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ABSTRACT

We use N-body-spectro-photometric simulations to investigate the impact of incomplete-
ness and incorrect redshifts in spectroscopic surveys to photometric redshift training and cal-
ibration and the resulting effects on cosmological parameter estimation from weak lensing
shear-shear correlations. The photometry of the simulations is modeled after the upcoming
Dark Energy Survey and the spectroscopy is based on a low/intermediate resolution spectro-
graph with wavelength coverage 800A < A < 9500A. The principal systematic errors
that such a spectroscopic follow-up encounters are incompleteness (inability to obtain spec-
troscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a
neural network-based approach can effectively describe the spectroscopic incompleteness in
terms of the galaxies’ colors, so that the spectroscopic selection can be applied to the photo-
metric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases
to cosmology, although the statistical constraints degrade somewhat because the photometric
survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts
have a more severe impact: the cosmological biases are intolerable if more than a percent of
the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can also
substantially degrade the accuracy of training set based photo-z estimators. The main problem
is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects
atz > 1.3. We discuss several approaches for reducing the cosmological biases, in particular
finding that photo-z error estimators can reduce biases appreciably.

1 INTRODUCTION redshifts. As discussed in detail in Cunha et al. (2012), spectro-
scopic samples used to train photo-zs (cf. Sec. 4.2.2) need to be
Large-scale structure surveys benefit enormously from the infor- locally (in the space of observables) representative subsamples of
mation about galaxy redshifts. The redshift information reveals the the photometric samples. For calibration of the photwrar distri-
third spatial dimension of a galaxy survey, enabling a much more butions however, the spectroscopic sample must be globally repre-
accurate mapping of the expansion and growth history of the Uni- sentative. More specifically, the ideal spectroscopic survey should
verse relative to the case when only angular information is avail- satisfy the following properties:
able. Unfortunately, obtaining spectroscopic redshifts for all galax-
ies is typically impossible in wide-field imaging surveys due to the
large number £ 10%-10°) of galaxies and the high cost of spec-
troscopy, especially for the high-redshift galaxies. To circumvent

e Large area:A spectroscopic survey needs to span a large area
to beat down sample variance, and has to have tens of thousands
this problem, the current approach in the community is to estimate of galaies to beat down sh_o_t-noise in the photo-_z error calibration

' (Cunha et al. 2012). In addition, the spectroscopic sample needs to

Lergzzlgznu(f;ﬂ?egh?s;?x drsnheifatlselfsrtierrr?s;ztss’agl.(rfllgv)\(/isafsror:o?ozr?\évt be imaged under conditions that faithfully reproduce the variations

ic redshift h i q i th P ¢ in the full photometric sample (see e.g. Nakajima et al. 2012). Note
ric redshifts, or photo-zs, and are necessarily coarser than Spectroy, ., requirements might be alleviated with a correction to the indi-
scopic redshifts. Because of the intrinsically large errors, photo-zs

woicall b d directly f logical s | vidual galaxy redshift likelihoods (Bordoloi et al. 2010; Bordoloi
ypically cannot be used directly for cosmological analysis, Uniess o 5 2012). In the context of dark energy parameter constraints,
the photo-z error distributions can be quantified precisely.

however, a full analysis that goes beyond the overall redshift dis-
The standard approach to quantify, or calibrate, the photo-z er- tribution and involves the full error matri®(zs|z,) is required
ror distributions is to use a small subsample of galaxies with known (Bernstein & Huterer 2010; Hearin et al. 2010).
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e High completenessThe spectroscopic survey needs to span
the same range of redshifts, galaxy types, and other olismrah
selection parameters as the photometric survey. Whenghisti
possible, we say that the surveyircomplete In that case, the
photometric survey has to be culled to ensure both surveys ha
matching selections. Alternatively, the galaxies in thecsppscopic
survey can be weighted so as to reproduce the statisticaépies
of the photometric sample. Achieving high completenessintf
spectroscopic surveys is a major challenge.

e Few wrong redshiftstWe show in this paper that spectroscopic
surveys need to have extremely accurate redshifts. As slogwn
many authors (e.g. Ma et al. 2006; Huterer et al. 2006; Amara &
Refregier 2007; Abdalla et al. 2008; Ma & Bernstein 2008;cKit
ing et al. 2008; Hearin et al. 2010) the photo-z calibratiequires
exquisite knowledge of the photo-z error distribution.dgsrin the
spectroscopic redshifts impair the characterization efgghoto-z
errors and severely degrade our ability to extract cosnicdbgon-
straints from photometric surveys.

For fixed observing resources, there is a conflict between ac-

curate redshifts and completeness goals: as we stretclhseeva-
tional limits (i.e. by observing very faint galaxies) to salmred-
shifts that would mimic the distribution of the photomesample,
we increase the fraction of incorrect spectroscopic rétsiis we
will show, redshift accuracy is more important for the upamgn
surveys.

The purpose of this paper is to assess the impact of spectro-

scopic selection, i.e. completeness and accuracy, orgtiméng and
calibration of photometric redshifts and the resulting &cipon cos-
mological constraints derived from weak lensing sheaesberre-
lations. To achieve this goal, we combine N-body, photoimeind
spectroscopic simulations patterned after the proposachcteris-
tics of the Dark Energy Survey (DES) and expected spectpisco
follow-up. We then propagate the errors due to imperfectglzo
calibration on the cosmological parameter constraineriefl from
the weak gravitational lensing power spectrum observatfore-
casted for the DES.

The paper is organized as follows. In Sec. 2 we provide a ped-
agogical introduction to the main issues driving complessnand
accuracy of a spectroscopic sample. In Sec. 3 we briefly itbescr
the simulated catalogs we use, leaving the details of thalazat
generation to Appendix A. In Sec. 4 we give a step-by-stepgeyui
describing how we go from the simulated data to the cosmelogi
cal constraints, detailing the methods used at each stapltRare
presented in Sec. 5. We discuss the implications of our fgediar
spectroscopic survey design in Sec. 6 and present conetugio
Sec. 7.

2 BASICSOF LOW-RESOLUTION SPECTROSCOPY

In this section we provide a brief pedagogical overview sfigs in
spectroscopy, targeted to theorists.

2.1 Key parameters of spectroscopic surveys

Spectroscopic redshifts are often derived by cross-aing a li-
brary of galaxy templates with observed (or simulated) speEor
fixed observing conditions (and in the absence of instruaieyts-
tematic effects), three main items determine the qualithefesti-
mated spectroscopic redshifts:

(i) Spectral coverageThe wavelength range covered by the
spectrograph needs to bracket a few significant spectralrea
As shown in the bottom plot of Fig. A1, for our simulation theve
erage is roughly from3500A to 95004 , with decreasing sensitivity
at longer wavelengths.

(ii) Integration time:The faintest galaxies detectable by upcom-
ing optical surveys can be a few orders of magnitude faihtan the
atmospheric emission. Thus, significant integration tinasswell
as careful subtraction of the sky background, are needebt&ino
secure redshift measurements.

(iii) Cross-correlation templategiaving an accurate and repre-
sentative set of galaxy spectral distribution templatémjsortant
in deriving accurate redshifts and associated uncersinAs we
discuss in the next section, this is particularly importantearly-
type galaxies and galaxies at> 1.5 (also known as thesdshift
deser} because of the lack of strong emission features in the spec-
trograph window.

2.2 Principal emission lines

The two main emission lines used in optical spectroscopyttere
[Ol1] (singly-ionized oxygen) line a3727A and theH o (firsttran-
sition in the Balmer series) line #563A. The main absorption
feature is thet000A break, caused by a confluence of absorption
lines, particularly the H and K Calcium lines. In high-ragidn
spectroscopy, [Oll] is the most important line becauseacisially

a doublet — a pair of closely spaced lines. High-resolutioseova-
tions - e.g. with DEEP2 (Newman et al. 2012), or SDSS (York.et a
2000) - can distinguish the doublet and hence confidentiytitye
[Oll]. Low-resolution observations - e.g. as in the VVDS sy
(Le Fevre et al. 2005), which is the case we are simulatiglg,an
more than one feature. The limited spectral range of theunmint
sets the regions of redshift space where one can confidelgty i
tify spectral features. In the case of VVDS, for exampleretere
roughly 5 different redshift regions:

e 2 < 0.4: The Ha can be detected, but [Oll] cannot. There is
risk of confusingH « of az < 0.4 galaxy for [Oll] emission of a
galaxy atz > 0.8. Fortunately, these galaxies are mostly brighter
and thus theH « line combined with less prominent spectral fea-
tures is often sufficient to estimate a redshift.

e 0.4 < z < 0.6: Neither [Oll] nor Ha can be detected. Red-
shifts have to be estimated based on [Olll] &g lines.

e 0.6 < z < 0.9: [Oll] and other important lines ([Olll] -
5007A, HJj3 - 48614) are detectable, but get progressively fainter
towards higher redshift (due to increasing atmospherisenand
instrumental sensitivity).

e 0.9 < z < 1.5:[Olllland H B are out of the instrument range,
but [Oll] is still detectable.

e z > 1.5 (the redshift desert): Only minor features in the spec-
tra are available. Visual inspection to reduce incompketens es-
sential in this range. Potential for wrong redshifts is @ased be-
cause atmospheric emission lines can be mistakenly icehtify
the algorithm as real lines.

