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Abstract
In the not too distant future we might expect that the energy dependence of
time-of-arrival of neutrinos from distant supernova will become part of our
cosmological  dataset.   Since  neutrinos  nave  non-zero  mass  the  arrival  of
lower  energy  neutrinos  will  be  delayed  with  respect  to  higher  energy
neutrinos.  This time delay provides another observable measure of distance
distinct from those in common use like angular diameter (DA) or luminosity
distance  (DL).   This  distance  measure  (Rk)  is  dubbed  the  kinematic  radial
distance.   We  define  Rk  for  arbitrary  space-time  geometries  not  limited  to
FLRW  cosmologies  or  even  general  relativity  (GR).   It  is  shown  that
determining Rk@zD gives distinct information about space-time geometry and
in combination with DA@zD or DL@zD determines the mass distribution (in the
context  of  GR).   In  practice  however  Rk@zD  is  not  as  sensitive  to  general
relativistic  effects  as  other  relativistic  “distances” and  only  very  precise
measurements  could  determine  the  mass  distribution.   Allowed  neutrino
masses are close to being ideal for measuring Rk  on cosmological scales.  It
is illustrated how these time delays are manifested in the observed neutrino
burst and can induce flavor segregation in the observed neutrino burst.
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� Neutrinos Bursts as a Cosmological Probe
Generally  speaking  we  have  used  photons  to  study  the  distant  universe.   These  particles
which  move  at  the  speed-of-light  will  follow  null  geodesics  and  these  null  geodesics  only
probe part of the space-time geometry.  Most other particles or waves in the universe travel at
very  non-relativistic  speeds  and  would  not  have  time  to  travel  very  far  over  cosmological
history so they are not really cosmological probes.  Very high energy cosmic rays travel close
to  the  speed  of  light  but  generally  attain  these  high  energies  because  they  are  electrically
charged and this  charge  means  that  their  trajectories  are  significantly  modified  by  magnetic
fields.   Therefore  charged  particles  are  not  a  clean  probe  space-time  geometry.   In  the  past
few decades we have come to realize that neutrinos have small but non-zero mass and there-
fore travel  at  nearly the speed of  light  even at  moderate energies.   As we shall  see neutrino
masses are close to being ideal for studying cosmology.  They are not absorbed or deflected
by intervening material.  They do have the disadvantage of being very difficult to detect, but
this can be ameliorated by using very large detectors.  For cosmology especially, the bigger
the better.
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Generally  speaking  we  have  used  photons  to  study  the  distant  universe.   These  particles
which  move  at  the  speed-of-light  will  follow  null  geodesics  and  these  null  geodesics  only
probe part of the space-time geometry.  Most other particles or waves in the universe travel at
very  non-relativistic  speeds  and  would  not  have  time  to  travel  very  far  over  cosmological
history so they are not really cosmological probes.  Very high energy cosmic rays travel close
to  the  speed  of  light  but  generally  attain  these  high  energies  because  they  are  electrically
charged and this  charge  means  that  their  trajectories  are  significantly  modified  by  magnetic
fields.   Therefore  charged  particles  are  not  a  clean  probe  space-time  geometry.   In  the  past
few decades we have come to realize that neutrinos have small but non-zero mass and there-
fore travel  at  nearly the speed of light  even at  moderate energies.   As we shall  see neutrino
masses are close to being ideal for studying cosmology.  They are not absorbed or deflected
by intervening material.  They do have the disadvantage of being very difficult to detect, but
this can be ameliorated by using very large detectors.   For cosmology especially, the bigger
the better.
There are three known neutrino flavors and therefore at  least three mass eigenstates m1,  m2,
m3.   Measurements of atmospheric and solar neutrinos have shown that [1]
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There is only one number missing to obtain the complete mass spectrum of neutrinos which
we might hope to be determined soon.  From eq. (1) one obtains a lower bound on the largest
neutrino  mass:  Max@ m1, m2, m3D > 0.048 eV � c2.   Laboratory  measurement  of  inverse  Β-
decay have limited m1, m2 d 2 eV [2].  Meanwhile somewhat model dependent cosmological
measurements  looking  for  the  signature  of  primordial  massive  neutrinos  indicate  that  the

