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Many models of dark matter contain more than one new particle beyond those in the Standard

Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves.

Here we explore the possibilities that arise if one of the products in a (Heavy Particle) → (Dark

Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons

cool down by scattering off the cosmic microwave background and eventually annihilate when they

fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class

of models but might even be consistent with that observed by the INTEGRAL satellite.

PACS numbers:

I. INTRODUCTION

Although there is ample evidence for the existence of non-baryonic dark matter, the properties of the

particle[s] that make up the dark matter are not well determined. This is not surprising as the evidence for

dark matter to date is from observations of its gravitational effects. But this situation may change soon as

more powerful direct and indirect detection experiments come online; indeed, there are already numerous hints

from both sectors. Direct detection experiments DAMA/LIBRA [1], COGENT [2], CRESST [3] have events

consistent with a dark matter signal and there are several hints of indirect detection from the Fermi Gamma

Ray Satellite and radio observations [4, 5]. There are also two sets of observations of positrons that could be

explained by dark matter: the observed excess of positrons over electrons in PAMELA [6] and INTEGRAL

observations of the 511 keV line from the centre of the galaxy (see, e.g., [7–9] and [10] for a review).

It has been suggested [11–14] that the INTEGRAL observations can be explained by dark matter decays1.

The observed flux of photons FINTEGRAL ≃ 10−3 ph cm−2 sec−1 is apparently produced by the annihilation of

positrons with galactic electrons almost at rest. Known astrophysical sources cannot account for the totality

of these positrons [10], so it is natural to consider positrons produced by dark matter annihilations or decays.

In the decay scenarios considered so far, a small fraction (t0/τDM) of dark matter particles decay at the

present time into low momenta positrons (∼few MeV) in the bulge, and the positrons subsequently annihilate

with electrons to produce the 511 keV line. The required lifetime is larger than the age of the universe

τDM ∼ 1020 sec (100 GeV /mDM).

Here we explore the possibility that the required positrons were produced at earlier times. For concreteness,

we assume that the sector containing dark matter has a stable component χ (which is the dark matter today)

and an unstable component, X , that decays into χ and positrons some time after recombination. Even

within this simple scenario, there are a number of dials to turn: the masses of χ and X ; the lifetime of

X ; the charge of X ; the relative abundance of X (since χ is the dark matter today, its abundance is fixed

by observations); and the branching ratios for the X decay into positrons and photons. What happens to

1 See, however, Ref. [15] for problems with the dark matter interpretation. While the model proposed here circumvents some of
these (the positrons being quite cold as they enter the disk and bulge), tension remains in the bulge to disk ratio.
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the decay-produced positrons depends on the values of these parameters, and we find a rich spectrum of

observational consequences. Thus, although motivated by the 511 keV excess, we will analyze the constraints

and possibilities of the generic idea of a heavy particle decaying into dark matter and positrons.

The main difference between our proposal and others is that the positrons in this class of models cool in

the early universe very efficiently before they can annihilate. Therefore, when they enter our Galaxy, they are

already very cold. This contrasts with models in which the positrons are produced in decays or annihilations

of Galactic dark matter, typically concentrated near the center of the Galaxy. In those models, cooling the

positrons before they can annihilate is a central problem.

Section II introduces notation, the constraints, and physical processes that are relevant for any positron

scenario. The next sections elaborate on the details of cosmological down-scattering (III); energy loss in our

Galaxy (IV); and capture in the bulge (V). We conclude in §VI with a discussion of viable particle physics

models.

II. GENERAL CONSIDERATIONS AND OVERVIEW OF CONSTRAINTS

We consider the situation where some fraction of the dark matter in the universe is unstable. The decaying

particle is calledX and it decays to χ, stable dark matter, together with other decay products. We parametrize

the number density of X-particles by its value early on (say at recombination) before decays start. Define

ω ≡ nX

nχ
|z=zrec . (1)

From CMB observations, we know that the dark matter density has been approximately constant (apart from

the expansion) since recombination. In our scenario, this is still possible if ω < 1, for then the decays produce

little change in the dark matter density and we can safely set nχ(z) = nχ(z = 0)(1+ z)3. The number density

of X as a function of time is therefore

nX = ωnχe
−t/τ

= 1.2× 10−8 cm−3(1 + z)3ω
100GeV

mχ
e−t/τ (2)

where τ is the lifetime of X and we have adopted the WMAP value of Ωcdmh
2 = 0.11. Most of the constraints

(and possibilities) will depend on the branching ratios, in particular what fraction of the decays produce

positrons and photons. In this work we analyze the physics of relic positrons, therefore we will focus on

the case where the dominant decay mode includes a positron2. The decay to photons is nevertheless very

important due to the stringent constraints on diffuse gamma rays. In general, we take the branching ration to

photons, Bγ , as a free parameter. In some cases Bγ can be of order one. An example of this is the neutralino

decay into photon plus gravitino in MSSM theories with gravitino LSP. In any case, the expected value of Bγ

is at least of order α, since the Feynman diagram of the dominant mode can be extended to have the positron

emit a photon, leading to a decay rate a factor of α smaller.

There is also the question of the charge of the decaying particles. The simplest case regarding the phe-

nomenological constraints is if X is neutral. If X is charged, the relic abundances of X+ and X− are likely

the same, and we call this the symmetric scenario. But there is also the possibility of an asymmetry in X+

versus X− (compensated by a net charge in ordinary particles so the Universe remains electrically neutral)

2 The simplest way to ensure this is to require a small mass difference, ∆M < 2 GeV for neutral X or ∆M < 1 GeV for charged
X. With this small mass difference, the decay to protons is kinematically forbidden and all decays produce electrons/positrons
(with the exception of neutral pions that produce photons). A more general model with larger mass differences might also
work but the constraints from the decay-produced protons are more complex than those we consider here.
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similar to the observed particle anti-particle asymmetry. The constraints differ in all three of these cases

(neutral, charged symmetric and charged antisymmetric), so we consider them separately.

There are five sets of constraints on this scenario:

1. Collider constraints. If X is charged and light enough, it can be produced in colliders and will leave

a distinctive signature.

2. Catalyzed Big Bang Nucleosynthesis (CBBN). If X is charged and the abundance is symmetric,

the X− would bind to light nuclei and catalyze nucleosynthesis, violating the success of the comparison

with observed light element abundances today.