2.3 Additional systematics affecting the incompleteness

There are a few additional items contributing to the incatgriess
that are not modeled in our simulations but that exist insealeys:

e Fiber collisions and slit overlapdf the angular separation be-
tween galaxies is too small, one may not simultaneouslyimbta
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Figure 1. Flowchart describing our step-by-step procedure to go fitersimulated observations to cosmological biases.

their spectra (without using a multiple pass strategy)c&icus-
tering of galaxies is type dependent, one has to be careftfitier
collisions and slit overlaps do not introduce selectiorsésa

e Optical distortions Geometric distortions due to the spectro-
graph optics may make extraction of spectra and subsequzat m
surement of redshifts more difficult near the edge of theumsént
field of view.

e CCD fringing Spatial and wavelength dependent variations

in the pixel response in the red end of the spectrographgifgn
hinders measurement of the spectra and redshifts of faiaxiga.

e Stars and bright galaxiestight from nearby stars or bright
galaxies can contaminate the spectra.

e Cosmic raysAlso can contaminate the spectra.

Issues such as stars, cosmic rays and edge effects willeeduc

the completeness, more or less randomly, resulting mosthni
increase in the shot noise, without galaxy type or redsisfteth-
dence.

3 SIMULATED DATA

We use cosmological simulations populated with galaxiestheir

photometric properties as described in Appendix Al. The-pho

tometric observations are patterned after the expectesitiséy

of the Dark Energy Survey (DES) and Vista Hemisphere Surveys

(VHS), with galaxies imaged in the grizYJHKs filters over B13.
degrees. For simplicity, we only use the observationgrimbands
because they are imaged for longer periods of time, and hanece
useful for all our sample. The imaging in these bands is ergec
to reach100 magnitude limits of 25.2, 24.7, 24.0, and 23.5ini
andz

proximately 1.3 million galaxies, hereafter ogghotometric sam-
ple, from the total 1 billion galaxies present in the simulatitye
apply the same quality cuts as in Cunha et al. (2012), i.ep kee
galaxies withi < 24 and at leasto detection ingrz. This selection
reduces our photometric sample to 726824 galaxies.

Of this photometric sample, we randomly target a subset of
181892 galaxies, hereafter thpectroscopic sampte training set
for the spectroscopic analysis. The generation of simdlspectra
for this subsample is described in the Appendix A2.

4 FROM THE REDSHIFTSTO COSMOLOGY

In this section, we describe the step-by-step procedure see u
for converting the simulated observations into cosmolalgeon-
straints. The flowchart in Fig. 1 gives a pictorial versiorttod ex-
planation below.

(i) The first step is to estimate spectroscopic redshiftstlier
sample for which we have spectra. We use th&ao.xcsao
spectral analyzer algorithm described in Sec. 4.1. Notpdtsa
yield redshifts, and only the redshifts above certain canfi@ are
kept. Even so, a fraction of the spectroscopic redshiftsdsrirect.

(i) The spectroscopic sample can only be used for calibnati
of the photo-z error distributions if it is a representatvdsample
of the photometric sample. Hence, we statistically matatsp-
scopic and photometric selection in one of two ways: by apply
the spectroscopic selection to the photometric sample métiral
networks (cf. Sec. 5.3), or by weighting the photometric glanso
that its statistical properties match those of the spectuis sam-
ple (cf. Sec. 5.4).

(iii) Next, we calculate photo-zs for the both spectroscapid

For computational efficiency, we select a subsample of ap- photometric samples, cf. Sec. 4.2.
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(iv) After the matching, we can calculate the photo-z errar m
trices required for cosmological analysis.

(v) Finally, we estimate fiducial constraints and biaseshia t
cosmological parameters forecasted for the DES-type weak g
itational lensing survey. We break up the tests in two pantshe
first case, shown as the transparent hexagon in the flowaheart,
only test the impact of the selection matching, by using dhby
correct value for redshifts. In the second case (gray heXagee
use the actual value of the spectroscopic redshifts - thyeéneiud-
ing the small fraction of wrong redshifts.

4.1 Analyzing 1-D spectra

Simulating spectroscopic redshift estimation is chalieggbe-
cause real spectroscopic surveys rely heavily on visuakictson.
For our forecasts, visual inspection of thousands of speetuld
be out of the question. Instead, we adopt a more reasonahte st

e Original Pipeline: zspecS estimated using the 6 original tem-
plates and only four redshift guessegguess = none, 0.4, 0.8
and 1.2.

4.2 Photometric redshifts

There exists a cornucopia of publicly available photonceted-
shift estimation algorithms. For recent reviews and corsparof
methods see e.g. Hildebrandt et al. (2010); Abdalla et aL1»
We consider two different photo-z algorithms that broagigrsthe
space of possibilities. We use a basic template-fitting cmitle-
out any priors, and a training-set fitting method, which wiefbyr
describe below.

4.2.1 Template-fitting redshift estimators

egy and apply an automated pipeline to all 1-D spectra. We use Template-fitting estimators derive photometric redshdtireates

the publicly available rvsao IRAF external package version8
(Kurtz & Mink 1998). We run the cross-correlation tootsao

on our simulated spectra. The algorithm performs a Four@sse
correlation between the “observed” (simulated) spectthaanser-
defined library of template spectra. We obtain the templatary
used in the cross-correlation from the simulation itsedf. fhe first
pass, we pick 6 templates chosen to mimic the 6 galaxy teswplat
used in the cross-correlation analysis of the SDSS specipas
pipelin€'. Using templates from the simulation instead of the orig-
inal SDSS templates improved the number of correct redshift
10%. The limitation of the SDSS template basis is that it was cho-
sen for low redshift spectroscopy, and is not sufficient éatshifts
greater than 1 or so. In the second pass, we added three templa
from the simulations picked as the brightest templates elbed-
shift 1.4 for which the cross-correlation coefficient — thasttis-

tic described below — was less than 2.5. The additional tatagl
doubled the number of correct redshifts above 1.4.

The cross-correlation analysis can be refined around pertai
wavelengths by giving it an initial redshift guess (by setihe pa-
rameterczguess ) to start the search. We perform the analysis five
times with: no guess;zguess =0.4,czguess =0.8,czguess
= 1.2 andczguess =1.6. We then choose which redshift estimate
to keep based on the value of the R statistic, output by thelipg
The R statistic, introduced by Tonry & Davis (1979) (cf. EQ 2
of that work), is a measure of the strength of the cross-tairoa
given by the ratio of the height of the assumed true peak icohe
relation to the average height of spurious peaks. R varges fr to
several hundred in our simulation, and as we show later; 6
corresponds to- 99% correct redshifts.

We have performed our analysis for a number of settings of the
spectroscopic pipeline, but only show results for threenncases,
defined as follows:

e Fiducial Pipeline:zspecS estimated using the 6+3=9 templates
and the five redshift guesses described above. Yields thestig
completeness for > 1.4.

e Comb2 Pipelinezs,e..S estimated using the 6+3=9 templates
and only runningxcsao twice, with czguess = 0.4 and
czguess = 0.8 . Yields the highest overall completeness, but
the lowest completeness at low and high redshift.

1 Templates 23 to 28 in the websitettp://www.sdss.org/dr7/
algorithms/spectemplates/index.html

by comparing the observed colors of galaxies to colors ptedi
from a library of galaxy spectral energy distributions. W uhe
publicly availableLePharephoto-z codé (Arnouts et al. 1999; II-
bert et al. 2006) as our template-fitting estimator. We chbse
extended CWW template library (Coleman et al. 1980) bec#use
yielded the best photo-zs for our simulation.

We note that a variety of public template-fitting codes are
available (e.g. Coe et al. 2006; Feldmann et al. 2006), aod ea
includes many options of template libraries, extinctiowdapri-
ors, etc. For a discussion on propagation of template-ittimcer-
tainties to redshift uncertainties see Abrahamse et aL1(R®s in
Cunha et al. (2012), the photo-z quality does not signifigaftect
the results shown, hence we find no justification for an extens
exploration of all template-fitting possibilities.

4.2.2 Training-set redshift estimators

The basic setup of training-set based redshift estimasots use
a sample with known spectroscopic redshifts to estimatdreee
parameters of a function relating the observables (in ose the
magnitudes of the galaxies) to the redshifts. After the-fiefiee
parameters have been determined, the function can be ayplie
the data for which no spectroscopic redshifts are avail&oiewn
as the photometric sample. For this paper, we use an attifieia
ral network as our training set method, and we leave theldetai
Appendix B.

4.3 Effect on the Cosmological Parameters

To assess the impact of the spectroscopic failures on timeatog-

ical parameters, we closely follow the formalism used in jta-
vious work on the impact of sample variance to photo-z catibn
(Cunha et al. 2012). We consider a weak lensing survey, and fo
simplicity only study the shear-shear correlations. Theeotable
guantity we consider is the convergence power spectrum

Cri 6 _Pm 6 5(712nt> 1
i (6) = Pi;(6) + = 1)
2 http://www.cfht.hawaii.edu/ ~arnouts/LEPHARE/

lephare.html
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Figure 2. Left panel: True spectroscopic success r&eRr), defined as fraction of correct redshifts, as a functionraé redshift. Central panesSR
as a function of observed i-band magnitude. Right pa®&R as a function the cross-correlation strength statistic Rclvis a measure of the redshift
confidence. The black lines assume 16200 secs of integratienand the red (gray) lines assume 48600 secs. The soiiedand dotted lines correspond

to different settings of the spectroscopic pipeline, dbsckin Sec. 4.1.

where(~v2,)1/2 is the rms intrinsic ellipticity in each component,

n; is the average number of galaxies in ttteredshift bin per stera-
dian, and/ is the multipole that corresponds to structures subtend-
ing the angled = 180°/¢. For simplicity, we drop the superscripts
r below. We takey2,)'/? = 0.26.

We follow the formalism of Bernstein & Huterer (2010) (here-
after BH10), where the photometric redshift errors arelaigieally
propagated into the biases in the shear power spectra. Bresss
in the shear spectra can then be straightforwardly propédgato
the biases in the cosmological parameters. We now reviesflyori
this approach.

