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The semileptonic decay channel B → Dτν is sensitive to the presence of a scalar current, such
as that mediated by a charged-Higgs boson. Recently the BaBar experiment reported the first
observation of the exclusive semileptonic decay B → Dτ−ν, finding an approximately 2σ discrepancy
with the Standard-Model prediction for the ratio R(D) = BR(B → Dτν)/BR(B → D`ν), where
` = e, µ. We compute this ratio of branching fractions using hadronic form factors computed in
unquenched lattice QCD and obtain R(D) = 0.316(12)(7), where the errors are statistical and
total systematic, respectively. This result is the first Standard-Model calculation of R(D) from ab
initio full QCD. It agrees with previous theoretical estimates, but the errors are smaller primarily
due to the reduced uncertainty in the scalar form factor f0(q2). We also compute R(D) in models
with electrically charged scalar exchange, such as the type II two-Higgs doublet model (2HDM). Our
result disagrees significantly with previous estimates for large values of the scalar coupling (e.g., large
tanβ/MH+ in the 2HDM), and therefore impacts the interpretation of experimental measurements
of R(D) as constraints on new-physics models. As a byproduct of our calculation we also present
the Standard-Model prediction for the longitudinal polarization ratio PL(D) = 0.325(4)(3).

Motivation. – The third generation of quarks and lep-
tons may be particularly sensitive to new physics asso-
ciated with electroweak symmetry breaking due to their
larger masses. For example, in the minimal supersym-
metric extension of the Standard Model, charged-Higgs
contributions to tauonic B decays can be enhanced if
tanβ is large. Thus the semileptonic decay B → Dτν is
a promising new-physics search channel [1–13].

The BaBar experiment recently measured the ratios
R(D(∗)) = BR(B → D(∗)τν)/BR(B → D(∗)`ν), where
` = e, µ, and reported excesses in both channels which,
when combined, disagree with the Standard Model by
3.4σ [14]. BaBar also interpreted these measurements in

terms of the type-II two-Higgs-doublet model (2HDM)
and claimed to exclude the theory at 99.8% confidence-
level. In this work, we update the prediction for R(D)
in the Standard-Model and in new-physics theories with
a scalar current (such as the 2HDM) using unquenched
lattice-QCD calculations of the B → D`ν form factors
f0(q2) and f+(q2) by the Fermilab Lattice and MILC col-
laborations [15]. This is the first determination of R(D)
from ab initio full QCD.

With lepton helicity defined in the rest frame of the
virtual W boson, the general expressions for the differ-
ential rates for semileptonic B → D`ν decay are given
by
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where the subscript denotes helicity, and q = (p` + pν)
is the momentum carried by the charged lepton-neutrino
pair. The total semileptonic width is the sum of the
partial widths, Γtot = (Γ+ + Γ−). At tree-level of the
Standard Model electroweak interaction, the scalar- and
tensor-exchange couplings are GS = GT = 0, while the
vector coupling is G`ijV = GFVij . In the infinite heavy-
quark-mass limit, the form factors f+(q2) and f2(q2) are
related via

f2(q2) = −f+(q2)− M2
B −M2

D

q2
[
f+(q2)− f0(q2)

]
. (3)

The form factor f2(q2) is only relevant for theories with
tensor currents, however, which we do not consider here.

Because the Standard-Model positive-helicity contri-
bution to semileptonic B → D decay is proportional
to the lepton mass-squared, it can be neglected for the
light leptons ` = e, µ; thus experimental measurements of
B → D`ν decays are sensitive only to the vector form fac-
tor f+(q2). On the other hand, the differential rate for
B → Dτν is sensitive also to the positive-helicity con-
tribution and, hence, f0(q2). Existing Standard-Model
estimates of dΓ−/dq

2 for B → Dτν have relied on the
kinematic constraint f0(0) = f+(0), dispersive bounds
on the shape [16], relations from heavy-quark symme-
try, and quenched lattice QCD (neglecting u, d, and s
quark loops) [17, 18]. See Refs. [10–13] for details. In
this letter, we replace quenched QCD and heavy-quark
estimates with a full, 2+1-flavor QCD calculation. In
particular, we determine the following ratios within the
Standard Model (where ` = e, µ):

R(D) = BR(B → Dτν)/BR(B → D`ν) , (4)

PL(D) =
(
ΓB→Dτν+ − ΓB→Dτν−

)
/ΓB→Dτνtot . (5)

These quantities enable particularly clean tests of the
Standard Model and probes of new physics because the
CKM matrix elements and many of the hadronic uncer-
tainties cancel between the numerator and denominator.