3. Heavy Water. If X is charged both in the symmetric and asymmetric cases, the remaining X+ today

could bind with an electron and X− with 4He and produce heavy water, the abundance of which is

tightly constrained.

4. Diffuse Photon Flux from Direct Decays. A fraction Bγ of decays will produce high energy

photons. Photons produced at z ∼< 1000 with energies today between 100 keV and 100 GeV travel freely

through the Universe (see, e.g., [16–18] and Fig. 4 below) so would be observed as part of the diffuse

X-ray or Gamma-ray background today.

5. Diffuse Photon Flux from Inverse Compton Scattering. Even if Bγ were zero, positrons (and

electrons) produced in decays produce high energy photons via Inverse Compton Scattering off the

Cosmic Microwave Background. These would also be part of the diffuse background today except for

energies below 100 keV and large z where the absorption by the intergalactic medium is important.

These constraints, and the scenario to which they apply, are summarized in Table I.

Constraint Neutral X Charged X/Symmetric Charged X/Asymmetric

Collider No Yes Yes

CBBN No Yes No

Heavy Water No Yes Yes

Diffuse Flux: Direct Decays Yes Yes Yes

Diffuse Flux: Inverse Compton Yes Yes Yes

TABLE I: Constraints on three scenarios of decay-produced positrons. Asymmetric means the relic heavy X particles

are positively charged.

Items 1, 2, and 3 have been studied carefully in the literature so we can lift results from previous work.

Because of the presence of electromagnetic couplings, one can hope to produce these heavy long-lived

charged particles through the well-known electroweak processes. Popular examples of such particles are long-

lived staus and gluinos R-hadrons in the MSSM. The LHC with its two dedicated detectors is probing these

candidates. The ATLAS collaboration [19] obtained a model-independent bound using 37 pb−1 of data at

center-of-mass energy
√
s = 7 TeV. This bound can be applied to the mass of the charged NLSP giving

mX± ≥ 110 GeV. The CMS collaboration [20], with its 5 pb−1 of collected data, is able to put an even

stronger bound on the mass mX± ≥ 223 GeV.

For the neutral case, for instance in e+e− colliders like LEP, one way to look for DM is look for mono-photon

events: e+e− → ET/+ γ. These events are produced through the same interaction responsible for decays, with

one photon attached to e±. More precisely the reaction is e+e− → χX + γ, where χ and X appear as

missing energy. This analysis has been applied in the past to a variety of scenarios (see e.g.[21] for LEP).

Unfortunately in our case, this strategy does not lead to a significant constraint because the operators that
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lead to decays predict very small production rates. This conclusion holds also for hadronic machines3, like the

Tevatron and the LHC where one looks for missing transverse energy accompanied by monojets pp(pp̄) → ET/

+mono-jet. See e.g. [23] for analysis on Tevatron data.

In the charged symmetric case, the abundance at BBN should satisfy the (CBBN) constraints, which reads

ω . 2.44× 10−3
( mX

100GeV

)

(

YCBBN

10−14

)

(3)

where YCBBN is the maximum value allowed from catalyzed BBN for X−-lifetimes larger than 105 sec. There

are two possible values for YCBBN available in the literature: the conservative one [24, 25] YCBBN = 10−14 −
10−15 and the more stringent one [26, 27] YCBBN = 10−16. In both charged scenarios, charged relics X±

can form heavy Hydrogen atoms that can condense in the form of anomalously heavy water in the bottom of

oceans. In this case, the so-called heavy water bound applies to the present abundance of heavy X±-particles

[28]

nX±(t0) < 2.63× 10−35 cm−3 (4)

This bound implies that the lifetime of X± must be short enough so that, at present, almost all the X± have

already decayed. These bounds on charged X ’s are shown in the ω, τ plane in Fig. 1. Note that the Heavy

Water constraint requires lifetimes less than ∼ 8× 1015s, corresponds to redshift z ≃ 15.

FIG. 1: Constraints on charged X’s from Heavy Water (HW), CBBN (with the conservative upper limit YCBBN =

10−14) and the diffuse gamma ray background. The CBBN constraint applies only to the symmetric scenario. The

region labelled e+e− → γγ would produce positrons early enough that the high background electron density would

lead to complete annihilation and therefore no residual signal. Shaded regions are excluded, and the constraints use

mχ = 100 GeV. The horizontal blue band denotes the region in parameters space that would produce a 511 keV flux

consistent with that observed by INTEGRAL.

3 Notice that even though there is no coupling of dark matter to quarks, it will be generated at 1-loop level (See e.g [22]).
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The diffuse photon flux from the decays is tightly constrained by observations, a constraint that applies

to all scenarios. Photons can be produced directly in decays or indirectly when electrons and positrons

scatter down off of the cosmic microwave background. We work out the details in Appendices, but here

provide estimates for the flux due to inverse Compton scattering. (As shown in the Appendix, the constraints

from direct decays are similar.) If the decay-produced positron has initial energy of order Einit (typically

of order ∆M/2) immediately after decay at time t = τ , then the up-scattered photons will have energies

of order 4T (τ)(Einit/me)
2 where T is the temperature of the CMB. These photons today will have energy

∼ 4T (τ)(Einit/me)
2/(1+ zd) = 4T0(Einit/me)

2 where zd is the redshift when t = τ . Therefore the diffuse flux

will peak at

Emax ∼ 3.6 keV

(

Einit

1GeV

)2

(5)

independent of the lifetime of X and cut off sharply at higher energies. The diffuse flux at this peak will

roughly be of order cnX(τ)/(4πE), if these photons travel freely and are observed today. The more careful

calculation in the Appendix, including also the attenuation through Compton scattering on cold electrons and

photoionization, leads to

F ≃ 105 cm−2 s−1 sr−1 keV−1ω

(

100GeV

mχ

)

( τ

1015 sec

)2/3
(

1 keV

E

)3/2

(τ < 1017 sec). (6)

Applying the SPI constraint4 at E = 1 keV, F < 10 cm−2s−1sr−1keV−1 leads to

ω

(

100GeV

mχ

)

( τ

1015 sec

)2/3

< 10−4 (τ < 1017 sec) (7)

The full constraint (extended to larger lifetimes) is depicted in Fig. 1 when mχ = 100 GeV and ∆M = 1

GeV, and this holds as long as the cut-off Emax is above 1 keV, or the initial positron energy is above 0.5

GeV. The constraint loosens if Einit is smaller, so that the flux is cut-off well below a keV.

