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A search for a narrow Higgs boson resonance in the diphoton mass spectrum is presented based
on data corresponding to 10 fb−1 of integrated luminosity from proton-antiproton collisions at

√
s =

1.96 TeV collected by the CDF experiment. In addition to searching for a resonance in the diphoton
mass spectrum, we employ a multivariate discriminant technique for the first time in this channel
at CDF. No evidence of signal is observed, and upper limits are set on the cross section times
branching ratio of the resonant state as a function of Higgs boson mass. The limits are interpreted
in the context of the standard model with an expected (observed) limit on the cross section times
branching ratio of 9.9 (17.0) times the standard model prediction at the 95% credibility level for a
Higgs boson mass of 125 GeV/c2. Moreover, a Higgs boson with suppressed couplings to fermions
is excluded for masses below 114 GeV/c2 at the 95% credibility level.
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I. INTRODUCTION

The standard model (SM) of particle physics has
proven to be a robust theory that accurately describes
the properties of elementary particles and the forces of in-
teraction between them. However, the origin of mass has
remained an unsolved mystery for decades. The SM sug-
gests that particles acquire mass due to interactions with
the Higgs field via spontaneous symmetry breaking [1].
Direct searches at the Large Electron-Positron Collider
(LEP) [2], combined with recent search results from the
Tevatron [3] and the Large Hadron Collider (LHC) [4, 5],
exclude all potential SM Higgs boson masses outside the
ranges 116.6–119.4 GeV/c2 and 122.1–127 GeV/c2.

In the SM, the branching ratio for a Higgs boson de-
caying into a photon pair B(H → γγ) is maximal for
Higgs boson masses between about 110 and 140 GeV/c2.
This is a mass range that is most useful for Higgs boson
searches at the Fermilab Tevatron [3] and is favored by in-
direct constraints from electroweak observables [6]. The

ccUniversidad Tecnica Federico Santa Maria, 110v Valparaiso,
Chile, ddYarmouk University, Irbid 211-63, Jordan
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SM H → γγ branching ratio peaks at a value of about
0.23% for a Higgs boson mass mH = 125 GeV/c2 [7].
This is a very small branching ratio; however, the distinc-
tive signal that photons produce in the detector makes
H → γγ an appealing search mode. Compared to the
dominant decay modes involving b quarks, a larger frac-
tion of H → γγ events can be identified and the diphoton
invariant mass of these events would cluster in a narrower
range, thus providing a better discriminator against the
smoothly distributed background. There are also theo-
ries beyond the standard model that predict a suppressed
coupling of a Higgs boson to fermions. In these “fermio-
phobic” Higgs boson models, the diphoton decay can be
greatly enhanced [8].

The Collider Detector at Fermilab (CDF) and D0 ex-
periments at the Tevatron have searched for both a SM
Higgs boson, H, and a fermiophobic Higgs boson, hf ,
decaying to two photons [9–12]. The CDF and D0 ex-
periments recently set 95% credibility level (C.L.) up-
per limits on the cross section times branching ratio
σ × B(H → γγ) relative to the SM prediction and on
B(hf → γγ) using data corresponding to an integrated
luminosity L of 7.0 fb−1 [13] and 8.2 fb−1 [14], re-
spectively. The hf result sets a lower limit on mhf of
114 GeV/c2 and 112.9 GeV/c2, respectively. These re-
sults surpassed for the first time the 109.7 GeV/c2 mass
limit obtained from combined searches at the LEP col-
lider at CERN [8].

Recently, the ATLAS and CMS experiments at the
LHC at CERN have searched for a SM Higgs boson
decaying to two photons using L = 4.9 fb−1 [15] and
4.8 fb−1 [16], respectively. In the low mass range, rates
corresponding to less than twice the SM cross section are
excluded at 95% C.L. An excess of nearly 2σ is present
in both the CMS and ATLAS results, which could be
consistent with a SM Higgs boson with a mass near
125 GeV/c2.