Let us assume a survey with the (true) distribution of source
galaxies in redshifii: (z), divided into B bins in redshift. Let us
define the following terms

e LeakageP(zp|z:) (or Iy, in BH10 terminology): fraction of
objects from a given true redshift bin that are placed inténaor-
rect (non-corresponding) photometric bin.

e ContaminationP(z:|zp) (Or ¢t in BH10 terminology): frac-
tion of galaxies in a given photometric bin that come from a-no
corresponding true-redshift bin.

When specified for each tomographic bin, these two quanti-
ties contain the same information. Note in particular that tivo
guantities satisfy the integrability conditions

/P(zp|zt)dzp thp =1
P
/P(zt|zp)dzt thp =1.

t
A fraction I, of galaxies in some true-redshift bin “leak”
into some photo-z bim,, so thatl,, is the fractional perturbation
in the true-redshift bin, while the contaminatioy is the fractional
perturbation in the photometric bin. The two quantities barre-
lated via

A
NP

@)

®)

Ctp — ltp (4)
where N, and N, are the absolute galaxy numbers in the true and

photometric redshift bins, respectively. Then,

ne — Nt

©)
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(6)

and the photometric bin normalized number density is adfibct
(i.e. biased) by photo-z catastrophic errors. The effe¢hercross
power spectra is then

Tp (1 —cip)np + cipne

Cop = (1= ctp)*Cpp + 2c1p(1 = €1p)Clp + Cfpctt

Cmp = (L =cip)Cmp +ctp Cre (M < p) (7
Cpn = (1 =ctp)Cpn + ctp Ot (p<mn)
Conn — Cmn (otherwise)

(since the cross power spectra are symmetrical with respahe
interchange of indices, we only consider the biases in pepectra
Ci; with ¢+ < 7). Note that these equations are exact for a fixed
contamination coefficienty,,.

The bias in the observable power spectra is the rhs-lhs dif-
ference in the above equatidnsThe cumulative result due to all
contaminations in the survey (aP,(z:|z,) values for each; and
zp binned value) can be obtained by the appropriate sum

dCpp Z(_Qctz’ + C?p)cpp + 2ctp(1 = ctp)Crp + Cfpctt
t

6Cmp = Y (=CtpComp + ctp Crme) ®)
t

5Cpn - Z (_Ctpcpn + Ctp Ctn)

t

for each pair of indicegm, p), where the second and third line
assumen < p andp < n, respectively.

The bias in cosmological parameters is given by using the
standard linearized formula (Knox et al. 1998; Huterer &rierr
2001), summing over each pair of contaminatiéhp)

~ dC,
dpi = Z(F Dis
j

Op;

oB Pj
where F' is the Fisher matrix an€ov is the covariance of shear
power spectra (see just below for definitions). This formislac-
curate when the biases are 'small’, that is, when the biaséei

(Cov™)ap 6Cs, ©9)

3 We have checked that the quadratic termejnare unimportant, but we
include them in any case.
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cosmological parameters are much smaller than statigtioals in

them, ordp; < (F~')!/?. Herei andj label cosmological pa-
rameters, and: and 3 each denote pair of tomographic bins, i.e.
a,B=1,2,..., B(B+1)/2, where recallB is the number of to-
mographic redshift bins. To connect to thg,,, notation in Eq. (7),
for example, we havé = mB + n.

We calculate the Fisher matriX assuming perfect redshifts,
and following the procedure used in many other papers (e.g.
Huterer & Linder 2007). The weak lensing Fisher matrix isnthe
given by

oC
¢ Ips

i oc

Ry
! Ip;’

Cov

(10)

wherep; are the cosmological parameters afdv ' is the in-
verse of the covariance matrix between the observed poveetrsp
whose elements are given by

5([/ X
(204 1) foxy AL
[Cir (O)Ci(€) + Ca(£)Cix(£)] -

The fiducial weak lensing survey corresponds to expectfiam

Cov [Cy;(£), Cri(£)] (11)

Therefore, the effective error in the power spectra is etuahe
difference in the biases of the training set (estimate®of the bi-
ases in the observable quantities) and the photometritheea¢tual
biases in the observables).

5 RESULTS
5.1 Spectroscopic successrate

The spectroscopic analysis for the fiducial simulation peai@rs
(16200 secs integration; 9 templates; no manual correofispec-
tra) yields aboutr4% correct spectroscopic redshifts (defined as
redshifts for which|zspee — 2true| < 0.01). In a real survey, one
can only choose redshifts based on some quality flag, whittteis
cross-correlation R statistic (described in Sec. 4.1) incaise. We
thus define two success metrics:

e True spectroscopic success ras&Rr): the fraction of galax-
ies with correct redshifts.

e Observed SSBERo): the fraction of galaxies with R greater
than a certain value. Unless stated otherwise, we set the val

the Dark Energy Survey, and assumes 5000 square degrees (corﬁ-o-

responding tofs, =~ 0.12) with tomographic measurements in
B = 20 uniformly wide redshift bins extending out t@,ax = 2.0.
The effective source galaxy density is 12 galaxies per sqaar
cminute, while the maximum multipole considered in the @av
gence power spectrum &n.x = 1500. The radial distribution
of galaxies, required to determine tomographic normalizeh-
ber densities:; in Eq. (1), is determined from the simulations and
shown in Fig. 4.

In Fig. 2, we show the true SSR as a function of true red-
shift (left panel), observed i-band magnitude (center paaed
cross-correlation strength (right panel). The left pareves that
the SSRr generally worsens with higher redshift, and the ’'hic-
cups’ in the curves are directly caused by different spedttras
which enter and leave the observed spectral range, as siextus
Sec. 2. The central panel shows the expected result thapéwe s
troscopic success rate plunges beyond certain depth.l\Fitize

We consider a standard set of six cosmological parameters right panel shows that the true SSR increases monotoniaatly

with the following fiducial values: matter density relatigecritical
Q= 0.25, equation of state parameter= —1, physical baryon
fractionQsh? = 0.023, physical matter fractiof s h? = 0.1225
(corresponding to the scaled Hubble constant 0.7), spectral
indexn = 0.96, and amplitude of the matter power spectrlin
whereA = 2.3 x 107? (corresponding tes = 0.8). Finally, we
add the information expected from the Planck survey givethby
Planck Fisher matrix (W. Hu, private communication). Th&alo
Fisher matrix we use is thus

F = FWL + FPlanck. (12)

The fiducial constraint on the equation of state of dark gnerg
assuming perfect knowledge of photometric redshifts (is))
0.055.

Our goal is to estimate the biases in the cosmological param-

eters due to imperfect knowledge of the photometric retshif
particular, the relevant photo-z error will be the diffecerbetween
the inferredP(z;|z;) distribution for the calibration (or, training)
set — using spectroscopic redshifts as a proxy for the trdshitts
—and theP(z¢|z;) distribution for the actual survey. Therefore, we
define

50[3 _ Cgrain _ Cghot (13)
_ 6Clt;rain _ 5Cghot (14)

where the second line trivially follows given that the trueder-
lying power spectra are the same for the training and phdiitne
galaxies. All of the shear power spectra biadé€scan straight-
forwardly be evaluated from Eq. (8) by using the contamonati
coefficients for the training and photometric samples, eesyely.

cross-correlation statistic R, showing that we can use Rlgxsan
accurate redshift sample with high confidence.

In Fig. 3 we show the true and observed SSRs as a function
of --magnitude ana— color. The top panel shows that virtually all
the incorrect redshifts are at the faint end of the color-nitage
diagram, with slight color dependence. In particular, &t bluest
end ¢— ~ 0) we see a region of low SSR extendingite- 22.
This is typically caused by the lack of an appropriate tetepta
describe certain galaxy populations.

TheobservedSSR, shown in the bottom panel of Fig. 3, shows
a more pronounced color variation. We can see that the bolers;
corresponding to late spectral types, which have signifiearis-
sion features, yields higheSSRo. Conversely, the redder colors
have the lowes8SRo. As mentioned previously, early type galax-
ies have virtually no emission lines, and hence are idedtifieab-
sorption features. Intermediate types can have weak emibses,
but usually have weaker absorption features as well, whiakes
it difficult to determine a spectroscopic redshift for them.

Because of our stringent choice of cut, the sample \&ith-

6.0 contains a fraction 0.53 of the total galaxies and9taé% cor-
rect spectroscopic redshifts. For comparison, if we defameptes
by the cutsk > 5.0 and R > 4.0 these would contain a fraction
of 0.60 and 0.73 of total galaxies wit8.6% and93.2% correct
redshifts, respectively. Faint, intermediate-type gakpectra yield
the majority of the incorrect redshifts that escape the Bcsien.

In the top panel of Fig. 4 we show the effect of applying qual-
ity cuts based on the statistic R to the true redshift distidim.
More stringent (higher R) cuts preferentially remove gedaxrom
regions where less significant spectroscopic featuregfatle the
spectrograph window (as explained in Sec. 2). The bottonelpan
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True SSR

20 205 21 215 22 225 23 235 24
i-mag

Observed SSR (R > 6.0)

20 205 21 215 22 225 23 235 24
i-mag

Figure 3. Top panel: True spectroscopic success rateR(r), defined as
fraction of correct redshifts as a function of true redsHfottom panel:
Observed SSRSSR(), defined as fraction of galaxies with correlation
R > 6.0. Both results assume the Fiducial pipeline settings (of. 8€)
of 16200 secs of integration time with the 3 additional testgs.

shows that the less stringent cuts allow for a higher fractibin-
correct redshifts, which have a visible impact in the reftigtistri-
bution even though3.2% of the redshifts are correct.