What about the positrons themselves? The energetic positrons almost immediately inverse Compton scatter

down off the photons in the cosmic background to become non-relativistic. This down-scattering continues

thereafter, so early decays (zd < 20) produced positrons that thermalized with electrons and protons. These

positrons behave as CHAMPs [29, 30] (albeit not the dominant component of the dark matter, as in the

traditional CHAMP scenario), collapsing with baryons and dark matter to form galaxies. As we will see

below, they quickly annihilate in the disk or bulge of the Galaxy on timescales much too short to explain

511 keV radiation in our Galaxy. The contribution to the 511 keV flux then is from the flux of positrons on

highly elliptical orbits entering the disk or bulge for the first time now. In the ensuing sections, we estimate

the 511 keV flux from these positrons, subject to the constraints depicted in Fig. 1. Our conclusion is that

– in the regime of parameter space indicated by the blue line in Fig. 1 – positrons could produce flux with

the same amplitude as that seen by INTEGRAL. The corollary to this is that the region above the blue band

(ω > 10−5) is ruled out by the 511 keV line measurements.

III. POSITRON ENERGY LOSS AFTER DECAY

Upon production in decays, positrons/electrons lose energy mainly through scattering on CMB photons

(Inverse Compton scattering). Taking into account expansion, energy loss is governed by [31]

dEe+

dt
+
p2e+H

Ee+
= −4

3
σT ργ c

(

pe+

me

)2

, (8)

4 http://heasarc.gsfc.nasa.gov/docs/objects/background/diffuse spectrum.html
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where σT is the Thompson cross section, H the Hubble expansion rate and ργ is the energy density of CMB

photons. This expression is valid as long as the center of mass energy squared, which is of order EeT , is

smaller than m2
e or equivalently Ee ≪ 106GeV/(1 + z), a criterion that is satisfied over the full range of

parameter space we are considering. Using the auxiliary variable ǫ ≡ pe+/me(1 + z), we can write Eq. (8) in

the more compact form

d ln ǫ

d ln(1 + z)
= Γ (1 + z)5/2

√

ǫ2(1 + z)2 + 1 with Γ ≡ 4

3
σT

ργ,0

H0 Ω
1/2
m me

≃ 0.0113. (9)

Although the full result must be obtained through numerical integration of the above equation from the

decay redshift zd to today, we can understand the behavior of Eq. (9) using some approximations. First, note

that the final momentum depends only on the redshift of decay zd, but not on the initial positron energy

Einit. To see this qualitatively, note that in the parameter range of interest, ǫ starts out large, since p/me is

initially Einit/me ∼ 103, and we are considering decays after z ∼ 100. The scattering term in Eq. (9) is then

of order Γǫ(1+ z)7/2, typically very large, corresponding to rapid energy loss. In a very small redshift interval

after production, then, ǫ drops quickly until ǫ(1 + z) falls below one, and the square root in Eq. (9) can then

be approximated as unity. At that point, the positron momentum is approximately equal to me(1+z)ǫ = me.

That is, inverse Compton scattering almost instantaneously slows down the positrons so that they are non-

relativistic.

After this steep drop, ǫ(1 + z) falls below unity, and the square root in Eq. (9) reduces to one. Integrating

under this approximation leads to a slower but still steady decline in momentum, ǫ ∝ exp{−(2/5)Γ[(1 +

zd)
5/2 − (1 + z)5/2]}. The earlier the positron is produced the more effective the loss process is, so the final

positron momentum decreases with increasing zd. Today, this dependence scales as e−2Γ(1+zd)
5/2/5.

Numerical integration exhibits these qualitative features, as shown in Fig. 2. There is the steep drop

immediately after production, leading to positrons with momentum of order an MeV. Then the energy loss

continues, all of which is independent of the initial energy. The earlier the positrons are produced, the

longer the losses continue, so the final momentum is smallest for positrons produced earliest. As expected,

positrons produced at z = 20 have momentum reduced by a factor of about 1000 more (due to the exponential

dependence on zd) than those produced at z = 10. Our loss equation is valid only when the positron energy is

much greater than the CMB temperature. So, for large zd, the final momentum we obtain from this equation

tends to zero means that the positrons equilibrate with the photons and 〈pe〉 ≃
√
mT . Eventually Coulomb

scattering becomes even more important than Compton scattering and lead to the same result: low energy

positrons that have equilibrated with the rest of the cosmic plasma.

IV. POSITRON INTERACTIONS IN THE GALAXY

Positrons will interact and change energy as they diffuse from the galaxy outskirts to the disk and bulge.

As we have seen in the previous section, the relic positrons from dark matter decay thermalize immediately

with the CMB and then after structure formation they behave as CHAMPs and are dragged to the galactic

halo. Typical velocities for these positrons when they arrive to the disk or the bulge will be of order of

200 km/s. Therefore the kinetic energy of these positrons will be O(0.1) eV. Positrons and electrons with

these energies cannot ionize or excite hydrogen atoms, so their only relevant interactions in the interstellar

medium will be elastic Coulomb scattering with protons or free electrons and annihilation with free or atomic

electrons. The interstellar medium (ISM) is an extremely complex environment [32] because it is made of

regions, primarily of hydrogen, with fairly different physical properties. In Table II we present a summary

of the different regions in the interstellar medium. While clouds of molecular (H2), atomic (HI) and ionized

Hydrogen (HII regions) occupy a small volume fraction, the intercloud media (Hot Ionized, Warm Ionized

and Warm Neutral) pervades most of the volume of the disk and bulge.
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FIG. 2: Momentum of positrons versus redshift for decay redshifts zd = 20 (red curve) and zd = 10 (blue curve).

Result is independent of initial energy Einit. Black curve is
√

meTγ , a rough floor on the positron momentum.

The complexity of the ISM fades away when the issue is the fate of a positron entering the disk. As we show

here, a positron entering any of these regions will very quickly thermalize and then annihilate. To compute

the rate of 511 keV flux from these positrons then, we can safely assume that the photons are produced very

close to the place where the positron enters the disk/bulge. We develop this argument in this section and

then compute the flux of positrons into the disk/bulge – and therefore the 511 keV flux – in the next section.