In this Letter, we present a search for a Higgs boson
decaying to two photons using the final CDF diphoton
data set, corresponding to an integrated luminosity of
10 fb−1. This analysis searches the diphoton mass dis-
tribution for a narrow resonance that could reveal the
presence of a SM or fermiophobic Higgs boson, updating
the previous CDF result [13] with more than 40% addi-
tional integrated luminosity. We furthermore implement
a new multivariate technique for events that contain two
central photons, using both diphoton and jet kinematic
variables to improve the sensitivity for identifying a Higgs
boson signal from the diphoton backgrounds.

II. HIGGS BOSON SIGNAL MODEL

For the SM search, we consider the three most likely
production mechanisms at the Tevatron: gluon fusion
(GF); associated production (VH), where a Higgs boson
is produced in association with a W or Z boson; and
vector boson fusion (VBF), where a Higgs boson is pro-

duced alongside two quark jets. As an example, the SM
cross sections for mH = 125 GeV/c2 are 949.3 fb [17],
208.0 fb [18], and 65.3 fb [19], respectively. In the fermio-
phobic search, we consider a benchmark model in which
a Higgs boson does not couple to fermions, yet retains
its SM couplings to bosons [8]. In this model, the GF
process is suppressed and fermiophobic Higgs boson pro-
duction is dominated by VH and VBF. With L= 10 fb−1,
about 28 (43) H → γγ (hf → γγ) events are predicted
to be produced for mH = 125 GeV/c2.
Only about 25% of these events would produce pho-

tons that are absorbed in well-instrumented regions of
the CDF detector and pass the full diphoton selection
discussed in Section III [13]. This fraction, along with the
predicted distributions of kinematic variables, is obtained
from a simulation of Higgs boson decays into diphotons.
For each Higgs boson mass hypothesis tested in the range
100–150 GeV/c2, in 5 GeV/c2 steps, signal samples are
developed from the pythia 6.2 [20] Monte Carlo (MC)
event generator and a parametrized response of the CDF
II detector [21, 22]. All pythia samples were made with
CTEQ5L [23] parton distribution functions, where the
pythia underlying event model is tuned to CDF jet
data [24]. Each signal sample is corrected for multiple
interactions and differences between the identification of
photons in the simulation and the data [13]. The GF
signal is furthermore corrected based on a higher-order
theoretical prediction of the transverse momentum dis-
tribution [25].

III. DETECTOR AND EVENT SELECTION

We use the CDF II detector [26] to identify photon
candidate events produced in pp̄ collisions at

√
s = 1.96

TeV. The silicon vertex tracker [27] and the central outer
tracker [28], contained within a 1.4 T axial magnetic
field, measure the trajectories of charged particles and
determine their momenta. Particles that pass through
the outer tracker reach the electromagnetic (EM) and
hadronic calorimeters [29–31], which are divided into
two regions: central (|η| < 1.1) and forward or “plug”
(1.1 < |η| < 3.6). The EM calorimeters contain fine-
grained shower maximum detectors [32], which measure
the shower shape and centroid position in the plane trans-
verse to the direction of the shower development.
The event selection is the same as in the previous

H → γγ search [13]. Events with two photon candi-
dates are selected and the data are divided into four in-
dependent categories according to the position and type
of the photons. In central-central (CC) events, both pho-
ton candidates are detected within the fiducial region of
the central EM calorimeter (|η| < 1.05); in central-plug
(CP) events, one photon candidate is detected in this re-
gion and the other is in the fiducial region of the plug
calorimeter (1.2 < |η| < 2.8); in central-central events
with a conversion (C�C), both photon candidates are in
the central region, but one photon converts and is recon-
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FIG. 1. The invariant mass distribution of CC photon pairs in
the data is shown for (a) the entire p

γγ

T
region used in the SM

Higgs boson diphoton resonance search and (b) the highest-
p
γγ

T
region (the most sensitive region) used in the hf diphoton

resonance search. Each distribution shows a fit to the data
for the hypothesis of mH = 125 GeV/c2, for which the signal
region centered at 125 GeV/c2 is excluded from the fit. The
expected shape of the signal from simulation is shown in the
inset of (a).

structed from its e
+
e
− decay products; in central-plug

events with a conversion (C�P), there is one central con-
version candidate together with a plug photon candidate.