5.2 Wheredothewrong redshiftsgo?

We show the spectroscopic leakage matrid@éz(pec|ztrue)) for
several cuts in the R statistic for our Fiducial pipelinersg@ in
Fig. 5. The spectroscopic redshift errors, which corredpgonany
departures from thes,ec = zirue (diagonal) line, clearly make
interesting and definite patterns:

e Atmospheric line confusionHorizontal features in Fig. 5,
when many different values ofi,.. are misinterpreted as a sin-

0.08 T T T T T T T T T

All redshifts
R>6

N(z)

04 06 08 1 12 14 16 18 2
Redshift

R>6-2y, —

N(z)

04 06 08 1 12 14 16 18 2
Redshift

Figure 4. Top panel: Distributions of true redshift for all galaxieshéded
area), galaxies witliz > 6 (solid line), galaxies withR > 5 (dashed line)
and galaxies withR? > 4 (dotted line). Bottom panel: Distribution of true
redshift (solid lines) and spectroscopic redshift (dadimed) for theR > 6
sample (black) and th® > 4 sample (red - gray).

e Galaxy line misidentificatiorDiagonal lines in Fig. 5 (except-
ing the zspec = 2irue diagonal, of course) correspond to the cases
where the pipeline misidentifies lines of the galaxy itsel do lim-
ited spectroscopic coverage and S/N (cf. Sec. 2.2). For pbeaine
diagonal trend from(ztrue, zspec) = (0,0.8) to about(0.7,2.0)
corresponds to the pipeline classifyingrlemission lines as [Oll]
lines. A corresponding feature due to [Oll] being incorhectas-
sified as Hv can be seen starting at (0.8, 0) in the plots. Galaxy
line misidentification seems to be a much smaller issue tiran-a
spheric line confusion for our simulation.

The exact distribution of the wrong redshifts depends on the
noise levels assumed and details of the spectroscopic sialy
As described in Appendix A2, we assumed a constant mean at-
mospheric emission and absorption, but in reality the olisgr
conditions vary. The distribution of wrong redshifts alsspdnds
on details of the spectroscopic analysis. In Fig. 6 we shasv th
P(zspec|ztrue) matrix for the Original pipeline, described in Sec.
4.1, which only uses the original 6 spectral templates (btittre 3
templates added to increase completeness forl .4.) In addition,
it does not use thezguess=1.6 results, which have the effect of

gle zspec, COrrespond to cases where residuals from subtraction of increasing the probability that the pipeline will assignighhred-

atmospheric lines are confused with actual features in #haxy
spectrum.

(© 0000 RAS, MNRASD00, 000-000

shift to a galaxy. The Original pipeline is not optimized imyavay
towards high-z completeness, and as a result it finds norspect
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Figure 5. Leakage matricesH(zspec|2true)) for the training sets selected by the ciits> 4.0 (left panel), R > 5.0 (center panel), andk > 6.0 (right
panel). The spectroscopic redshifts were calculated U200 secs exposures with the full set of 9 templates inghetsscopic pipeline, corresponding
to our Fiducial pipeline.

scopic redshifts above = 1.6. Conversely, the Fiducial pipeline R > 6.0 (original templates)
(cf. right plot in Fig. 5), does find some redshifts abave= 1.6,

but at the cost of increasing the number of objects beingircty
assigned very high values of spectroscopic redshifts amahaim-
ber of objects at high redshifts being assigned very lowhidids

As we discuss in Sec. 5.3.2, the Original pipeline yieldsas w

a factor of two smaller than the Fiducial pipeline.

There are two points to take from this section. First, wrong
spectroscopic redshifts occupy preferred regions of the.
zspec) Plane. Since the exact redshift error distribution degeml
the details of the spectroscopic analysis and observinditons,
it is challenging to accurately predict the spectroscopdshift er-
rors in real surveys. Hence, our conclusions concerningnpeact
of wrong redshift are necessarily only rough estimatesofSec
increasing the completeness at high redshift can come axthe
pense of introducing more catastrophic spectroscopitiftslsAs
we shall show in Sec. 5.3.2, this is a very high price to pagl,am
severely increase biases in cosmological parameter emistr

Ztrue

Figure 6. Same as Fig. 5 except for the Original pipeline, where ondy th
6 original templates were used, and only 4 different valueszguess
As can be inferred from the left panel in Fig. 4, spectroscdpil- (no guess, 0.4, 0.8 and 1.2) were used inrygao  run. Without the 3
ures alter the redshift distribution of the training setngigantly, ad(.j't'on.al tem.plates’.no strong correlat|0n§ were fOL!rldziQec > 1.5,
so that one cannot use such a sample to estimate the ernor dist which, in Eartlcular, implied that no galaxies were incothg assigned
butions of the photometric sample directly. We test twoediht Zspec > 1.5
approaches to correct for the selection effects in theitrgiset.

One approach is to cull the photometric sample to remove
all galaxies that are not represented in the training set ét of
high-confidence spectroscopic redshift galaxies). We useuaal

5.3 Spectroscopic selection matching: culling approach

network (described in Appendix B) to accomplish this sétect R>6 <= Q=4
matching. . . o 5<R<6 <= Q=3
What we want is to be able to classify galaxies in the photo-
metric sample in the same way they were classified in theitgin I<R<S <= Q=2
set, that is, we need to estimate the cross-correlatiomgttreR 3<R<4 = Q=1
statistic for them. 0<R<3 <= Q=0
To be more realistic, instead of using R, we map the R values
into a new quality parameter Q. The Q parameter is discrett, a Following standard neural network procedure, we split the

roughly matches the more standard quality flags of real garve spectroscopic sample into two parts (of equal size), thieitig
(e.g. VVDS, DEEP2). It also has the advantage of having a more and validation samples. As described in Appendix B, we use th
limited range than the R statistic, which has no upper liflite griz magnitudes as the inputs for the neural network, which then
mapping we use is as follows: outputs an estimate f@p. For simplicity, we only perform a single
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neural net run, though the average of multiple runs is exgketi
yield best results.

After the neural net run converges, we apply the best-fit-func
tion to the complete spectroscopic sample and to the phatimme
sample to obtain estimates of the Q coefficient, here&jter, for
all the galaxies.

For the fiducial simulation - with 16200 secs exposures, 5
combined rvsao runs, the distribution@f— Qs distribution has
dispersion of~ 0.7. For the 48600 secs exposures scenario, the
dispersion is~ 0.6. For all cases, the mean of the distributions is
less tharl0—°.

We apply cuts orQest = 1.5, 2.5, and 3.5 to both spectro-
scopic and photometric samples. With the 16200 sec expgsure
the corresponding True SSR for the galaxy samples is 0.99%830
and 0.914, respectively, with a corresponding fraction lgeots
relative to the total of 0.463, 0.586 and 0.751 in the thresesaFor

Photo-z scatter and training set size

Ztrue Zspec
Selection Train Photo Train Photo Train*
Qest > 1.5 0121 0121 0149 0.149 0.214
Qest > 2.5 0.098 0.099 0.105 0.106 0.142
Qest > 3.5 0.082 0.083 0.081 0.082 0.098

Table 1. Rms scatter of neural network photo-zs for the samplesteelec
by the cuts on estimategs,ec quality, Qest > 1.5, 2.5, and 3.5. Note
that the scatter for the TrainZ/,ec column is defined as the dispersion in

the 48600 sec exposures, we find True SSRs of 0.996, 0,978 andhezspec — Zphot distribution, whereas it's defined as the dispersion in the

0.936 respectively, with corresponding fractions of otgeetained
of 0.655, 0.808 and 0.960.

The next step is to investigate the impact of the selectidhdao
weak lensing analysis. We break up the process into sevared, p
for clarity:

e If a training set based method is to be used for calculating
photo-zs, the first step is to use the training sample withdére
siredQ.st cut to derive photometric redshifts for the matched pho-
tometric sample (cf. Sec. 5.3.1). This step may be skippagbifre
template-based algorithm is being used.

e Next, we calculate the WL constraints for the photometric
sample selected with th@.s; cut and compare that to what we get
for the full sample. Constraints degrade both from the rédndn
the total number of objects as well as with the shift of theshefd
distribution towards lower redshifts (cf. Sec. 5.3.2).

e The next step is to assess the bias resulting from diffessince
the selection of the spectroscopic and photometric sanaglegll
as the biases due to wrong redshifts. (cf. Sec. 5.3.2).

5.3.1 Photo-z training

We use a neural network photo-z estimator to exemplify theaich

of selection matching and wrong redshifts on training-ssetell
photo-z estimation (cf. Sec. 4.2.2). For simplicity, weuass that
the photo-zs for the photometric sample should only be tated
for the subset of galaxies surviving the selection cuts efgievi-
ous section. In other words, we require that the spectrost@in-
ing sample and the photometric sample have matching satecti
We thus define three sets of spectroscopic and photometrie sa
ples, specified by the spectroscopic quality cutgn of Qest >
3.5,250r1.5.

To separate the effects of selection matching from the edffec
wrong redshifts, we estimate the photo-zs twice. First, sgime
we have the true redshifts for all galaxies passing@he cuts, to
isolate potential biases due to the spectroscopic setectaiching.
Then, we perform the photo-z training on the actual spectiuis
redshifts, to gauge the additional impact of wrong redshift

Table 1 shows théo photo-z scatter for the samples defined
by theQest cuts. The twozirwe COluMNS correspond to the scenar-
ios where the true redshifts were used in the training. Thtec
is defined as the dispersion in the distribution(fiue — 2phot)
for both the training sample and photometric sample. As ebeok
the photo-z scatter of the training sample is in excellent@gent
with the scatter of the photometric sample, suggesting bt

(© 0000 RAS, MNRASD00, 000—-000

Ztrue — Zphot fOr the other columns.

samples have close to identical photo-z properties andtibate-
lection matching does not introduce any biases. Furthesntoe
scatter improves as we apply more stringent cut§en. The de-
crease in scatter is as expected, since the objects witlploware
typically the faintest.