Coulomb scattering between positrons and free electrons is very effective so positrons thermalize very quickly

even in regions where the ionized fraction is relatively small. In Appendix C, we present the differential cross

sections as function of the energy transfer and calculate the thermalization length Rtherm. The rate of positron

energy change due to Coulomb scattering with free electrons in a medium with free electron density ne is

Component Temperature Midplane density Filling fraction (%) Ionization fraction Scale Height

(K) n0 (cm−3) f (%) xion H (pc)

Clouds

H2 Molecular (MM) 10 - 20 102 − 106 0.1 . 10−4 75 a

HI Cold Neutral (CNM) 50 - 100 20 - 50 2 4× 10−4
− 10−3 94 a

Traditional HII regions 8000 1− 105 – ∼ 1 30-100 b

Interclouds

Warm Neutral HI (WNM) 103 − 104 0.2− 2 ∼ 30 0.007 − 0.05 220 a+ 400 b

Warm Ionized HII (WIM) 8000 0.1− 0.3 ∼ 20 0.6− 0.9 900 b

Hot Ionized (HIM) ∼ 106 0.002 ∼ 50 1 3000 a

aGaussian scale height n(z) = f n0 exp−(z/H)2.
bExponential scale height: n(z) = f n0 exp(−z/H).

TABLE II: Typical parameters of the interstellar medium phases.
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Annihilation Channel Name Annihilation rate

Γann(i) (sec−1)

e+H → Ps+H+ Charge exchange (ce) 10−12 nH

e+e− → Ps γ Radiative combination (rc) 10−12 ne

e+e− → 2γ Direct annihilation with free e− (daf) 2× 10−13 ne

e+H → 2γ +H+ Direct annihilation with bound e− (dab) 7× 10−14 nH

TABLE III: Annihilation channels for a thermal distribution of positrons with T ≃ 1 eV. Values are taken from [35].

given by,

dE

dt
= ne

α2

βeme
log

(

bmin

bmax

)

, (10)

where βe is the typical electron velocity (which depends on temperature) and bmin and bmax are the minimum

and maximum impact parameter. These can be related to the maximal and minimal energy transfer Kmax

and Kmin. In ionized media we can take the maximum impact parameter as bmax = (4πne)
−1/3 ≃ 1 cm for

ne ∼ 1 cm−3 and the minimum impact parameter as bmin = 2α/(mβ2
e) ≃ 5× 10−7 cm, which give a Coulomb

logarithm of log (bmin/bmax) ≃ 15. Dividing the typical energy (3kBT/2) by this rate, and then multiplying

by the velocity provides an estimate for the thermalization length

Rtherm ∼ 10−6 pc

(

cm−3

ne−

) (

T

104K

)2

(11)

a scale that is much smaller than any of the regions listed in Table II. Therefore, no matter where a positron

enters the disk or bulge, it will almost immediately thermalize with the ambient medium and then participate

in the Galactic rotation of that cloud or inter-cloud medium.

After thermalization, positrons will annihilate through one of the four available channels summarized in

Table III. For each annihilation channel i with threshold energy Eth, the annihilation rate is given by

Γann(i) ≡
∫ ∞

Eth

fE(E)ne, H σi(E)v(E)dE (12)

where fE(E) = 2
√

E/π(kBT )3 exp [−E/kBT ] is the usual Maxwell-Boltzmann distribution function for

energy and σi(E) and v(E) are the energy-dependent annihilation cross section and velocity respectively.

Notice that even though the cross section for charge exchange at temperatures of T ∼ eV is suppressed

with respect to the two other channels 5, the corresponding annihilation rate is by far the strongest. So,

even though fewer positrons reach the threshold energy in the thermal distribution, the annihilation rate is

still comparable to radiative combination with free electrons i.e. e+e− → Ps γ. The remaining channels

occur without Ps formation and are: the well-known direct annihilation channel and annihilation with bound

electrons that are one order of magnitude slower. Given that Ps formation channels are dominant, we can

simply estimate the time scale over which positrons annihilate through Ps formation to be Γ−1
ann ∼ 1012

sec. The thermalized positrons are locked in clouds rotating around the center of the Galaxy with typical

speed of order 200 km/sec, so the positron will annihilate before the cloud containing it has traveled 5-10

parsec: effectively the positrons annihilate as soon as they enter the disk/bulge. From the annihilation rates

in Table III, we can expect roughly 5–10% of the positrons to annihilate without forming Ps, depending on

5 The threshold energy for this channel is 6.8 eV.
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the ionization fraction of the media. This value should be compared with the latest experimental value [33]

fPs = 0.967± 0.022. Furthermore, the resulting 511 keV line is broadened due to electrons’ thermal velocity

by the amount ∼1.1 keV
√

T/104 K [34], consistent with observation.

To go further, we need to understand the extent of the disk and bulge. The interstellar medium (ISM),

and in particular the WIM, is rather well-known close to the galactic plane [36, 37], however, it is much more

uncertain at more than 1 or 2 kpc above the disk [38]. Therefore, in this work we will adopt a simplified

model where we take the interstellar medium to be a cylinder of radius R1, allowing R1 to vary between

5 kpc < R1 < 15 kpc, and height 2h around the galactic center. Taking into account the small thermalization

radius compared with typical size of the clouds, we do not need a precise description of the different regions

inside this cylinder. The final ingredient in our model is the bulge which we take as an sphere of rb ≃ 1.5 kpc

in the center of the galaxy. As we have seen, all positrons arriving to the ISM cylinder or the bulge will get

trapped and annihilate close of the boundary of the considered region. Most of the positrons annihilating in

the ISM cylinder will produce 511 keV photons in the disk, while in the inner 1.5 kpc, for h ∼< 1.5 kpc, the

produced photons will be seen as originating from the bulge.