Úi mi < 0.17 eV � c2 [3] .  So the maximum neutrino mass is limited to a range of less than one
or two orders of magnitude depending on whether one accepts the cosmological bounds.
Supernovae  (SNe)  will  produce  bursts  of  neutrinos  which  should  be  readily  detectable  by
large detectors, which has been demonstrated in the case of SN-1987a [4,5,6,7].  Gamma ray
bursts  (GRBs)  may do  the  same,  although at  present  the  nature  of  GRBs and their  neutrino
spectrum is not well understood.  Core collapse SNe, the most common kind, produce bursts
of 1058 neutrinos over ~10s with energies ~10MeV [8].  In flat space the difference in arrival
time between two neutrinos, a and b, emitted at the same time is [9]
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where Rk  is the distance to the SNe and as we shall see 2Gpc is roughly the size of our uni-
verse for the purposes of this discussion.  One can measure this by comparing the arrival time
of different energy or different flavor (different ma) neutrinos.  For distant enough and/or low
enough  energy  neutrinos  the  different  in  arrival  times  is  significantly  larger  than  the  burst
length so the mass effect should be easily separable from uncertainties in the physics of SNe
explosions.   Unfortunately  the  effect  is  largest  for  the  most  distant  SN  and  lowest  energy
neutrinos,  and  since  neutrino  flux  falls  off  with  distance  and  neutrino  cross  section  falls  of
with decreasing energy this requires very large detectors.  One would need an extremely large
detector to stand a good chance of detecting even two neutrinos from a SNe at ~1Gpc, how-
ever SNe go off all the time, and one can detect these time delays statistically, even if only a
small fraction of the time one detects two neutrinos from a given SNe [10]. 
Space  is  not  flat  on  cosmological  scales  so  a  generalization  of  eq.  (2)  is  required.   Using
neutrino time delays to determine cosmological parameters was first proposed in ref. [11,12]
and  we  develop  this  idea  more  fully  and  more  generally,  and  in  the  context  of  our  present
knowledge  of  neutrino  masses  and  mixing.   Eq.  (2)  is  rederived  for  an  arbitrary  space-time
geometry and the generalized Rk can be added to a relativist’s toolkit of observable distances. 

� The Kinematic Radial Distance
Eq.  (2)  will  be  rederived  in  an  arbitrary  curved  space-time  to  determine  the  meaning  of  Rk
and what it tells us about space-time geometric.  Consider the propagation of ultra-relativistic
particles from space-time events such as SN explosion to the observer here on Earth.  Since
the  particles  are  ultra-relativistic  they  should  follow  geodesics  which  are  slightly  different
from the null  so the natural  approach is  a  perturbation series  about  the null  geodesics.   The
small variable we are expanding in is Γ-1, i.e. the inverse of the Lorentz factor in the cosmic
rest frame, which is just the m c2 � E which occurs in eq. (2).
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Eq.  (2)  will  be  rederived  in  an  arbitrary  curved  space-time  to  determine  the  meaning  of  Rk
and what it tells us about space-time geometric.  Consider the propagation of ultra-relativistic
particles from space-time events such as SN explosion to the observer here on Earth.  Since
the  particles  are  ultra-relativistic  they  should  follow  geodesics  which  are  slightly  different
from the null  so the natural  approach is  a  perturbation series  about  the null  geodesics.   The
small variable we are expanding in is Γ-1, i.e. the inverse of the Lorentz factor in the cosmic
rest frame, which is just the m c2 � E which occurs in eq. (2).