The threezspec columns in Table 1 show the more realis-
tic case where the actual spectroscopic redshifts (wrodshifts
included) was used to train the photo-zs. In thg..(Train) we
show the scatter in the training set calculated as the digpem
the (zerue — 2phot) distribution, which we can see is in excellent
agreement with the scatter of the photometric sample showmei
last column. Comparing the dispersion of thg..(Photo) and
ztrue (Photo) cases, we see that the presence of wrong redshifts
degrades the photo-zs of the photometric sample by as much as
20% in the case of th€).st > 1.5 cut. The degradation is reduced
for the more stringent cuts as the fraction of wrong redsléftre-
duced.

In reality, one does not know the true redshifts for the train
ing set, but only the spectroscopic redshifts. Hence, th#@escin
the training set photo-zs would be estimated using the spect
scopic redshifts, as the dispersion in thg,cc —zphot ) distribution.
We show this estimate of the scatter in thg..(Train™) column.
We see substantially larger values of the scatter comparéiaet
zspec(Photo) column, for allQes: cuts. The point is that the neural
network cannot incorporate many of the wrong spectroscegule
shifts into its best-fit solution without a noticeable detgtion in
the overall fit. As a result, the wrong spectroscopic redslsifiow
up as catastrophically incorrect redshifts, which we caarofe-
move. We return to this in the next section.

5.3.2 WL constraints and biases

In this section we examine the constraints and biases indhe d
energy equation of state inferred from weak lensing shear-shear
correlations. The errors im are caused by our inability to charac-
terize the photometric redshift error distribution of oanple. In
other words, we must know thB(zirue|2p) €rror matrix for our
photometric sample to high accuracy. When we rely on a spectr
scopic sample to characterize the error distribution, veeaatually
estimatingP(zs|zp), but this distribution differs from the true er-
ror matrix P(ztrue|2p) DeCause of issues in spectroscopic selection
matching and wrong spectroscopic redshifts. We now ingati
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how these spectroscopic redshift errors affect the darggrezjua-
tion of state measurements.

Table 2 shows thdo constraints orw and systematic er-
rors for several different sample selections. The reshivsva used
template-fitting photo-zs described in Sec. 4.2.1. Foitglave ar-
tificially separate the issues due to selection matching fiteat of
the wrong redshifts as follows: we perform the cosmologja
rameter forecast analysis assuming that all redshiftgémsged the
Qest Selection cut were the correct, true redshifts, therebyiexp
itly isolating the selection matching systematics. Theaultssare
presented under the,,. column in Table 2. We can see that biases
in w are negligible compared to the statistical constraints)ate
strating that the neural network can accurately match teetsp
scopic selection to the photometric sample. The table disws
the fraction of galaxies surviving the selection cuts. Baraple,
for the 16200 secs exposures, we see thatlhe > 3.5 cut re-
moves more than half of the sample, which results in neatdyef
of two degradation in the statistical constraints relatvevhat is
achievable with the full sampler(w) = 0.055). The degradation
is so severe because most of the objects removed by the cat are
high redshifts.

Next, we examine the impact of wrong redshifts. As the last
column of Table 2 shows, wrong redshifts can be devastabitiget
weak lensing constraints. The biasunis, perhaps, tolerable only

Constraints onv (template-fitting photo-zs)

16200 secs biagw)
Selection Gal. Frac. SSRt (%) o(w) Ztrue Zspec
Qest > 1.5 0.75 91.4 0.07 0.004 -0.52
Qest > 2.5 0.59 97.8 0.09 0.002 -0.13
Qest > 3.5 0.46 99.6 0.10 -0.001 -0.02

48600 secs

Qest > 1.5 0.96 93.6 0.06 0.004 -0.39
Qest > 2.5 0.81 97.8 0.07 0.005 -0.15
Qest > 3.5 0.66 99.6 0.08 0.003 -0.03

Table 2. Statistical and systematic errors in the dark energy eguatfi state

w for the differentQ.s¢-selected samples. The bias results shown used the
template-fitting photo-zs. The Gal. Frac. column indicates fraction of
galaxies from the full data set that passed the selectigraadttheSSR

intheQest > 3.5 cases. In the other scenarios one can see that theingicates the fraction of correct redshifts (i.e, fraction which |zspec —

biases inw are greater than thies constraints even with close to
98% correct redshifts{SRr ~ 0.98).

ztrue| < 0.01) in the sample. The true redshifts,ue column assumes,
artificially, that all galaxies in the spectroscopic santhkt passed th@est

Comparing the 48600 secs and 16200 secs results we see thagut had perfect spectroscopic redshifts. Egec column shows the more

the magnitude of the biases in are set entirely by the spectro-
scopic success rat&{Rr), regardless of the level of complete-
ness. This is another reminder that the emphasis must becan ac
racy over completeness.

We investigated the dependence of the results on the photo-z

estimator by performing the WL analysis with the neural roakwv
photo-zs instead of the template photo-zs. The resultiaggsi inv
are shown in the third column of Table 3. Comparing to thetfour
column, where we reproduce the template photo-z biasesTeom
ble 2, we see that the magnitude of the bias is very similatifer
two photo-z estimators, despite noticeable differencéisarphoto-

z error distributions of both (see e.g. Cunha et al. 2012).

realistic case where the actual spectroscopic redshiftduing the small
fraction of wrong redshifts) were used in the calibrationhaf photo-z error
distributions. Recall that the statistical, marginalizedor inw for perfect
redshifts iso(w) = 0.055

template-fitting code itself We find that the biases due to wrong
redshifts for theQes: > 1.5, 2.5 and 3.5 cases are reduced to -0.41,
-0.086 and -0.014, showing that culling using this erromestor

is also beneficial. In contrast, note that, in Cunha et all220we
found that culling based on photo-z error estimates hae lit-
pact on cosmological biases due to sample variance in atibbr

We also tested the possibility of decreasing the biases by sample, despite the effective identification of the photastiers.

culling photo-z outliers. In the presence of wrong speciopsc

redshifts, the culling could remove not only catastropliiotpmet-
ric redshifts, but perhaps also identify the wrong..s. We used
the nearest-neighbor error estimator, NNE (Oyaizu et &82), to

Finally, we investigated the dependence of the results en th
details of our spectroscopic pipeline, described in Set. We
find that our Fiducial pipeline, despite giving the best higtishift
completeness, yielded the largest biasea jrshown in the Table

cull 10% of the sample selected as the galaxies with largest NNE 2. The different pipelines yielded consistent trends, aedf@cus

error, exne). Since the fraction of objects to be culled was fixed,
the value of theexng cut varied for each catalog and photo-z es-
timator. The results are presented in the last two columnBaef
ble 3. For simplicity, we did not recalculate the fiducial staints
when deriving the biases for the culled samples; given thai-qu
tative nature of this analysis, this is a reasonable appraton.
The NNE cut seems quite effective for the neural network pfzst
typically reducing the biases by half. When the NNE cullingsw
applied to the template-fitting estimator, the effect wagligéle

for the Qest > 3.5 case, and relatively small for the other cases,
suggesting that the NNE is only effective for identifyingespro-
scopic outliers when a training set based procedure is U3&s.

is by no means obvious since the NNE is very efficient at identi
fying photo-z outliers even when template-fitting methodsused
(Oyaizu et al. 2008a). For comparison, we also tested tlezteff
of applying the samé&0% cut using an error estimator from the

on one particular case, that highlights the importance efsét-
tings. The Original pipeline had a factor of two smaller Hiasthe
Qest > 3.5 sample. In the Original setting, recall that only 6 tem-
plates were used. As can be seen by comparing the right gagin
5 with Fig. 6, the 3 additional templates increased the riftdstm-
pleteness above > 1.4 but resulted in leakage from the high-.e
bins to low zspec bins. In particular, some galaxies atue ~ 1.9
were assignedspe.s of ~ 0.5 and~ 0.7. This failure mode was
responsible for about 2/3 of the increase in bias in goinghftbe
Original to the Fiducial pipeline. The remainder of the eliince
was due to the fact that the Fiducial pipeline useguess = 1.6
which has the effect of increasing the probability that agghwill

4 The error estimate we use is the difference between the

Z_BEST68.HIGH andZ_BEST68.LOWbutputs of thd_ePharecode.
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Biases inw (Training set photo-zs and NNE )

16200 secs No NNE Cut NNE Cut

Selection G. Frac. neural  template neural  template
Qest > 1.5 0.75 -0.27 -0.52 -0.19 -0.35
Qest > 2.5 0.59 -0.13 -0.13 -0.06 -0.11
Qest > 3.5 0.46 -0.02 -0.02 -0.01 -0.02

Table 3. Biases in the dark energy equation of statéor both the training-
set and template-fitting photo-z estimates when the NNEnhastir is used
to cull outliers in|zphot — 2zspec| Space. The 'G. Frac.” column indicates
the fraction of galaxies from the full data set that passedsttlection cut.
Recall that the statistical marginalized errorauirfor the threeQest cases
are 0.07, 0.09 and 0.10 respectively, as shown in Table 2.

be assigned a high redshift. As a result, the Fiducial pipefields
ZspecS above 1.5 for several galaxies withue < 0.8.

We conclude that the commonly adopted approach of max-
imizing the completeness is not recommended because & tead
the increase of the fraction of wrong redshifts which in tunplies
worse dark energy parameter biases.