In order to improve sensitivity for the fermiophobic
Higgs boson search, the event selection is extended by
taking advantage of the final-state features present in the
VH and VBF processes. Because the Higgs boson from
these processes will be produced in association with a
W or Z boson, or with two jets, the transverse momen-
tum of the diphoton system p

γγ

T
is generally higher rel-

ative to the diphoton backgrounds. A requirement of
p
γγ

T
> 75 GeV/c isolates a region of high hf sensitiv-

ity, retaining roughly 30% of the signal while removing
99.5% of the background [12]. Two lower-pγγ

T
regions,

p
γγ

T
< 35 GeV/c and 35 GeV/c < p

γγ

T
< 75 GeV/c, are

additionally included and provide about 15% more sen-
sitivity to the hf signal. With four diphoton categories
(CC, CP, C�C, and C�P) and three p

γγ

T
regions, twelve

independent channels are included for the fermiophobic
Higgs boson search.

IV. DIPHOTON RESONANCE SEARCH

The decay of a Higgs boson into a diphoton pair would
appear as a very narrow peak in the distribution of the
invariant mass mγγ of the two photons. The diphoton
mass resolution as determined from simulation is better
than 3% for the Higgs boson mass region studied here and
is limited by the energy resolution of the electromagnetic

calorimeters [33] and the ability to identify the primary
interaction vertex [13]. The diphoton invariant mass dis-
tribution for the most sensitive search category in the SM
and fermiophobic scenarios is provided in Fig. 1, with an
inset showing the signal shape expected from simulation.
In each diphoton category, we perform a search of the
mγγ spectrum for signs of a resonance.
For this search, the total diphoton background is mod-

eled from a fit to the binned diphoton mass spectrum of
the data using a log-likelihood (logL) method, as de-
scribed in [13]. The fit is performed independently for
each diphoton category and includes only the sideband
region for each mH hypothesis, which is the control re-
gion excluding a mass window centered on the Higgs bo-
son mass being tested. The full width of the mass win-
dow is chosen to be approximately ±2 standard devia-
tions of the expected Higgs boson mass resolution, which
amounts to 12 GeV/c2, 16 GeV/c2, and 20 GeV/c2 for
mass hypotheses of 100–115 GeV/c2, 120–135 GeV/c2,
and 140–150 GeV/c2, respectively. The fit for the CC
category for mH = 125 GeV/c2 is shown in Fig. 1.

V. MULTIVARIATE DISCRIMINATOR

The diphoton mass distribution is the most powerful
variable for separating a Higgs boson signal from the
diphoton backgrounds. However, other information is
available that can be used to further distinguish this
signal. We improve the most sensitive search category
(CC) by using a “Multi-Layer Perceptron” neural net-
work (NN) [34], which combines the information of sev-
eral well-modeled kinematic variables into a single dis-
criminator, optimized to separate signal and background
events. Four diphoton kinematic variables are included:
mγγ , p

γγ

T
, the difference between the azimuthal angles of

the two photons, and the cosine of the photon emission
angle relative to the colliding hadrons in the diphoton
rest frame (the Collins-Soper angle) [35]. For events with
jets, we also include four variables related to the jet ac-
tivity, which are particularly useful for identifying VBF
and VH signal events. These variables are the number of
jets in the event, the sum of the jet transverse energies,
and the event sphericity and aplanarity [36]. Jets are re-
constructed from tower clusters in the hadronic calorime-
ter within a cone of radius 0.4 in the η − φ plane [37].
Each jet is required to have |η| < 2 and a transverse
energy ET > 20 GeV, where the energy is corrected for
calorimeter response, multiple interactions, and absolute
energy scale.
In order to optimize the performance of the method,

we divide the CC category into two independent subsam-
ples of events: the CC0 category for events with no jets
and the CCJ category for events with at least one jet.
The CC0 category uses a network trained with only the
four diphoton variables; the CCJ category uses a network
trained with the four diphoton and four jet variables.
The sideband fit used in the diphoton resonance search