It is perhaps easiest to do this perturbation using the “WYSWIG-T” metric formalism [13,14]
which  is  based  on  observing  space-time  through  null  geodesics.   The  coordinates  are  the
observation time, t,  defining the past light cone, the angular position on the sky, Ja,  of  null
geodesic on the observer's past light cone connecting the observer with the distant space-time
point,  and  a  cosmic  time  T  defined  throughout  space-time  by  the  a  vorticity-free  velocity
field  of  the  cosmic  matter  flow  which  includes  both  the  observer  and  the  distant  SN.
Specifically  the  matter  4-velocity  is  given  by  uΜ = -c2 T,Μ.   The  observer  time,  t,  is  the
cosmic time at the observer, i.e.  t = Tobs and the metric is given by
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,  z@t, T, JaD  is  the
redshift  of  the  distant  point  as  seen  by  the  observer,  Dab@t, T, JaD  is  a  2�2  matrix  encodes
information  about  gravitational  lensing  including  the  angular  diameter  distance,  and

J
, a

@t, T, JaD  is the proper motion of the matter as seen by the observer.  By definition, at the
observer T = t and  z@t, t, JaD = 0. The  âs¦ and v¦ are 2-vectors perpendicular to the line-of-
sight  representing  the  incremental  transverse  distance  and  transverse  velocity  of  the  matter
wrt a point of constant angular position, respectively.  For the purpose of this paper the most
important  thing  is  that  lines-of-sight  (meaning null  geodesics  which intersect  the  world  line
of the observer) are simply lines of constant t and Ja.
If  we  use  cosmic  time,  T,  to  parameterize  an  arbitrary  geodesic  instead  of  the  usual  affine
parameter the geodesic curve is 
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(5)x�
.. Μ

+ IG
�

ΝΞ

Μ
- x�

  Μ
G
�

ΝΞ

T
M x�

  Ν
x�
  Ξ

= 0 G
�

ΝΞ

Μ
@TD = G

ΝΞ

Μ @x�Η@TDD.

where G
ΝΞ

Μ  is the Christoffel symbol and over dots indicates derivatives wrt T.
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The  unperturbed  line-of-sight  must  connect  the  SN  at  8t*, T*, J*
a<  with  the  observer  at

8t*, t*, J*
a<.   If  we  want  to  describe  massive  particles  coming  from the  same event  they  also

must  connect  8t*, T*, J*
a<  with  the  central  observer  but  are  observed  at  some  different

observation time and possibly coming from some other direction, i.e.  8t*, t* + ∆t*, J*
a + ∆J*

a<.

This  corresponds  to  boundary  conditions  ∆ t
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@T*D = 0,  and

∆ J
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@0D = 0. If the last condition is not satisfied the geodesic would miss the observer entirely.
Thus we see we have a one parameter family of geodesics parameterized by ∆t*.  We expect
massive  particles  to  travel  on  time-like  geodesics  so  we  expect  the  perturbed  geodesic  to
arrive  after  the  null  geodesic,  i.e.  ∆t* ³ 0.   Observing  ∆t* < 0  would  indicate  a  space-like
geodesic or superluminality.  

The equation for ∆ t
�
@TD is not coupled to the equation for ∆ J

�a
 so we may solve it separately.

What  this  means  is  that  to  1st  order  we  can  think  of  the  massive  particle  as  following  the
same  path  as  the  massless  particle  but  delayed  in  time.   One  can  derive  from  eq.  (3)  that
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Γobs  are  respectively  the  speed  and  Lorentz  factor  of  the  particle  when  it  arrives  as  the
observer, whereas Eobs and m are the  particle’s total energy and mass.  So one can write
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where the kinematic radial distance, Rk, is defined by the line-of-sight integral
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which will depend on the time of observation, t,  and the redshift and direction, z,  and Ja,  of
the  source.   Recall  that  ∆ t