5.4 Spectroscopic selection matching: Weighting approach

In Section 5.3, we matched the selection of the spectroscomi
photometric samples by culling the photometric samplet Bhave
selectively removed galaxies from the photometric sampléat it
statistically matched, as closely as possible, the sp@mipic sam-
ple. In this section we try a more aggressive approach tlavsl
us to keep nearly the full photometric sample. Our technigue
weight galaxies in the spectroscopic sample usingpttedwts
method of Lima et al. (2008) and Cunha et al. (2009), so that
the statistical properties of these weighted spectroscgalaxies
match those of the photometric sample. For conveniencefei-re
ence, we briefly describe tlpgobwts technique in Appendix C.

We select a training set by picking galaxies from the spec-
troscopic sample with R above some thresh®d;;. We test
the reconstruction for several values®f,;. Following standard
probwts procedure, we remove the (small) part of the photomet-
ric sample that is determined to have zero overlap with tlee-sp
troscopic sample. This removes at most a few percent of tbtoph
metric sample, with negligible impact on the statisticatstoaints.

Note that, in the first approach, with the neural net, all the
spectroscopic sample is used to characterize the spempiosse-
lection in observable space. The cosmological analysisis only
performed on the sample that matches the estimated selebtio
the second, we only use reliable spectra, which we re-weight
match the full photometric sample. Then, the full photomcetam-
ple is used on the cosmological analysis. The first apprcaadei
more conservative one as it throws away photometric dateedp
only the most reliable sample. The second approach is mgresg
sive as it tries to keep most of the data and only rescale dli@rig
set.

As the top plot of Fig. 7 shows, the weights improve the es-
timate of the overall redshift distribution when true reiftshare
used. One can see that the weights roughly fix the broadesegdis
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ancies, but cannot correct sharper features. For exanhgl€lip in
the training sample from arouril4d < z < 0.6 gets rescaled, but
its rough shape persists. What this suggests is that ohjetiss
redshift range occupied the same region of observable spade
the weighting affected them all similarly.

The bottom plot shows the results when the spectroscopic red
shifts are used. We see that even a speck of wrong redshift® (
in this case) can have dramatic impact depending on wheyeatke
located (cf. bottom plot). Comparing, the bottom plot of Figvith
the middle plot of Fig. 5, we see that the spikes in the Weidjbti-
mated of the redshift distribution at~ 1.5, 1.4, 0.8, 0.7 and 0.4 all
correspond to the regions of concentration of wrong retisbden
in Fig. 5. However, whereas the spikes below 1 are not partic-
ularly prominent, the spikes arourd= 1.4 and 1.5 are enormous.
There are a couple factors contributing to the problem. Aslea
inferred from the the left plot in Fig. 2, the completenesspdrpre-
cipitously abovez > 1.4. Hence, the few spectroscopic redshifts
abovez > 1.4 typically receive large weights to compensate for
the incompleteness. In addition, as shown in the middleqdl&ig.
5, the fraction of correct redshifts for galaxies withye > 1.4 is
very small, and many of these are incorrectly assigned arspec
scopic redshift okspec = 1.4 or 1.5. The large weights magnify
the impact of the wrong redshifts, resulting in the larg&egpj and
in large bias in the cosmological parameters, as we shoveingkt
section.

5.4.1 Weak lensing constraints and biases with weights

Table 4 shows théo constraints and biases anwhen one uses
the weights technique to match the spectroscopic selettidine
photometric sample. As in Sec. 5.3.2, we separate the asalys
two parts. First, in thex,we column, we show only the effect of
matching the selection between the spectroscopic and ipledtc
samples. Afterwards, in the,.. column, we use the actual spec-
troscopic redshifts to show the impact of wrong redshifts.

When one considers only the true redshifts, the weights per-
form reasonably for all cases. The biases are typically lemiddan
the statistical errors ow, and the statistical constraints are bet-
ter than for the culling approach of Sec. 5.3.2 since almbsifa
the photometric sample was usable for analysis. It is istarg to
note that more rigorous cut®(> 6 and 5) yielded the smallest
biases even though the completeness of the spectroscappiesa
was smaller than for thB. < 4 case. Unfortunately, thep.. col-
umn in Table 4 shows that the presence of wrong redshiftsalgve
compromises the weights approach.

Because the wrong redshifts are tightly associated with the
regions of high incompleteness, particularly at high rétisand
because the variations in completeness are so sharp, thg vad-
shifts received very large weights resulting in large cosgical
biases. A major part of the problem is the shahangein com-
pleteness with redshift shown on the left plot of Fig. 2. Welfin
that the results for the weights do not improve for the 4868¢ss
cases because the steep variations in the completeneseasthift
become even larger for that case since the increased erpirsier
did not yield significant increase in completeness abowél.4.

In summary, we find that the weights approach needs to be
considered with care in the presence of wrong redshifts,that
the more conservative approach of culling using the newtavork
is the safest. In practice, the weights are often neededctuat for
other types of incompleteness (see e.g. Cunha et al. 2aDBjth
approaches should be used in tandem.
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Figure 7. (Top plot) The true redshift distribution of the full photeia
ric sample (shaded gray), of the spectroscopic sample Ritty 5 with

no weights (black line), and with weights (blue - dark graye).. (Bottom
plot) Same as above, but showing weighted and unweightétbdisons of
spectroscopic redshifts. One can see that, because wrdslgifte occupy
regions of low completeness in observable space, the veelgust their
impact enormously.

Constraints onw (template-fitting photo-zs and weights)

16200 secs biagw)

Selection G.Frac. SSRr (%) o(w) Ztrue Zspec
R>4 0.73 93.2 0.06 0.070 -0.7
R>5 0.60 98.6 0.06 0.034 -0.5
R>6 0.53 99.6 0.06 -0.036 -0.3

Table 4. Statistical and systematical errorsqinwhen the weights tech-
nique for selection matching is used. Results are shownrasgithe spec-
troscopic sample was selected with different cuts of thesrrelation
strength parameter R, described in Sec. 4.1. The bias seshdtvn used
the template-fitting photo-zs. The Gal. Frac. column ingisahe fraction
of galaxies from thepectroscopic sampteat passed the selection cut, and
the SSR7 indicates the fraction of correct redshifts (i.e, fractfonwhich
|zspec — Ztrue| < 0.01) in the sample. Essentially all of the photometric
sample was used in the analysis.

5.5 Discussion: Robustness of assumptionsand results

We now discuss the dependence of our results on the key assump
tions and numerical tools used in this work.

e N-body/photometric simulation§he success rate statistics
are affected by luminosity function and distribution ofapa} types
in the simulation. However, the main conclusions of our pagm-
cerning selection matching and impact of wrong redshifisuid
not be affected. We tested the selection matching for a tyaoie
situations (several of which we do not show), including viagyat-
mospheric noise models and spectrograph resolution. Foasgs,
the matching worked well, incurring no additional bias. ¢iulaion,
Soumagnac et al. (in preparation) obtain similar resultsg.es very
different set of spectro/photometric simulations destiim Jouvel
et al. (2009).

The distribution of wrong redshifts ifetrue, zspec) Space could
also change for a different simulation, but the preferrexl Where
the failures concentrate should not vary appreciablygesthey are
based on confusion between galaxy or atmospheric speirtesl |
that do not depend on any details of the simulation. Furtbeem
the fact that a small fraction of spectroscopic failures canse
severe biases is not likely to change.

e Sky noise modelOur model for sky subtraction is idealized
as it assumes a perfect shot-noise model. Sky-subtractiofien
not as efficient, and observing conditions vary from the rmedin
addition, there are issues such as CCD fringing (cf. Sefwh&h
are difficult to model. Other effects we did not model includa-
tamination from nearby stars or bright galaxies, and cosays.
These other effects, however, are only expected to affectvhrall
completeness, without galaxy type or redshift dependence.

e Simulated spectraAs discussed in Appendix A2, the simu-
lated spectra we use are based on the 5 eigenspedgitamméct
which are derived based on about 1600 SDSS main sample galax-
ies, 400 luminous red galaxies and a photometric samplewf se
eral thousands of galaxies imaged in the UV, optical and $R. |
this enough? Yip et al. (2004) showed that a set of 3 eigentem-
plates were sufficient to describe ab®8t% of the variance in the
170,000 galaxies in the Strauss et al. (2002) SDSS samphi- Ad
tional templates improved coverage very slowly, with a 680D
eigentemplates needed to accountd8% of the sample variance
(cf. Table 1 in that work). Yip et al. (2004) show that the miss
ing variance was due mainly to extreme line-emission gatiVe
roughly confirm this trend for our simulated spectra by logkat
the distribution of equivalent widths of the [Oll] emissitine for
our simulated galaxies. We find that our equivalent widtleche
at most 30A. For comparison, Cooper et al. (2006) find, for the
DEEP2 sample, a distribution of [Oll] equivalent widths ¢himg
as much as 108..

In addition, Yip et al. (2004) showed that one needs a random
subsample of about 10,000 galaxies to obtain convergemdaado
first 10 eigentemplates. These results suggekdbaect basis
should be sufficient to characterize all but a few percenttefdw-
redshift galaxies However, a few percent of “oddball” galaxies
could potentially cause problems for cosmological analifsihey
cannot be disentangled from the rest of the sample usingscolo
and if their redshift distribution differs significantlydm the rest

5 The Yip et al. (2004) analysis was based on principal compioaealysis,
whereas Blanton & Roweis (2007) used non-negative matatofezation

to determine their respective eigenbasis. Thus, compabstween Blanton
& Roweis (2007) and Yip et al. (2004) are only meant as batlgatimates.