6

provides an estimate of the total background predic-
tion in each signal mass window; however, the multivari-
ate analysis requires a more detailed background model.
Specifically, we divide the background into its distinct
components in order to best model all input variables
used by the discriminant, which is also sensitive to cor-
relations. There are two main background components
in the CC data sample: a prompt diphoton (γγ) back-
ground produced from the hard parton scattering or from
hard photon bremsstrahlung from energetic quarks, and
a background comprised of γ-jet and jet-jet events (γj +
jj ) in which the jets are misidentified as photons [38]. To
model the shape of kinematic variables in the γγ back-
ground, we use a pythiaMC sample developed and stud-
ied in a measurement of the diphoton cross section [35].
To model the variable shapes in the γj + jj background,
we obtain a data sample enriched in misidentified pho-
tons by selecting events for which one or both photon
candidates fail the NN photon ID requirement [13].

In the diphoton cross section analysis [35] it was
found that a p

γγ

T
-dependent correction was needed for

the pythia modeling. We adopt the correction for this
analysis, reweighting the p

γγ

T
distribution from pythia

to match the p
γγ

T
distribution from control regions in

prompt diphoton data. For each category, CC0 and
CCJ, and for each Higgs boson mass hypothesis, event
weights are derived based on the sideband regions, ex-
cluding the signal mass window. The weights are derived
by fitting a smooth function to the ratio of the p

γγ

T
dis-

tribution from the data to that from the pythia predic-
tion. The best fit in the CC0 category is obtained from
a polynomial (constant) function for p

γγ

T
< 50 GeV/c

(pγγ
T

> 50 GeV/c). A different polynomial (constant)
function provides the best fit in the CCJ category for
p
γγ

T
< 60 GeV/c (pγγ

T
> 60 GeV/c). Figure 2 shows the

reweighting function for a Higgs boson mass hypothesis
of 125 GeV/c2. The solid curve shows the best fit to
the data and the other two curves show the variations
induced by propagating the 68% C.L. fit uncertainties to
the fitting function. The rise of the reweighting function
from p

γγ

T
∼ 20 GeV/c to pγγ

T
∼ 50 GeV/c in both the CC0

and CCJ categories is interpreted in Ref. [35] as an effect
of parton fragmentation not modeled in pythia, which
contributes to the prompt diphoton production cross sec-
tion in that range.

The relative contributions of the two background com-
ponents are obtained from a fit to the diphoton data.
Three histograms for each NN input variable are con-
structed: one from the γγ background sample after
reweighting, one from the γj + jj background sample,
and one from the diphoton data. Events used for the fit
are required to have diphoton mass values greater than
70 GeV/c2 and to be outside of the signal mass window.
The histograms are then used to build a χ

2 function de-
fined by

χ
2 =

Nbins�

i=1

Nvariables�

j=1

�
(αgij + βfij − dij)2

dij

�
(1)
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FIG. 2. For a Higgs boson mass of 125 GeV/c2, the reweight-
ing function obtained from the ratio of the p

γγ

T
distribution

in pythia to the p
γγ

T
distribution in prompt diphoton data,

for events with (a) zero jets and (b) at least one jet. In both
plots, the best fit to the pythia-to-data ratio points is given
by a solid curve. The other two curves show the systematic
uncertainty of the fit.

where gij , fij , and dij refer to the number of events in the
ith bin of the jth input variable for the prompt γγ back-
ground, γj + jj background, and diphoton data samples,
respectively. The sums are over all bins of each input
variable for which there are at least 5 events in the data,
and the global α and β coefficients are determined by
minimizing the χ2 function. This function is defined and
minimized separately for each Higgs boson mass hypoth-
esis and for each category (CC0 and CCJ).
A neural network discriminant is trained separately

for each mass hypothesis using signal and background
events. The signal events used in the training are opti-
mized for the SM scenario and are composed of GF, VH,
and VBF pythia samples so that the corresponding to-
tal numbers are proportional to their SM cross section
predictions. The background sample is made by taking
a portion of the γj + jj sample available for each mass
hypothesis and adding γγ events from pythia weighted
by the ratio α/β from the χ

2 fit for the given mass hy-
pothesis.
After training, the NN is applied to the diphoton data

sample. Figure 3 shows input variables such as the p
γγ

T
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FIG. 3. For a Higgs boson mass of 125 GeV/c2, a compari-
son of the data to the background prediction in (a) the p