�
obs  is  defined  to  be  the  difference  in  time  of  arrival  of  massive

particles  and  massless  particle  emitted  at  the  same  time  and  from  the  same  place  and  the
cosmic time T  is the time defined by the rest frame of any vorticity free velocity flow which
is  comoving  with  both  the  emission  and  observation  event.   Eq.  (9)  validates  the
generalization  of  the  flat  space  formula,  eq.  (2),  to  an  arbitrary  spacetime,  when  the  Rk  is
defined as in eq. (10).  The adjective radial is used in the name because Rk is more directly a
measure  distance  along  the  line-of-sight  (radius)  than  other  distances  like  the  angular
diameter distance which are more properly apparent distances.  Note that Rk  is defined to be
the  term  that  gives  ∆ t

�
obs  to  leading  order  in  Γobs

-1  and  higher  order  corrections   will  give
different information about the space-time geometry. 
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-1  and  higher  order  corrections   will  give
different information about the space-time geometry. 
A more intuitive expression for  Rk  can be gotten by noting that  the difference in speeds

between a massive and massless particle is c - v @
1
2

Γ-2 @
1
2

c Γobs
-2 H1 + zL-2 so that eq. (9)

can be rewritten
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where  ∆ x�obs = ∆ t
�
obs � c  is  the  spatial  separation  between  the  faster  in  slower  particle  in  the

observer  frame  at  the  observer.   This  formula  tells  us  that  in  the  matter  frame  the  rate  of
growth of the spatial separation between the faster and slower particle is c - v and this must
be  multiplied  by  a  redshift  factor  1 + z  since  changes  in  redshift  will  grow  or  shrink  this
separation.

� Proper Time-Of-Flight

In the cosmic frame the Lorentz factor for ultra-relativistic particle is Γ�@TD @ΓobsH1 + zL.  Thus
the  proper  time-of-flight  which is  experienced by the  particle  between the  emission and the
observation is given by the Lorentz factor of the geodesic in the matter frame:

(12)Τtof@tobs, z, J
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Γ
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@
1
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à
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c Γobs
.

Thus Rk  not only gives us the time delay but also the proper time-of-flight, something which
is particularly relevant for unstable particles with known half-life.  From this we see that the
proper  time-of-flight  is  roughly  the  geometric  mean  of  the  time  delay  and  the  kinematic
radial distance, i.e.

(13)Τtof = 2 ∆ t
�
obs Rk � c

Thus for cosmological distances of billions of light years and time delays of 10s of seconds
the proper time-of-flight is decades.
Another neutral particle which one might consider applying this method to is neutrons, which
are  unstable  with  lifetime  of  886  sec.   We  see  however  that  in  order  to  for  the  neutrons  to
survive  with  Rk ~109  light  years  it  would  require  energies  of  En t 1023 eV  which  is  much
greater than the GZK cutoff [15,16] above which the universe is opaque to ultra-high energy
cosmic rays because of collisions with diffuse light.

� Other Distances
In  metric  theories  one  can  devise  other  observable  distance  measures  [17,18]  to  events  on
ones past light cone.  The most commonly used in theory is the angular diameter distance

(14)DA º
transverse physical size

angular size HradiansL
.

while in practice the most commonly used is the (bolometric) luminosity distance
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(15)DL º
absolute bolometric luminosity

apparent bolometric luminosity
= H1 + zL2 DA.

As one adds more features to the space-time one can construct more distances.  We have, for
convenience, used a velocity field, uΜ = -c2 T,Μ  to write down an expression for Rk  although
the meaning of Rk  is independent on which time function, T, one chooses.  However if there
really is a physically defined irrotational matter velocity we can define a lookback distance 

(16)Rlb º tobs - T*

which does depend on the physically defined time function T  which is used.  Also there can
be  a well defined comoving distance, such as might be determined by the separation of fea-
tures  in  the  distribution  of  matter  comoving  with  uΜ  (such  as  baryon  acoustic  oscillations,
BAOs).   One  can  define  the  radial  comoving  distance  as  the  integral  of  the  increments  of
comoving distance along the line-of-sight

(17)Rco º à â Rco

and one can also define a comoving angular diameter, DA,co, which is 

(18)DA,co º
transverse comoving size

angular size HradiansL
= H1 + zL DA.