(© 0000 RAS, MNRASDOO, 000—000



Spectroscopic failures in photometric redshift calibeaii cosmological biases and survey requirement43

of the sample with similar colors. The problem is expecteteo
come worse at high-redshift. To properly quantify the intE¢he
outliers, observing campaigns targeted at the spectrastajures
of existing spectroscopic surveys are crucial.

In some sense, our choice of template library used for degivi
spectroscopic redshifts is pessimistic for the high-rétigialax-
ies: as discussed in Appendix A2, tkeorrect  templates are
based on GALEX colors for the bluer frequencies. Hence sprt
the spectra of high-z objects were simulated using purebtgh
metric data, resulting in excessively featureless spégctthe UV
frequencies, which implied lower-than-expected compiless for
z > 1.4.

e Spectroscopic redshift pipelin@he rvsao.xcsao code
uses cross-correlation techniques in Fourier space toedeed-
shifts from spectra. The disadvantage of this approachivele a
standardy? method is that one does not include any information
about the noise. One can disregard certain regions of therepe
in the analysis, thereby removing at least the most pronhiztemo-
spheric lines. We found that the removal of some lines didimot
crease the completeness of the sample noticeably, andexhémng
distribution of the wrong redshifts. We leave more extemsasts
on the optimal techniques for spectroscopic redshift eston for
a future work.

6 IMPLICATIONSFOR SURVEY DESIGN

Given the findings of this paper and Cunha et al. (2012), what
should survey planners do to optimize their spectroscapieeys?

The first step is obvious: one needs to optimize the alloca-
tion of time observing different kinds of galaxies. Spedifig, one
can use color information to preselect galaxies that witjuiee
longer exposure times to obtain accurate redshifts. Fomple
in Sec. 5.3.2, we saw that tripling the exposure time impdabe
completeness from 0.46 to 0.66 for thes, > 3.5 cut. If the20%
of the sample that yielded additional redshifts could bewkmn
advance, one would only target this sample for additionakola-
tion, which would only require an increase4if% in the observing
time, instead of the naive00% additional time if the full sample
was targeted for follow-up observation. With an optimizéderv-
ing strategy, one would be able to save precious telescomeand
still achieve redshift accuracy that does not degrade temotng-
ical constraints appreciably. We leave a more detailedyaisafor
future work.

We showed in this paper that the tolerance for wrong red-
shifts is extremely low. It is, however, possible to get awath
a higher fraction of wrong spectroscopic redshifts by miodel
their effects on the cosmological parameters. Then onedvoegd
to, in analogy to the photo-z case, fully characterize thecsp-
scopic error matrix (zspec|ztrue ). However, determining the ma-
triX P(zspec|2true) from observations is likely to be very challeng-
ing in practice, as in order to control the sample variancgaddix-
ies used for the calibration, one would likely have excedgihigh
requirements on the area of the follow-up (Cunha et al. 2012)

Itis also possible that one can use spatial cross-comwaktd
estimate the spectroscopic error matrix. Since correlatietween
different redshift bins should be very close to zero, anyeaiar
tion has to be due to wrong redshifts. Several works haveoexgl
this fact for photo-z calibration (Schneider et al. 200&)dgr et al.
2009; Benjamin et al. 2010; Zhang et al. 2010). Schneidet.et a
(2006), for example, found cross-correlations to work veglly
in the simplest Gaussian cases. But for spectroscopiaéailuhe
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excess correlation signal should be due to a few big outlard
hence might be more easily detectable.

7 CONCLUSIONS

We investigated the impact of spectroscopic failures ontrthie-

ing and calibration of photometric redshifts, and the cense
qguent impact on the forecasted dark energy parameter eortstr
from weak gravitational lensing. Our tests were based on N-
body/spectrophotometric simulations patterned afted&S and
expected spectroscopic follow-up observations loosetyepzed
after the VVDS survey.

Spectroscopic failures consist of two types of issues: ke i
ability to obtain spectroscopic redshifts for certain gaa, and
incorrect redshifts.

The inability to obtain redshifts introduces incompletena
the spectroscopic sample — i.e. missing redshifts in somieme
of parameter space (e.g. at faint magnitudes) represemtie full
photometric population of galaxies. This incompletenesstnbe
accounted for before one can use the spectroscopic samadi-to
brate photo-zs — i.e characterize the photo-z error matreeg. the
P(zs|zp), of the sample.

We studied two approaches to account for the incompleteness
in the spectroscopic sample. In the first approach, we usedtian
ficial neural network to estimate the spectroscopic seledtinc-
tion for the photometric sample. This selection functiorswlaen
used to cull the photometric sample so that its statisticaper-
ties matched the spectroscopic sample. We found this agiproa
works extremely well, yielding only insignificant bias inetWL
constraints using the culled sample (refeetq.. column in Table
2). However, the statistical constraints did degrade sunistly as,
typically, a large fraction of the sample was culled. In teeand
approach, we accounted for the incompleteness in the sgeopic
sample by applying weights to the galaxies with spectrasosul-
shifts, following the approach of Lima et al. (2008), so tkiz
statistical properties of the spectroscopic and photamsamples
match. This approach was also successfukfgf. column in Table
4) — as expected, because most of the photometric sample lceul
used — yielding tolerable cosmological biases while olitajnhe
maximum statistical constraints. Overall, we found thateffects
of spectroscopic incompleteness are well under control.

Unfortunately, on the other hand, we found that wrong red-
shifts can significantly degrade cosmological constraard >
99% of correct spectroscopic redshifts seems to be needed (cf.
SSRr andzspec coOlumns in Tables 2 and 4). We found the results
to be independent of the photo-z estimators used, but soatelgh
pendent on the settings of the spectroscopic pipeline. fticpéar,
we found that attempts to increase the completeness of dutrep
scopic sample during the spectral analysis can result ir iwatas-
trophic spectroscopic redshift failures, which will inase cosmo-
logical biases.

We tested a couple of approaches to identify wrong spectro-
scopic redshifts, finding that the NNE error estimator (Qyat al.
2008a) is able to reduce the bias in the measured dark engugy e
tion of state by half while removing onlj0% of the photometric
sample. Slightly less improvement in thebias was obtained using
the template-fitting error estimator.

In summary, we find that wrong redshifts are by far the main
issue affecting calibration of photo-z error distributonith spec-
troscopic samples. Future follow-up spectroscopic olagims of
the planned and ongoing wide-area photometric surveys fociss
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primarily on the accuracy of the spectroscopic redshifenefithat
implies sacrificing the spectroscopic completeness.
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APPENDIX A: THE SIMULATIONS

In this section, we describe the construction of the sinmiatused
in our analysis.

Al N-body/photometric simulations

The simulated galaxy catalog used for the present work was ge
erated using the Adding Density Determined GAlaxies to t-igh
cone Simulations (ADDGALS) algorithm (Wechsler et al. 2011
Busha et al. 2011a). This algorithm attaches syntheticxgadao
dark matter particles in a lightcone output from a dark nmatte
body simulation. The model is designed to match the lumiiessi
colors, and clustering properties of galaxies.

luminosity relation determined from our calibration catal We
also measuré,,, for each halo, which is used to draw a galaxy
from the integrated luminosity function with the appropeianag-
nitude and density to place at the center.

For the galaxy assignment algorithm, we choose a luminosity
function that is similar to the SDSS luminosity function asan
sured in Blanton et al. (2003), but evolves in such a way as to
reproduce the higher redshift observations (e.g., SD8iBeS82,
AGES, GAMA, NDWFS and DEEP2). In particulap,. and M.,
are varied as a function of redshift in accordance with tleme
results from GAMA (Loveday et al. 2012).

Once the galaxy positions have been assigned, photometric
properties are added. We begin with a training set of spsobiic
galaxies and the simulated set of galaxies withand magnitudes
generated earlier. For each galaxy in both the trainingregsan-
ulation we measuré\s, the distance to the 5th nearest galaxy on
the sky in a redshift bin. Each simulated galaxy is then assigan
SED based on drawing a random training-set galaxy with the ap
propriate magnitude and local density, k-correcting tcetheropri-
ate redshift, and projecting onto the desired filters. Wrangithe
color assignment, the likelihood of assigning a red or a ghlaxy

The simulations used here start with a dark matter lightcone is smoothly varied as a function of redshift in order simoétausly

which spans the redshift range frain< z < 2, over one octant
of sky (5156 sq. degrees). The lightcone is constructed froee
distinct N-body simulations, which range in resolutionnfra few
10" to a few10'' M, particles and box sizes ranging from 1 to 4

Gpc/h. The simulations were run with the LGadget code and mod-

eled a flatAC DM cosmology using parameters consistent with
WMAP7 results.

The ADDGALS algorithm used to create the galaxy distri-
bution consists of two steps: galaxies based on an inputniosni
ity function are first assigned to particles in the simulaligtit-
cone, after which multi-band photometry is added to eachxyal
using a training set of observed galaxies. For the first stephe-
gin by defining the relatio® (94, | M-, z) — the probability that a
galaxy with magnitudeM,. a redshiftz resides in a region with
local densityda.., defined as the radius of a sphere containing
1.8 x 10**h =1 M, of dark matter. This relation can be tuned to re-
produce the luminosity-dependent galaxy 2-point funchipmising
a much higher resolution simulation combined with the témhe

reproduce the observed red fraction at low and high redshst
observed in SDSS and DEEP2.