γγ

T

distribution for the CC0 category and (b) the distribution of
the sum of the reconstructed jet ET for the CCJ category.
The expected SM Higgs boson signal for the three production
processes is multiplied by a factor of 20.

distribution for events with no reconstructed jets and the
sum of the jet ET for events with ≥1 reconstructed jet.
The signal shapes are scaled to 20 times the expected
number of reconstructed events in the SM scenario. The
background prediction is also provided. While the χ

2

fit described by Eq. (1) is used to fix the relative com-
position of the γγ and γj + jj background components,
the total expected number of background events is more
accurately determined from sideband mass fits, which is
the technique described in Section IV. The resulting NN
shapes for mH = 125 GeV/c2 are provided in Figure 4.

VI. SYSTEMATIC UNCERTAINTIES

The sources of systematic uncertainties on the ex-
pected number of signal events are the same as in the
previous CDF H → γγ search [13]. They arise from the
conversion ID efficiency (7%), the integrated luminosity
measurement (6%), varying the parton distribution func-
tions used in pythia (up to 5%) [39, 40], varying the
parameters that control the amount of initial- and final-
state radiation from the parton shower model of pythia

)2NN Output (125 GeV/c
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FIG. 4. For a Higgs boson mass of 125 GeV/c2, a comparison
of the NN output distributions for the data and the back-
ground prediction for (a) the CC0 category and (b) the CCJ
category. The expected SM Higgs boson signal for the three
production processes is multiplied by a factor of 20.

(about 4%), and the pythia modeling of the shape of
the p

γγ

T
distribution for the hf signal (up to 4%) [41].

Finally, we include uncertainties from the photon ID ef-
ficiency (up to 4%), the trigger efficiency (less than 3%),
and the EM energy scale (less than 1%).
The statistical uncertainties on the total background

in the signal region are determined by the fit. They are
4% or less for the channels associated with the SM dipho-
ton resonance search and are less than 7% for the CC0
and CCJ categories used in the multivariate technique.
For the channels associated with the fermiophobic Higgs
boson diphoton resonance search, the background rate
uncertainty is 12% or less, except for the high-pγγ

T
bins

with conversion photons, where it is 20%.
For the search using the multivariate technique, in

addition to the rate uncertainties summarized above,
we consider shape uncertainties and bin-by-bin statis-
tical uncertainties of the NN discriminant. The signal
shape uncertainties are associated with initial- and final-
state radiation and the jet energy scale [37], and the
background shape uncertainties are associated with the
pythia p

γγ

T
-correction and the jet energy scale. The

pythia shape uncertainties due to the p
γγ

T
fits are taken

as uncorrelated between the CC0 and the CCJ categories
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because the fits determining the corrections for each cat-
egory are done independently. The jet energy scale shape
uncertainties are correlated between the two categories in
order to take into account event migration between cat-
egories. The dominant uncertainty in the multivariate
analysis is the bin-by-bin statistical uncertainty of the
γj + jj background histograms.

VII. RESULTS

No evidence of a narrow peak or any other structure
is visible in the diphoton mass spectrum or the NN out-
put distribution. We calculate a Bayesian C.L. limit for
each Higgs boson mass hypothesis based on a combina-
tion of likelihoods from the discriminant distributions for
all channels in the corresponding mass signal region. The
combined limits for the SM search use the NN discrimi-
nants of the CC0 and CCJ categories and the mass dis-
criminants from the CP, C�C, and C�P categories. The
fermiophobic limits use the NN discriminants of the CC0
and CCJ categories and the mass discriminants from the
CP, C�C, and C�P categories divided into pγγ

T
regions. For

the limit calculation, we assume a flat prior (truncated at
zero) for the signal rate and a truncated Gaussian prior
for each of the systematic uncertainties. A 95% C.L. limit
is determined such that 95% of the posterior density for
σ × B(H → γγ) falls below the limit [42]. The expected
95% C.L. limits are calculated assuming no signal, based
on expected backgrounds only, as the median of 2 000
simulated experiments. The observed 95% C.L. limits on
σ × B(H → γγ) are calculated from the data.