V. FLUX OF POSITRONS IN THE GALAXY

As we have seen in the previous section, in practice, all the positrons entering the ISM cylinder or the

bulge get trapped and annihilate the first time they cross the galaxy. Here we compute this incoming positron

flux and turn it into a 511 keV flux from both the bulge and the disk. In both cases, the number density of

positrons is governed by the rate equation:

dn+

dt
= −n+Γann + S , (13)

where S is the flux of positrons into the region (either bulge or disk) and Γann is the annihilation rate. Since

the annihilation rate is very large, the two terms on the right cancel and the number of positrons reaches

equilibrium at

n+ =
S

Γann
. (14)

To obtain the luminosity of 511 keV photons from this positron density we need to multiply by the annihilation

rate, thereby canceling the denominator, and a factor of 2(1− 3
4fPs) to account for the two photons produced

and positronium formation. The total flux from a given region is then the volume of that region d3x weighted

by 2(1 − 3
4fPs)S/(4πd

2) where d is the distance of the region from us. We expect then a flux of 511 keV

photons from incoming positrons equal to

F =
1− 3

4fPs

2π

∫

d3x
S(~x)

d(~x)2
. (15)

In our simplified model, the annihilations take place on the surface of the region (bulge or disk) so S has a

delta function restricting the 3D integral over d3x to the 2D surface Σ. Other than the delta function, the

source term is the flux, which weights the density of positrons by the the normal component of the velocity,

so the flux of 511 keV photons reduces to

F =
1− 3

4fPs

2π

∫

Σ

dAn̂
1

d2

∫

d3v f+(~v, ~x) (−~v · n̂)Θ(−v̂ · n̂). (16)

Here, f+ is the occupation number of positrons, which depends on both position and velocity; n̂ is normal to

the surface of either the bulge or the disk; and dAn̂ is the differential area traced out by n̂. The final step

function Θ ensures that we count only those positrons entering the disk or bulge, not those leaving.
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The distribution of positrons in the halo is the key ingredient needed to evaluate the flux in Eq. (16). The

simplest first estimate is to assume the positrons trace the dark matter in the halo, with the difference that

their density is smaller by a factor of ω, as defined in Eq. (2). Taking the simplest possible dark matter

profile, an isothermal distribution, leads to

n+(r) = ω
σ2

2πGr2mχ
. (17)

We fix σ by requiring the local dark matter density to be equal to 0.3 GeV/cm3; this translates into σ = 117

km/sec. The corresponding velocity distribution is then

f iso
+ (r, v) =

n+(r)

(2πσ2)3/2
e−v2/2σ2

. (18)

In the case of annihilating positrons, there is an additional issue to consider: positrons that have crossed

the disk previously no longer exist as they have annihilated, so we need to count only those positrons that

are nearing the disk or bulge for the first time now. Again we choose to model the orbits in a simple way

to estimate this survival probability. We assume that the dark matter dominates the gravitational potential,

which is spherically symmetric, and equal to Φ(r) = σ2 ln(r/rv) with the zero-point offset rv chosen to be 200

kpc. In this potential orbits are specified by energy E = v2/2 + Φ(r) and angular momentum L = |~r × ~v|.
Each orbit has two turning points (r1, r2) given by the two solutions to: 2(E − Φ)− L2/r2 = 0, and period

P = 2

∫ r2

r1

dr
√

2(E − Φ(r)) − L2/r2
. (19)

The survival probability is set to one if, for given E and L, r1 is smaller than r (where r is the distance

to the surface of the disk or bulge) and the period is very large; we choose the requirement P > 8 Billion

years. Otherwise, the survival probability, s(~v, ~x), is set to zero. Together these two constraints amount to

the statement that only positrons on highly radial orbits are still available to fuel the 511 keV radiation today.

It is straightforward to show numerically that these two constraints translate into separate restrictions on L

and E. Requiring r1 < r is satisfied as long as

L < 3.3rσ, (20)

while the long period requirement is satisfied as long as

E > 1.2σ2. (21)

With these additions, the distribution function in Eq. (16) becomes

f+(r, v =
√

2(E − Φ(r)), L) = f iso
+ (r, v)s(E,L) (22)

with

s(E,L) = Θ(E − 1.2σ2)Θ(3.3rσ − L). (23)

A. Bulge

We first compute the 511 keV flux from the bulge. For simplicity we can take all points on the surface of

the bulge, at roughly rb = 1.5 kpc, to lie a distance of R⊙ = 8 kpc from us, so that d(~x) comes out of the

integral in Eq. (16). The integral over the surface has area r2bdΩn̂ leaving

Fb =
(1− 3

4fPs)r
2
b

2πR2
⊙

∫

d2Ωn̂

∫

d3v f iso
+ (v, rb) s(E,L) (−~v · n̂)Θ(−v̂ · n̂). (24)
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In this spherically symmetric case, the integrand does not depend on the position on the 2D sphere, so the

d2Ωn̂ integral can be done immediately giving a factor of 4π. The remaining integral over the velocity is

azimuthally symmetric so reduces to

Fb =
(1− 3

4fPs)4πr
2
b

R2
⊙

∫ ∞

0

dv v2f iso
+ (v, rb)

∫ π

π/2

dθ sin θ s(E,L) (−v cos θ) (25)

where the step function has been incorporated into the limits on the polar angle θ: only inward orbits, those

with angle θ between the velocity and the radial vector anti-aligned (cos θ < 0), are included.

To implement the constraints imposed by the survival probability, it is simplest to change dummy variables

from (v, θ) to (E,L), where L = vrb sin θ. The Jacobian is v2rb| cos θ|, so dividing by this, the integrals become

Fb =
4(1− 3

4fPs)π

R2
⊙

∫ 1.2σ2

0

dE f iso
+

(

v =
√

2[E − Φ(rb)], rb

)

∫ 3.3rbσ

0

dLL

= 0.275 (3.3)2
[

1− e−1.2
] rb
rv

σr2bn+(rb)√
2πR2

⊙

. (26)

Plugging in numbers leads to

Fb = 217ω

(

100GeV

mχ

) (

rb
1.5 kpc

)

cm−2 s−1. (27)

This means that in order to match the observation of 10−3 cm−2 s−1, we would need a value of ω,

ω ≃ 4.7× 10−6
( mχ

100GeV

)

. (28)

B. Disk

The flux from the disk is more complicated to compute for two reasons: (i) the distance to us now varies

significantly as one moves along the surface of the disk, so d cannot be removed from the integral in Eq. (16)

and (ii) the normal n̂ is no longer parallel to the radial vector that enters the definition of the angular

momentum. Whereas for the bulge ~v× ~r = vr sin θ and ~v · n̂ = v cos θ, for the disk these two products involve

different angles. Specifically, if we choose the polar axis of the d3v integral to lie parallel to the radial vector

r̂, then L will still be equal to vr sin θ, but now

~v · n̂ =
v

r
[R sin θ cosφ+ h cos θ] . (29)

Here the 3D distance r =
√
R2 + h2 where R is the cylindrical radius from the center of the Galaxy; h is the

height of the disk; and φ is the azimuthal angle in the velocity integration. Thus the flux coming from the

disk is

Fd =
2(1− 3

4fPs)

2π

∫ Rd

0

dRR√
R2 + h2

∫ 2π

0

dα

R2 + h2 +R2
⊙ − 2RR⊙ cosα

(30)

×
∫ ∞

0

dv v3f iso
+ (r, v)

∫ π

0

dθ sin θ s(E,L)

∫ 2π

0

dφ [−R sin θ cosφ− h cos θ] Θ [−R sin θ cosφ− h cos θ] .