Lattice-QCD calculation. – Here we briefly summarize
the lattice-QCD calculation of the B → D`ν semileptonic
form factors f+(q2) and f0(q2) [15]. Our calculation is
based on a subset of the (2+1)-flavor ensembles generated
by the MILC Collaboration [19]. We use two lattice spac-
ings a ≈ 0.12 and 0.09 fm, and two light-quark masses at

each lattice spacing with (Goldstone) pion masses in the
range 315–520 MeV.

This relatively small data set is sufficient for ratios
such as those studied here and in Ref. [15], given the mild
chiral and continuum extrapolations. We use the Fermi-
lab action [20] for the heavy quarks (bottom and charm)
and use the asqtad-improved staggered action [19] for the
light valence and sea quarks (u, d, s). We minimize the
systematic error due to contamination from radial excita-
tions in 2-point and 3-point correlation functions by em-
ploying fits including their contributions. We renormal-
ize the lattice vector current c̄γµb (and other heavy-heavy
currents) using a mostly nonperturbative method [21] in
which we determine the flavor-conserving normalizations
nonperturbatively. The remaining correction is close to
unity and can be calculated in one-loop tadpole-improved
lattice perturbation theory [22]. When extrapolating
the lattice simulation results to the physical light-quark
masses and the continuum limit, we carefully account for
the leading nonanalytic dependence on the light-quark
masses at nonzero but small momentum transfer [23] in-
cluding the effects of lattice artifacts (generic discretiza-
tion errors and taste-symmetry breaking introduced by
the staggered action) [24, 25].

Figure 1 shows the results for f+(q2) and f0(q2) [15].
The simulated data are in the range w < 1.17 (to the
left of the dashed vertical line), where w = (M2

B +
M2
D − q2)/(2MBMD). In this region, we parameterize

the w dependence of the form factors by a quadratic ex-
pansion about w = 1, which works well for small re-
coil. To extend the form-factor results beyond the sim-
ulated recoil values (to the right of the dashed vertical
line) we reparameterize the form factors in terms of the
variable z [27], and then extrapolate to large recoil us-
ing a model-independent fit function based on general
quantum-theory-principles of analyticity and crossing-
symmetry. As seen in Fig. 1, our result for f+(q2) agrees
very well with experimental measurements [26] over the
full kinematic range. This nontrivial check gives confi-
dence in the extrapolation of f0(q2), which cannot be
obtained experimentally and for which lattice-QCD in-
put is crucial. In particular, lattice-QCD uncertainties
are smallest near q2 = (MB −MD)2, so the discussion
below hinges principally on our calculation of f0(q2) near



3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1  1.1  1.2  1.3  1.4  1.5  1.6

w

z-parameterization f0
z-parameterization f+

BaBar ’10

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1  1.1  1.2  1.3  1.4  1.5  1.6

w

simulated extrapolated

FIG. 1. The form factors f+ (top, red) and f0 (bottom, blue)
from lattice QCD. The range of simulated recoil values is to
the left of the vertical line. The filled colored bands show the
interpolation/extrapolation of the numerical lattice data over
the full kinematic range using the z parameterization. For
comparison, the experimental measurement from BaBar [26]
is shown as solid filled circles (using |Vcb| = 41.4 × 10−3 [17,
26]).

this point, the validated f0(0) = f+(0), and a smooth
connection between the two limits.

We calculate the Standard-Model B → D`ν partial de-
cay rates into the three generations of leptons using these
form factors and Eqs. (1) and (2) with GS = GT = 0,
GV = GFV

∗
cb. The resulting distributions are plotted in

Fig. 2. To illustrate the role of the scalar form factor
f0(q2), we also show the rates with only the contribu-
tions from f+(q2). Due to the significant helicity sup-
pression, the differential decay rates into light leptons
are well-approximated by a single contribution from the
form factor f+(q2). For B → Dτν, however, the contri-
bution from the scalar form factor f0(q2) comprises half
of the Standard-Model rate.