Differences between the training set and simulated galaxy
sample complicate the process of color-assignment. Inrdale
compile a sufficiently large training set, we use a magniiirdéed
sample of SDSS spectroscopic galaxies brighter than= 17.77
with z < 0.2. The simulated sample, on the other hand, is a
volume-limited sample, spanning a broader redshift rakigleen
measuringAs we restrict ourselves to neighbors brighter than
M, = —19.7 in the simulation sample, while using all objects
in the observational catalog. To mitigate differences imihosity
and redshift, each galaxy is rank ordered according to itsitiein
its redshift bin, and require that objects be in the samegprite
bin in each sample rather than having the same the absolute va
of As. This is similar to the method used in Cooper et al. (2008).

The final step for producing a realistic simulated catalog is
the application of photometric errors. While the photonestrrors
generated here are particular to DES, the algorithm can berge

known as subhalo abundance matching. This is an algoritim fo alized for any survey. For each galaxy, we add a noise termeto t

populating very high resolution dark matter simulationwgalax-
ies based on halo and subhalo properties that accuratetydeges

intrinsic galaxy flux, where the noise is drawn from a Gaussia
width
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noise = /tenpns + fg,ite

wheret. is the exposure timey, the number of pixels covered
by a galaxyn, the flux of the sky in a single detector pixel, and
fq.,: is the intrinsic flux of the galaxy. Here, galaxies are assime
to have the same angular size, hengds identical for all objects.
Application of the above relation to objects from the SDS&log
shows that it is able to faithfully reproduce the reporteer of
the survey.

(A1)

A2 Creating simulated spectra

We use thékcorrect v4  _1 code (Blanton et al. 2003) to derive
simulated spectra. THeorrect  code includes a set of 5 eigen-
spectra derived using a non-negative matrix factoriza(/kiF)
technique (Blanton & Roweis 2007). To derive the eigenspect
the authors start out with a basis of 450 star formation hjsto
templates from Bruzual & Charlot (2003) as well as 35 tengdat
from Kewley et al. (2001). The method uses this basis to deriv
the nonnegative linear combination of templates that bestribed
the observations. In this case, the observations consssample

of several thousand photometrically and/or spectrosedigiob-
served galaxies, from the far UV to the near IR (Blanton & Riswe
2007). The spectroscopic part of the training data cortist&00
SDSS luminous red galaxies (LRGs) with5 < z < 0.5 (Eisen-
stein & other 2001) and 1600 SDSS main sample galaxies with
0.0001 < z < 0.4 (Strauss et al. 2002), with both sets of data
observed in the rang#800A < A\ < 9000A.

We use theécorrect  subroutine to convert the true redshift
and error-free magnitudes of a simulated galaxy from our- pho
tometric simulation into a best-fitting spectral energytribsition
(SED). The SED is characterized by the coefficients of thgérei
templates, and are output as the variatbeffs . The coeffs
are then passed into the subroutikereconstruct  _spec,
which produces a simulated spectrum with a resolution, itsun
of velocity dispersion, of 300 km/s.

We pattern our mock survey loosely on the VIMOS-VLT Deep
Survey (VVDS; Le Feévre et al. 2005). The characteristicthefin-
strument that we assume are: collecting are6afm?, aperture of
5 x 0.5 arcsecs>. For simplicity, we assume a constant resolution
and a dispersion ah X\ = 7.14/pixel over the entire spectrograph
range of5500 — 9500A. Comparing the spectrograph window of
5500 — 9500A to the spectroscopic coverage of the training set
used to create the simulated spectra, we see that for olfjeets
low redshift of 0.05, there is no spectroscopic represemtatf the
training set galaxies in the rang§800 — 9500A. More problematic
is the fact that the spectroscopic training set has wavéierayer-
age starting aB800A, and only goes ta = 0.4. As a result, for
galaxies at about > 1.0, the blue side of the simulated spectra
are based solely on photometric data. Considering that afidse
SDSS main sample is below redshift of 0.2, the simulatedtspec
should begin to lose resolution in the blue-end4as 0.73. These
limitations in the simulated spectra result in higher-teapected
incompleteness above = 1.4, but do not affect the overall con-
clusions.

We use a Palomar sky extinction model (courtesy of B. Oke
and J. Gunn) with 1.3 airmasses and altitude of 2635 metea-to
culate the atmospheric transmission fraction (the soldlbline in
the bottom panel of Fig. Al). The instrument transmissidreaised
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on the VIMOS instrument transmission functfoand is shown as
the dashed red line in the bottom panel of Fig. A1. The totaigr
mission is the product of the atmospheric and instrumenaalst
missions. We assume 16200 secs exposures for the fiducit-obs
vation strategy and also investigate a scenario with 48608 ex-
posures.

We add atmospheric emission based on the sky spettrum
shown at the top panel of Fig. Al. The total noise is given by
the rms sum of the atmospheric noise, shot-noise from trexgal
spectrum itself and readout noise per pixel, which we takeeta
constant 5 photons. In reality, we only simulate the skytsuabed
spectrum, as follows. First, we convert the different sgeatto
photon counts for each pixel. We then assume the atmosdratic
galaxy noise follow a Poisson distribution, so that the utadety
in the produced noise is the square-root of the number ofopisot
emitted. The readout noise is taken to be Gaussian. We asdcul
the total noise)V as

N = \/natm + Ngal + n?cad (A2)

Wherenaim, ngal, andneaqa are the number of photons from the
atmosphere, the galaxy and the readout noise, respeciivedyex-
pected signal is simply the total number of photons from tdesgy.
The expectation value of the error in the fldf is then given by

N
OF = F—

S
To obtain the sky-subtracted galaxy spectrum we, at eaad#l, pix
sample from a Gaussian distribution with mean given by the flu
and width given by the error in the flu'.

(A3)

APPENDIX B: ARTIFICIAL NEURAL NETWORKS

We use an Atrtificial Neural Network (ANN) method to both esti-
mate the spectroscopic redshift quality and photometdsthts,
using an implementation based on (Collister & Lahav 2004iQy
et al. 2008b) Despite the fancy name, an ANN is simply a func-
tion which relates redshifts (or any quantity we wish torestie) to
photometric observables. The training set is used to déterthe
best-fit value for the free parameters of the ANN. The begidit
rameters are found by minimizing the overall scatter of thetp-zs
determined for the training set galaxies. The ANN configorat
are not unique in the sense that different sets of paramederse-
sult in the same overall scatter. The best-fit parametensdfadter
minimizing the scatter depend on where in parameter spaoegth
timization run begins. Hereafter we refer to an ANN functiing
a given set of best-fit parameters as a neural network solutio
The technical details are as follows. We use a particula ofp
ANN called a Feed Forward Multilayer Perceptron (FFMP),ahhi
consists of several nodes arranged in layers through witclals
propagate sequentially. The first layer, called the inpyedare-
ceives the input photometric observables (magnitudesrsatc.).
The next layers, denoted hidden layers, propagate signélshe
output layer, whose outputs are the desired quantitieisncase
the photo-z estimate or the redshift quality Q estimateloRahg

6 http://www.eso.org/observing/etc/bin/gen/form?

INS.NAME=VIMOS+INS.MODE=SPECTRO

7 Sky spectrum obtained frofmtp://www.gemini.edu/sciops/

ObsProcess/obsConstraints/atm-models/skybg\ 50\
10.dat
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Figure Al Top panel: Atmospheric emission in units of

photons/s/nmh?/arcsec?. Bottom panel: Atmospheric and instru-
mental transmission fractions, i.e fraction of photong tieach the focal
plane, used in our simulation. The total transmission foncts given by
the product of the two transmissions.

the notation of Collister & Lahav (2004), we denote a netwwitk
k layers andV; nodes in theé'" layer asN; : Na : ... : Ni.

A given node can be specified by the layer it belongs to and
the position it occupies in the layer. Consider a node inrlayad
positiona with « = 1,2, ..., N;. This node, denoted;., receives
a total input/;,, and fires an outpud;, given by

Oia = F(Iia), (B1)

whereF (z) is the activation function. The photometric observables
are the inputdi, to the first layer nodes, which produce outputs
O14- The output®);,, in layeri are propagated to nodes in the next
layer (i 4 1), denotedP(; 1), with 3 = 1,2,..N; 1. The total
input /(;41)s is a weighted sum of the outputs;,

N;

I(i+1)6 = Z wi(zBOia7

a=1

(B2)

wherew;.s is the weight that connects nodé%, and P;11)s.
Iterating the process in layeér 1, signals propagate from hidden
layer to hidden layer until the output layer. In our implertaion,
we use a network configuratioN,,, : 10 : 10 : 10 : 1, which

receivesN,, magnitudes and outputs a photo-z or a spectroscopic ~ ccunha/nearest/

redshift quality. We use hyperbolic tangent activationclions in

the hidden layers and a linear activation function for thépou
layer.

APPENDIX C: PROBWTS

In this subsection, we briefly review the weighting methaxf
Lima et al. (2008) and Cunha et al. (2009). We define the weight
of a galaxy in the spectroscopic training set as the normdliatio
of the density of galaxies in the photometric sample to thesitye
of training-set galaxies around the given galaxy. Thessitles are
calculated in a local neighborhood in the space of photameb-
servables, e.g. multi-band magnitudes. In this case, th& @&
magnitudes are our observables. The hypervolume usedritagst
the density is set here to be the Euclidean distance of thexgal
to its N'" nearest-neighbor in the training set. We 3&t= 2, to
derive the most localized estimates possible.

The weights can be used to estimate the redshift distributio
of the photometric sample using

NT tot
N(2)wei = Z wgN (21 < zp < 22)T,
B=1

(C1)

where the weighted sum is over all galaxies in the training se
Lima et al. (2008) and Cunha et al. (2009) show that this jolewi

a nearly unbiased estimate of the redshift distributiorheffihoto-
metric sampleN (z)p, provided the differences in the selection of
the training and photometric samples are solely done intseny-
able quantities used to calculate the weights.
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