances. A vivid picture of the

flux tube has it narrowing as r increases, owing to the attraction between gluons,

but the details suggest that the flux tube retains diameter a bit less than 1 fm.143

At hadronic length scales, it looks more like a sausage than a string. This picture

holds even when quarks are added to the calculations: the linear region persists out

to around 1.25 fm (rσ1/2 ≈ 2.5), at which point the flux tube breaks.144

The linear rise of the potential for r & 0.4 fm provides a striking explanation

of the hadron masses.145 The energy stored in a flux-tube of length L and string

tension σ is simply σL. (Here, L should be large enough to be in the linear regime

but shorter that the string-breaking distance.) Imagine attaching a massless quark
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Fig. 5. Excited-state spectrum of potentials.141 The representations R correspond to the gluonic
angular momentum along the source-sink axis, with subscript g (u) for CP = ±1, and for Σ wave

a superscript for parity upon reflection through the midpoint. To convert from string-tension units
to physical units, note σ1/2 ≈ 420 MeV ≈ 2.1 fm−1. Plot from Ref. 122.
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to one end of the tube and an antiquark to the other. The ends must move with

the speed of light, and the total mass M = E/c2 of this “meson” is

M =

∫ L/2

−L/2

σ dx

[1− v(x)2]1/2
=

∫ L/2

−L/2

σ dx

[1− (2x/L)2]1/2
= 1

2πσL, (25)

where the denominator accounts for relativistic motion. The kinetic energy increases

the mass by π
2 − 1 ≈ 60%. The angular momentum of this system is

J =

∫ L/2

−L/2

σ v(x)x dx

[1− v(x)2]1/2
=

2

L

∫ L/2

−L/2

σ x2 dx

[1− (2x/L)2]1/2
= 1

8πσL
2 =

M2

2πσ
, (26)

where the last step comes from eliminating L in favor of M . Experimental measure-

ments of meson masses and spin satisfy such linear relationships—known as Regge

trajectories—between J and M2, albeit with nonzero intercepts (from effects ne-

glected here). Equations (25) and (26) are interesting because they are simple. The

idea behind them is supported, however, by the empirical observation that heavy-

light meson wave functions computed directly with lattice gauge theory coincide

with Schrödinger wave functions determined from a relativistic kinetic energy and

the heavy-quark potential computed with lattice gauge theory.146

Let us return to chiral symmetry breaking. Before quarks or partons had been

proposed, Nambu147 pointed out that the small mass of the pion (140 MeV) could

be explained if an axial symmetry was spontaneously broken. QCD possesses such

symmetries in the limit of vanishing quark mass. Indeed, in this idealization, the

pion mass would vanish by the following theorem148

M2
π〈ψ̄ψ〉 = 0. (27)

This picture has been demonstrated via quantiative lattice-QCD calculations of the

chiral condensate,149 firmly establishing 〈ψ̄ψ〉 6= 0. The nonzero pion mass arises

owing to the explicit symmetry breaking from the up and down quark masses. As a

consequence, one expects M2
π ∝ mq, which has been amply demonstrated in lattice

QCD.124,134 Since the nucleon and pion experience residual strong interactions, the

nucleon is surrounded with a cloud of pions. The size of the nucleon, and other

hadrons is, thus, dictated by the pion Compton wavelength; the density of nuclear

material is proportional to MNM
3
π .

The richness of everyday life stems from chemistry, which, in turn, hinges both

on an attractive force between protons and neutrons to hold atomic nuclei together,

and a short-range repulsive force to aid nuclear stability. In QCD, the attractive

force is akin to van der Waals forces among molecules and can be vividly and

successfully modeled by meson exchange, particularly pion exchange. The detailed,

first-principles study of these forces is just beginning.150,151 Recent developments

have been encouraging and illustrate that the origin of mass is not the only exciting

problem in physics.



September 28, 2012 0:32 World Scientific Review Volume - 9.75in x 6.5in kronfeld

18 A. S. Kronfeld

4. Summary and Outlook

The origin of mass is a compelling problem with many facets. This article has

touched on only one, the origin of mass of everyday objects, which can be pinpointed

directly to the protons and neutrons in atomic nuclei. Remarkably, most of the

nucleon mass has a dynamical origin: strong confining forces influenced by chiral

symmetry breaking generate the mass and size of nucleons and, hence, nuclei. We

understand these dynamics as quantum chromodynamics. With powerful numerical

calculations based on lattice gauge theory, we have disentangled puzzles and verified

many conjectures.

Because of asymptotic freedom, QCD as a quantum field theory holds consis-

tently at all energy scales. That said, as the exploration of particles physics unfolds

in the future, it is conceivable that physicists will discover a substructure to quarks

or a unification of the chromodynamic interaction with the other gauge interactions

of the standard model. Such discoveries would relegate the SU(3) gauge symmetry

of QCD to a (relatively) low-energy description of nature. Moreover, in such frame-

works a high-energy value of the QCD gauge coupling is specified, and, in many

cases, a set of thresholds affecting its running is specified as well. One can thus

imagine connecting ΛQCD to the scales of a more fundamental, more microscopic

theory of (most) everything. Even so, one would still have to concede that chro-

modynamics generate everyday mass. The key physics is the attraction of gluons

to each other, the relativistic kinetic energy of light quarks, and the constraints

imposed by dynamical chiral symmetry breaking.
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Appendix: Heisenberg’s Gitterwelt and Hein’s Soma

Werner Heisenberg hoped for more from the lattice than mere mathematical rigor.

In a 1930 letter to Niels Bohr, he argued that a universe with a fundamental length,

such as a spatial lattice spacing, would not suffer from many problems (then) facing

quantum field theory and nuclear and atomic physics. For a translation of the

letter and reconstruction of Heisenberg’s ideas, see Carazza and Kragh.152 Bohr
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responded disapprovingly to the idea. Heisenberg did not publish a paper on his

“Gitterwelt” (“lattice world”), as it came to be known, although he did make a

technical remark that the lattice tames the ultraviolet divergence in the electron’s

self energy.153 Nevertheless, Heisenberg’s Gitterwelt developed a philosophical and

scientific following, which was met with some disdain.152,154 I’ve been told155 that

when Wilson presented his lattice gauge theory in a seminar at Caltech, he deflected

an aggressive line of questioning from Richard Feynman with, “I am not a kook; this

is not a kook’s lattice!” This give-and-take seems to reflect a lingering apprehension

against a lattice as fundamental, while underappreciating its mathematical utility.

A lasting outgrowth of Heisenberg’s lattice world lies not in theoretical physics

but in a geometric puzzle called Soma, which was created by the Danish inventor and

poet Piet Hein.156,157 Sometime in the early 1930s, Hein—among other avocations

a physics groupie—attended a lecture by Heisenberg in Copenhagen. Whether the

lecture was on the quantization of QED or on the lattice world, no one seems to

know. Bored, Hein sketched a small three-dimensional lattice on a piece of paper

and realized something interesting. The seven irregular shapes made from three or

four cubes (see Fig. 6) can be assembled into a larger 3× 3× 3 cube. These pieces

can be assembled in many other mind-bending ways, and Soma has become one of

the most popular three-dimensional puzzles of all time.

Fig. 6. The seven shapes in Soma grew out of lattice field theory. Graphic by Alexander Kronfeld
created with Minecraft ( c© 2009–2012 Mojang).
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