Given the lattice-QCD determinations of f+(q2) and
f0(q2) we can obtain the Standard-Model values for R(D)
and PL(D). These are the primary results of this let-
ter, and we now discuss the sources of systematic uncer-
tainty. In Ref. [15], many statistical and several system-
atic errors cancelled approximately or exactly in the ratio
fBs→Ds`ν0 /fB→D`ν0 studied there. Some of these do not
cancel (as well) in R(D) and PL(D), however, because
they affect f+(q2) and f0(q2) differently.

Table I shows the error budgets for R(D) and PL(D).
The statistical error in R(D) is significant (3.7%) due
to the different phase-space integrations in the numera-
tor and denominator, whereas for PL(D) the correlated
statistical fluctuations largely cancel. For the same rea-
son, the errors in R(D) arising from the extrapolation to
the physical light-quark masses and the continuum limit
(1.4%) and to the full q2 range (1.5%), are much larger
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FIG. 2. Differential decay rates for B → Deν (green), B →
Dµν (blue), and B → Dτν (red) in the Standard Model.
The black dot-dashed curves show the rates calculated with
f0(q2) = 0.

than for PL(D). We estimate the error from the chiral-
continuum extrapolation by comparing the results for fits
with and without next-to-next-to-leading order analytic
terms in the chiral expansion. We estimate the error from
the z extrapolation by varying the range of synthetic data
used in the z fit, including an additional pole in the fit
function, and including higher powers of z. For further
details on the chiral and z-extrapolation fit functions, see
Ref. [15]. The remaining sources of uncertainty in Table I
do not contribute significantly to the quantities studied
in Ref. [15], so we describe them in greater detail below.

We determine the bare heavy-quark masses in our sim-
ulations by tuning the parameters κb and κc in the heavy-
quark action such that the kinetic masses of the pseu-
doscalar Bs and Ds mesons match the experimentally-
measured values [20]. In practice, it is easier to work with
the form factors h±(w) on the lattice, which are linear
combinations of f+,0(q2) [15]. We study how the form
factors h±(w) depend on κb,c by re-computing the form
factors on some ensembles at values of κb,c slightly above
and below the default ones, and extracting the slopes
with respect to κb,c. We use these slopes to correct our
results for R(D) and PL(D) slightly from the simulated
κ values to the physical ones, and conservatively take the
full size of the shift as the error due to κ-tuning.

We remove the leading taste-breaking light-quark dis-
cretization errors in the form factors with the chiral-
continuum extrapolation, and estimate the remaining
discretization errors from the heavy-quark action with
power counting [28]. We compute both the coefficient of
the dimension 5 operator in the Fermilab action cSW and
the rotation parameter d1 for the heavy-quark fields at
tree level in tadpole-improved lattice perturbation the-
ory [20]. Then the leading heavy-quark errors in h+(1)
are of O

(
αs(Λ/2mQ)2

)
and O

(
(Λ/2mQ)3

)
, where Λ is
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Source R(D) PL(D)
Monte-Carlo statistics 3.7 1.2
Chiral-continuum extrapolation 1.4 0.1
z-expansion 1.5 0.1
Heavy-quark mass (κ) tuning 0.7 0.1
Heavy-quark discretization 0.2 0.3
Current ρV i

cb
/ρV 0

cb
0.4 0.7

total 4.3% 1.5%

TABLE I. Error budgets for the branching fraction and lon-
gitudinal polarization ratios discussed in the text. Errors are
given as percentages.

a typical heavy-quark scale. Using the values αs = 0.3,
Λ = 500 MeV, and mc = 1.2 GeV, we estimate that
heavy-quark discretization errors in h+(1) are ∼1–2%.
At nonzero recoil, w > 1, there are corrections to h+(w)
of O (αsΛ/2mQ), but these are suppressed by (1 − w)
because they vanish in the limit w = 1 by Luke’s theo-
rem [29]. We expect them to be largest at our highest
recoil point w = 1.2, and estimate their size to be ∼ 1%.
Thus we estimate the uncertainty in h+(w) from heavy-
quark discretization errors to be 2%, which leads to neg-
ligible errors in R(D) and PL(D). The leading heavy-
quark error in h−(w) is of O (αsΛ/2mQ), which we esti-
mate with the input parameters above to be ∼ 6%. To be
conservative, we take the error in the ratio h−(w)/h+(w)
to be 10%, which leads to small errors in R(D) and
PL(D).