We can simplify this equation in the limit h≪ R, which is approximately true in our simplified model wherein

the radius of the disk is much larger than its height, although we keep h in the denominator to avoid the

singularity in R = R⊙. So,

Fd ≃ 2(1− 3
4fPs)

2π

∫ Rd

0

dR

∫ 2π

0

dα

R2 + h2 +R2
⊙ − 2RR⊙ cosα

×
∫ ∞

0

dv v3f iso
+ (r, v)

∫ π

0

dθ sin θ s(E,L)

∫ 2π

0

dφ [−R sin θ cosφ] Θ [−R sin θ cosφ] . (31)
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Now Θ [−R sin θ cosφ] selects π/2 < φ < 3π/2 and the integral on φ is trivial, becoming just 2R sin θ. To

proceed in this case it is more convenient to change the v integral to K ≡ v2/(2σ2). Then, the restriction on

L = vr sin θ < 3.3rσ can be set on K and we have, 1.2 − Φ(r)/σ2 < K < (3.3/ sin θ)2/2. The upper bound

on the K integral must be larger than the lower bound, so sin2 θ < 3.32/[2(1.2 − Φ(r)/σ2)]. For large r, Φ

is sufficiently large that this constraint is always satisfied. But for r < 3 kpc we have a bound on sin2 θ.

Expressing the integral as one over cos θ then leads to

Fd ≃ 2(1− 3
4fPs)

2π

∫ Rd

0

dRR

∫ 2π

0

dα

R2 + h2 +R2
⊙ − 2RR⊙ cosα

4
n+(R)σ

(2π)3/2

×
[

∫ 1

ar

d cos θ sin θ

∫ 3.32/(2 sin2 θ)

1.2−Φ(R)/σ2

K dK e−K +

∫ −ar

−1

d cos θ sin θ

∫ 3.32/(2 sin2 θ)

1.2−Φ(R)/σ2

K dK e−K

]

(32)

where ar is defined as

a2r =







1− 3.32

2(1.2−Φ(r)/σ2) r < 3 kpc

0 r > 3 kpc
. (33)

The dimensionless factor inside the square brackets in Eq. (32) can be evaluated numerically; a good fit is

C2(R) ≃ 0.007 + 0.01( R
1 kpc − 1) for R from 1 to 20 kpc (again we neglect the small distinction here between

r and R). Then we have:

Fd ≃ 2(1− 3
4fPs)

2π

∫ Rd

0

dRR
2π

√

(R2 + h2 +R2
⊙)

2 − 4R2R2
⊙

4
n+(R)σ

(2π)3/2
C2(R) (34)

From here, we obtain an estimate of (B/D)−1 by dividing by the flux obtained from the bulge:

(

B

D

)−1

(Rd) =
8

2π

∫ Rd

1

dR
C2(R) R R2

⊙

Cb r2b

√

(R2 +R2
⊙ + h2)2 − 4R2R2

⊙

n+(R)

n+(rb)
(35)

with Cb = (3.3)2
[

1− e−1.2
]

rb
rv

≃ 0.057. Integrating this expression numerically, we obtain the value of B/D.

Given the crudeness of our disk model, we compute this for a variety of values of Rd, the radius of the disk.The

result is shown in Figure 3. For the simple isothermal profile, the bulge to disk ratio is of order unity (in

agreement with observations [39]) if the disk scale length is less than about 8 kpc, but drops to 0.25 for larger

values of the disk radius.

VI. DISCUSSION

High energy positrons produced at early times via the decay of a second dark matter species cool down and

will eventually get trapped in galaxies. These cooled positrons would contribute to the 511 keV flux in our

Galaxy and – with a suitable choice of parameters – might explain the observed bulge to disk ratio of this

flux. We conclude with a brief discussion of the possible models that can generate this kind of mass hierarchy

and couplings in the dark sector.

First consider the case where the unstable DM component is neutral. In supersymmetric models, while the

possibility of two neutral species is quite natural (with both a neutralino and gravitino), the heavier species

will often decay predominantly into photons, leading to very tight constraints from the diffuse flux [40]. This

traces back to the fact that the lightest neutralino usually has a large photino component. More generally, we

can use effective field theory to write down operators that lead to decays. If the dark matter species consists of

fermions, the coefficient is of order Λ−2 where Λ is the UV scale above which the effective theory breaks down.
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FIG. 3: Ratio B/D of the flux of 511 photons from the bulge and the disk for different values of the ISM disk radius

Rd as explained in the text.

The long lifetimes required then point to Λ ∼ 1011 GeV. For scalar dark matter, the operator is suppressed by

only a single power of Λ, so the long lifetimes require a UV scale of order the Planck mass. In this effective field

theory context, too, operators leading to decay to photons must be suppressed. Models that accomplish this

typically rely on a secluded dark sector, which communicates with the Standard Model through suppressed

interactions. In all models, it is a challenge to obtain the correct relic density since couplings are so small.

Likely, χ cannot be a conventional thermal relic and other mechanisms (such as ‘freeze-in” [41] or dilution via

a short phase of thermal inflation [42]) need to be explored.

Getting the correct relic density is even more difficult in the case of charged dark matter. In the charge

symmetric case, dark matter is likely to annihilate quickly into photons, leaving no appreciable X ’s to decay

at late times. So a mechanism to suppress annihilations will be essential to any successful symmetric model.

Asymmetric models do not suffer from this problem, but generating an asymmetry – which of course requires

out-of-equilibrium – might prove challenging in a sector that interacts electromagnetically.