For the SM Higgs boson search, the results are given
relative to the theory prediction, where theoretical cross
section uncertainties of 14% on the GF process, 7% on the
VH process, and 5% on the VBF process are included in
the limit calculation [43]. For the hf model, SM cross sec-
tions and uncertainties are assumed (GF excluded) and
used to convert limits on σ × B(hf → γγ) into limits on
B(hf → γγ). The SM and fermiophobic limit results for
the CC category alone are provided in Table I, showing
the gain obtained by incorporating a multivariate tech-
nique for this category. The combined limit results for
both searches are displayed in Table II and graphically in
Fig. 5. Limits are also provided on σ × B(H → γγ) for
the SM search without including theoretical cross section
uncertainties. For the SM limit at mH = 120 GeV/c2, we
observe a deviation of greater than 2.5σ from the expec-
tation. After accounting for the trials factor associated
with performing the search at 11 mass points, the signifi-
cance of this discrepancy decreases to less than 2σ. When
the analysis is optimized for the fermiophobic benchmark
model, no excess is observed. For the hf model, we ob-
tain a limit of mhf < 114 GeV/c2 by linear interpolation
between the sampled values of mhf based on the inter-
section of the observed limit and the model prediction.

TABLE I. Expected and observed 95% C.L. upper limits
on the production cross section multiplied by the H → γγ

branching ratio relative to the SM prediction for the most
sensitive category (CC) using the NN discriminant. For com-
parison, values for the CC category are also provided based
on the diphoton resonance technique, which uses the mγγ

shape as a discriminant for setting limits. The expected and
observed 95% C.L. upper limits on the hf branching ratio
(in %) are provided in parentheses, based on both the NN
discriminant and diphoton resonance technique for the CC
category.

mH NN discriminant mγγ discriminant
(GeV/c

2) Expected Observed Expected Observed
100 13.9 (4.6) 10.6 (4.7) 15.1 (5.1) 11.3 (3.5)
105 12.6 (4.6) 13.0 (6.1) 14.1 (5.5) 10.6 (5.1)
110 11.9 (5.2) 11.8 (5.5) 13.5 (5.8) 11.4 (6.3)
115 11.4 (5.2) 14.1 (6.7) 12.9 (6.2) 15.4 (6.0)
120 11.3 (5.5) 23.2 (9.2) 12.8 (6.6) 22.2 (7.3)
125 11.7 (6.4) 20.5 (10.2) 12.9 (6.9) 21.2 (8.0)
130 12.5 (7.0) 13.1 (6.5) 13.9 (7.3) 16.0 (6.0)
135 13.7 (7.7) 15.0 (6.0) 15.3 (7.9) 17.2 (4.9)
140 16.5 (8.2) 20.4 (8.1) 17.5 (8.3) 25.4 (5.9)
145 18.5 (8.4) 27.4 (11.8) 21.2 (8.6) 24.3 (8.8)
150 25.7 (8.7) 17.1 (7.0) 28.2 (9.0) 15.1 (8.4)

VIII. SUMMARY AND CONCLUSIONS

This Letter presents the results of a search for a nar-
row resonance in the diphoton mass spectrum using data
taken by the CDF II detector at the Tevatron. We have
improved upon the previous CDF analysis by implement-
ing a neural network discriminant to increase sensitiv-
ity in the most sensitive diphoton category by as much
as 13% (17%) for the SM (fermiophobic) scenario. In
addition, we have included the full CDF diphoton data
set, which adds more than 40% additional integrated lu-
minosity relative to the previous diphoton Higgs boson
search. There is no significant evidence of a resonance in
the data. Limits are placed on the production cross sec-
tion times branching ratio for Higgs boson decay into a
photon pair and compared to the predictions of the stan-
dard model and a benchmark fermiophobic model. The
latter results in a limit on the fermiophobic Higgs boson
mass of mhf < 114 GeV/c2 at the 95% C.L.
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TABLE II. Expected and observed 95% C.L. upper limits on the production cross section times branching ratio relative to the
SM prediction, the production cross section times branching ratio with theoretical cross section uncertainties removed, and the
hf branching ratio. The fermiophobic benchmark model prediction for B(hf → γγ) is also shown for comparison.
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