Our methods for computing B → D transitions in-
corporate the bulk of the matching of the lattice vector
current to continuum automatically, leaving a factor ρV µcb
close to unity [30]. ForR(D) and PL(D), only the relative
matching of the spatial and temporal components of the
current matters, ρV icb/ρV 0

cb
. Although we have a one-loop

calculation of ρV 0
cb

in hand, no nontrivial result for ρV icb is

available. We take ρV icb/ρV 0
cb

= 1.0± 0.2 to estimate the
uncertainty from this source. In similar calculations, we
have never seen ρ factors that differ from unity by more
than 5%, so this range is extremely conservative. The
uncertainty in the current renormalization factors leads
to a small error in R(D), but is the second-largest source
of error in PL(D), after statistics.

We also consider the systematic uncertainties from
tuning the light-quark masses and determining the ab-
solute lattice scale r1, but these produce negligible errors
in both R(D) and PL(D).
Results and Conclusions. – We obtain the following de-

terminations for the branching-fraction and longitudinal-
polarization ratios for B → D`ν semileptonic decay:

R(D) = 0.316(12)(7) , (6)

PL(D) = 0.325(4)(3) , (7)

where the errors are statistical and total systematic, re-
spectively. The value of R(D) is approximately 1σ larger
than the recent values obtained using estimates of f0(q2)

from Refs. [11, 13], however, the difference with the re-
cent BaBar measurement of R(D) = 0.440 ± 0.058 ±
0.042 [14] is still statistically significant. The results for
R(D) from Belle [31] agree with those of BaBar, but cur-
rently have larger uncertainties. Current experimental
measurements of R(D) are statistics-limited, so the lu-
minosities available at Belle II and superB should enable
significant improvement on R(D) and possibly a deter-
mination of PL(D).

We also re-examine the interpretation of the BaBar
measurement of R(D) as a constraint on the 2HDM; the
result is plotted in Fig. 3. For this theory, the scalar-
exchange coupling in Eqs. (1) and (2) is given by

G`cbS = GFVij
m`(mc +mb tan2 β)

M2
H±

. (8)

In practice, mc � mb tan2 β. Our improved calculation
of the scalar form factor f0(q2) significantly increases the
prediction for R(D) at large coupling tanβ/MH+ , and
leads to a different constraint on the 2HDM from the ex-
perimental measurement. This large sensitivity of R(D)
to small differences in f0(q2) suggests that one should be
cautious in using indirect estimates of the form factors
to constrain new-physics models in other decay channels
such asB → D∗τν. Inspection of the general formulas for
the differential decay rates, Eqs. (1) and (2), shows that
numerous new-physics explanations for the ∼ 3σ tension
between measurements of {R(D), R(D∗)} and the Stan-
dard Model are possible. Lattice-QCD calculations of
f+(q2) and f0(q2) can be used to provide reliable pre-
dictions for R(D) in any model given values for the cou-
plings {GS , GV , GT }. We note, however, that the Dalitz
distribution for the lepton and D-meson energies in the
B-meson rest frame may be more sensitive to tensor in-
teractions than R(D) [32].

The largest source of uncertainty in our determina-
tions of R(D) and PL(D) is statistical errors, which we
expect to reduce with an analysis of our full data set in
a future work [33]. The ratio R(D) is correlated with
PL(D) as well as other observables such as R(D∗) or
R(Ds) in many new-physics models; thus the pattern of
experimental results for these quantities can help distin-
guish between new-physics scenarios, such as those with
and without a charged-Higgs boson [12]. We will present
lattice-QCD results for R(D∗) and PL(D∗) in a future
paper on the B → D∗`ν form factors, and also note that
we could easily obtain Standard-Model predictions for
R(Ds) and PL(Ds) if measurements of these quantities
were possible with an Υ(5S) run at a B factory.

Given the present ∼3σ disagreements between exper-
imental measurements and Standard-Model predictions
for both {R(D), R(D∗)} and the leptonic branching frac-
tion BR(B → τν) [34–37], lattice-QCD calculations of
B → Dτν form factors and other hadronic weak matrix
elements can play a key role in revealing whatever theory
beyond the Standard Model is realized in Nature.
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