Although we have touched on particle physics realizations of our scenario, in principle our constraints apply

to any source of positrons that are operating from recombination up to now. Most of the constraints (apart

from heavy water, colliders, and possibly direct decays to photons) apply to any mechanism that produces

positrons in the early universe.
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Appendix A: Diffuse Spectrum from Inverse Compton Scattering

When high energy positrons are produced, they scatter down off of the CMB, up-scattering the photons

to energies where they redshift freely and can be observed today as part of the diffuse background. Here we

calculate the diffuse spectrum from this process of inverse Compton scattering. At any given time, an energy

density ∆ρ = EinitnXdt/τ is deposited into diffuse photons, where Einit is the energy carried by electrons

and positrons in a single X decay (roughly equal to mX/2 if the decay is 2-body, the branching ratio to

positrons is unity, and mX ≫ mχ). The spectrum of photons produced by inverse Compton scattering scales

as dρ/dE ∝ E−1/2 [43] up to a maximum energy of order Emax = 4T (Einit/me)
2, so the differential spectrum

produced by decays in a small interval dt is

d2ρ

dtdE
=

EinitnX

2E
1/2
maxE1/2τ

Θ [Emax − E] . (A1)

Note that, since E
1/2
max scales as Einit, the factors of Einit in the amplitude cancel out and the differential

spectrum depends on Einit only indirectly in the cut-off energy. This reflects the physical fact that a larger

Einit leads to more energy injected into the diffuse spectrum per decay, but this greater energy extends to

larger maximum energy, so that the amplitude of the spectrum at any point below the maximum does not

depend on Einit.

To convert this to a spectrum today, use the facts that the energy today E0 is equal to E/(1 + z) and the

time interval dt is equal to −dz/[H(z)(1 + z)], and integrate over all time, remembering that the left hand

side scales as (1 + z)3. So,

dρ

dE0
=

1

E
1/2
0

∫ ∞

0

dz

H(z)(1 + z)9/2
EinitnX(z)

2E
1/2
maxτ

Θ [Emax − E0(1 + z)] . (A2)

The argument of the Θ function is independent of z because Emax scales as 1 + z, reflecting the fact that, at

any given time, the photons with maximum energy produced by inverse Compton scattering redshift down

to the same maximum value of E0 today (4T0(Einit/me)
2). Dividing by the energy, we obtain the spectrum

today:

dn

dE0
=

menX(t = τ)

4T
1/2
0 τE

3/2
0 H0(1 + zd)3

Θ

[

4T0(Einit)
2

m2
e

− E0

]

I(τ), (A3)

where

1 + zd ≡ 1 + z(t = τ) ≃ 68

(

1015sec

τ

)2/3

(A4)

the approximate equality holding at the percent level for 1 < z < 200, and

I(τ) ≡
∫ ∞

0

dz
e−[t−τ ]/τ

(H/H0)(1 + z)2
≃ 9.3× 10−5

( τ

1015 sec

)5/3

, (A5)
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FIG. 4: Opacity of the universe for different redshifts, (1 + z), and photon energies, E0. The different constours

correspond to attenuation factors, e−τ(E0,z) = 0.5, 0.4, 0.3, 0.2, 0.1, 0.01 from light to dark.

with the approximate equality valid for 2 < z < 600. The spectrum then scales as E
−1/2
0 with an amplitude

governed by the dimensionless integral over redshift, which depends only on the lifetime of X . Plugging

numbers and dividing by 4π sr leads to the present day flux in Eq. (6).

A lingering question is whether the photons produced at large z ftravel freely through the universe or if

they interact and are absorbed before arriving here. To answer this question we need to know the optical

depths of the absorbtion and scattering processes. This problem was discussed in detail in Refs.[16, 44]. Using

the code developed in [18], we find attenuation as depicted in Fig. 4. For most of the parameter space we are

interested in here, attenuation is irrelevant, although we do include it in the constraints shown in Fig. 1.

Appendix B: Diffuse spectrum from radiative decays and Final State radiation

In this appendix, we compute the diffuse spectrum of photons produced through decay of the NLSP (the

X particles) [45]. There are two such processes that we will consider here. The first one is radiative decays

wherein photons are produced directly. The second process is final state radiation, where a photon is emitted

from the produced electron/positron through Bremsstrahlung . Let us consider a decay process with partial

decay width Γγ . Each decay leads to Nγ photons. For instance Nγ= 1 for X → γχ. Following Ref. [17], we
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write the measured diffuse flux at redshift z as

Eγ
dΦγ

Eγ
(z) =

c

4π

∫ ∞

z

dz′

H(z′)(1 + z′)

J
(

1+z′

1+z E, z
′

)

(1 + z′)3/(1 + z)3
(B1)

where H(z) = H0

√

ΩΛ +ΩM (1 + z)3 is the Hubble expansion rate and the emissivity J(Eγ , z) takes the form

J(E, z) = Nγ nX(z)E
dΓγ

dE
(B2)

where nX(z) is the number density of the decaying particle that can be written as

nX(z) = ω
ρcΩcdm

mX
(1 + z)3e−t(z)/τ

The present photon flux from a general decay to photons can be written as

dΦγ

dEγ
= ωNγ

c

4π

ρc Ωcdm

mX Eγ

∫ ∞

0

dz′

H(z′)(1 + z′)
e−t(z′)/τ E

dΓγ

dE
, (B3)

where E = E(z′) = (1 + z′)Eγ is the energy of the photon at production.

1. 2-body decays

If the NLSP decays through a 2 body processX → χγ, thenNγ = 1 and dΓγ/dE = Brγ ΓXδ(Eγ(1+z
′)−ǫγ),

where Brγ ≡ Γγ/ΓX is the branching ratio to photons, ǫγ = mX

2

(

1− (mχ/mX)2
)

is the photon energy at

production and ΓX = τ−1
X is the total decay rate. The delta function can be integrated using the formula

δ [f(z)] = δ(z− z⋆)/|f ′(z = z⋆)| where z⋆ is the solution which satisfies f(z⋆) = 0. In our case z⋆ = ǫγ/Eγ − 1.

After integration we get

dΦγ

dEγ
= ω

c

4π

ρcΩcdmBrγ
mXτX

e−t(z⋆)/τX

EγH0

√

ΩΛ +ΩM (ǫγ/Eγ)3
Θ(ǫγ − Eγ), (B4)

where the Θ function simply cuts energies larger than the initial energy ǫγ and t(z) is given by [46]

t(z) ≡ 2 log[(
√

ΩΛ(1 + z)−3 +
√

ΩM +ΩΛ(1 + z)−3)/
√
ΩM ]

3H0

√
ΩΛ

, (B5)

Taking into account that c/H0 ≃ 1.28 × 1028 cm , ρc = 5.46 × 10−6 GeV/cm3, H0 = 72 km sec−1 Mpc−1,

ΩΛ = 0.7, ΩM = Ωcdm +ΩB = 0.3 and Ωcdm = 0.25, we find that the flux is

dΦγ

dEγ
= 1.12× 106 cm−2 sr−1 sec−1 GeV−1 (B6)

×ωBrγ

(

GeV

Eγ

)(

100GeV

mX

)(

1013 sec

τX

)

e−t(z⋆)/τX

√

0.7 + 0.3(ǫγ/Eγ)3
Θ(ǫγ − Eγ) . (B7)

This differential flux of photons must be compared to the observed diffuse gamma ray flux. The maximum of

this flux must be smaller than that observed flux by SPI [47], COMPTEL [48] and EGRET [49]. For a given

lifetime and ∆M = mX −mχ, we can find the constraint on the product ω Brγ as a function of the lifetime

τX .

As an example of 2-body decays leading to a photon, consider the decay represented in Fig. (5). Indeed,

even though, by assumption, there is no interaction that would mediate the decay X → χγ at tree-level, there
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will be subdominant diagrams leading to photons 6 . The first of such diagrams is the one shown in the Figure

(5), where one just joins the positron and electron to form a loop, where a photon is emitted. Notice that

this decay is 2-body, so the photon will be monochromatic. The branching ratio to photons can be estimated

as Brγ ≃ α/4π.

e−

e+
e+

e−

FIG. 5: Diagram contributing to photon emission at 1-loop for a neutral NLSP.

2. Final State Radiation (FSR)

In addition to direct decays to photons, for any dark matter component decaying to a positron or a

positron-electron pair, there are processes where photons are emitted from the final state positrons/electrons

through Bremsstrahlung. The produced photons, which are called final state radiation (FSR) or internal

Bremsstrahlung, will also contribute to the diffuse background of radiation. In the colinear limit, the spectrum

of such photons at production is given by [50]

dΓγ

dx
≃ α

π

(

1 + (1− x)2

x

)

log

[

m2
X

m2
e

(1− x)

]

ΓX (B8)

where x ≡ 2E/mX . In the limit of small mass splitting x = 2∆M/mX ≪ 1, we get from Eq. (B8)

E
dΓγ

dE
≃ 4α

π
log

(

mX

me

)

ΓX . (B9)

Plugging this expression in Eq. (B3), we get the diffuse flux from internal Brehmsstrahlung

dΦγ

dEγ
=
ω α

Eγ

c

π2

ρc Ωcdm

mX
log

(

mX

me

)

Θ(ǫγ − Eγ) , (B10)

where we have used
∫ ∞

0

dz
e−t(z)/τX

(1 + z)
√

ΩΛ +ΩM (1 + z)3
= τX H0. (B11)

We can represent both bounds from direct decay and FSR in Fig (6); note that these bounds are consistent

with those obtained in Refs. [51, 52].

Appendix C: Coulomb energy losses

We consider here the problem of elastic Coulomb scattering of positrons on interstellar matter. The positron

kinetic energy corresponding to a velocity of 200 km/s is of order ∼ 0.1 eV so is too low to ionize or excite

6 Notice that if the four-fermion interaction leading to the decay X → χeē contains a γ5, this process will be absent [22].
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FIG. 6: Combined bounds on the diffuse flux for Ei = 1GeV and mX = 100GeV . The pink area is excluded by

Brehmsstrahlung emission while the light blue area is excluded by direct decay to photons at one-loop (Fig. (5)).

neutral Hydrogen. Thus, at these low energies, positrons will scatter-off only free electrons or protons. Since

the protons are very heavy, the energy transfer is completely negligible. Therefore, the energy transfer is

dominated by Coulomb scattering of positrons and free electrons.

Consider the elastic scattering of an electron and positron. Following Jackson [53], we work in the the

e− rest frame and translate results to the Lab frame. The scattering is represented in Fig. 7. The variable

defined in the figure are b the impact parameter; ψ the incident angle, and θ the scattering angle. When

passing through its trajectory, the electron traveling at a velocity β will feel the electrostatic attraction given

by Coulomb’s law ~F = α
r3~r. Only the force perpendicular to the trajectory will give an effect, as the parallel

one cancels out, so the momentum transfer is

∆p =

∫ ∞

0

F⊥ dt = − α

bβ

∫ π

0

sinψ dψ = −2α

bβ

where we have changed variable using dt = βdx where dx = −b dθ/ sin2 θ.
1

b

x
0

!r

e+

e− or H atom

θ!p

!p′

ψ

FIG. 7: The geometry of Coulomb scattering.
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The energy transfer for each scattering is given by

∆E =
(∆p)2

2me
=

2α2

b2β2me
. (C1)

In order to obtain the total energy transfer for multiple collisions, we have to integrate over the number of

electrons contained in the cylinder with volume element 2πb db dx. Since dx = βdt, we have the energy loss

rate

dE

dt
= −∆E

βne

4π
(2πb db) (C2)

where we divided by 4π to average over all directions. Integration over the impact parameter leads to

−dE

dt

∣

∣

∣

C
=

α2

βme
ne log

(

bmax

bmin

)

, (C3)

where bmax and bmin are the maximum and minimum impact parameters respectively. The energy loss

depends only logarithmically on the cutoffs so it is sufficient to obtain rough estimates of bmax and bmin.

The minimum impact parameter corresponds to the closest approach and thus to the maximum energy

transfer, so bmin = 2α
mβ2 . It is more difficult to define define bmax for free electrons due the the infinite range

of the electromagnetic force. For any given impact parameter, each scattering should take place in a volume

∆V (b) = 2πb2β∆τ where ∆τ is the scattering duration. There should be one electron in ∆V (b), so the

maximum impact parameter bmax should satisfy ne∆V (bmax) = 1. Thus bmax = (4πne)
−1/3. So, the Coulomb

logarithm can be written as [54]

LC ≡ log(bmax/bmin) ∼ log(3kBTλD/2α) ≃ 15, (C4)

where λD = (kBT/4πneα)
1/2 is the Debye length; the screening length in a fully ionized medium, i.e. a

plasma.

Thus, the positron will reach the temperature of the plasma after a time ttherm., given by,

ttherm. =
3kBT/2

dE/dt
=

3kBTβme

2ne α2LC
. (C5)

This is associated with a thermalization length

Rtherm ≡ βttherm ≃ 10−6 pc

(

1/cm3

ne

) (

T

104K

)2

. (C6)