All of these are distinct  measures of distance.
The universe is usually studied under the assumption of the Cosmological Principle meaning
the space-time is approximately homogeneous and isotropic about each point and is described
by a  Friedman-Lemaitre-Robertson-Walker (FLRW) space-time.   This  metric  defines  a  cos-
mic  time  T  which  delineates  3-surfaces  of  spatial   homogeneity.   By  symmetry  the  matter
must flow with the 4-velocity uΜ = -c2 T,Μ.  The evolution of the space-time is described by a

scale  factor  a@TD  and  the  redshift  of  the  matter  is  z@TD =
a@tobsD
a@TD

- 1.   The  Hubble  expansion

rate is H =
a  @TD
a@TD

= -
z  @TD

1+z@TD
 and is usually expressed as a function of the observable redshift z.

Normalizing the comoving distances to coincide with the physical distances at z = 0 one can
write the various distances as

(19)
Rlb@zD = c Ù0

z âz
H1+zL H@zD

DA,co@zD = :

SinA K Rco@zDE

-K
K > 0

Rco@zD K = 0
SinhA -K Rco@zDE

-K
K < 0

DA@zD =
1

1+z
DA,co@zD

Rco@zD = c Ù0
z âz

H@zD
DL@zD = H1 + zL DA,co@zD Rk@zD = c Ù0

z âz

H1+zL2 H@zD

where  H0 º H@z = 0D  and  K = I H0

c
M
2

HW0 - 1L  is  the  spatial  curvature  at  z = 0  and  W0  is  the
density parameter.  This expression for Rk@zD is a restatement of eq. (10) for FLRW spacetime
and can also be found in ref. [12].  Note that in an FLRW space-time all of these distances are
related to each other through H@zD and W0.
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where  H0 º H@z = 0D  and  K = I H0

c
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2

HW0 - 1L  is  the  spatial  curvature  at  z = 0  and  W0  is  the
density parameter.  This expression for Rk@zD is a restatement of eq. (10) for FLRW spacetime
and can also be found in ref. [12].  Note that in an FLRW space-time all of these distances are
related to each other through H@zD and W0.
One can describe the space-time geometry of our universe on large scales by an FLRW cos-
mology with matter (dark matter + baryons), radiation, and dark energy with a Dark Energy

Task  Force  equation-of-state  dark  pDE = ΡDE c2Ha w0 + H1 - aL wi L  [19]  where  a =
1

1+z
 is  the

scale factor and the  Hubble parameter is thus

(20)H@zD @ H0 .
1 - W0

a2
+

Wm0

a3
+

Wr,0

a4
+

W0 - Wm,0 - Wr,0

a3 H1+wiL
ã

3 Hw0 -wi L H1-aL

The  parameters  and  measured  values  [20]  are  the  Hubble   constant,  H0 @ 71 km � sec � Mpc,
the density parameter W0 @ 1, the matter density parameter Wm0 @ 0.27, the radiation density
parameter,  Wr0 @ 8.3�10-5,  and  the  dark  energy  equation  of  state  parameter  w @ -1.  By
definition  the  dark  energy  density  parameter  is  WDE0 º W0 - Wm0 - Wr0 @ 0.73.   In  figure  1
we plot the various measures of distance as a function of redshift for this concordance cosmol-
ogy (since W0 = 1 Rco@zD = DA,co@zD  and there  are  not  separate  curves  for  these).   At  lo-z  we
are in the flat  space limit  and they all  concur.   We see that  compared to the other distances
Rk@zD  “saturates” at  a  fairly  low z  reaching a  maximum of  only Rk@¥D = 2.3 Gpc in  contrast
with  Rlb@¥D = 4.39 Gpc  and   Rco@¥D = DA,co@¥D = 14.9 Gpc.   All  SNe  at  high  redshift,  say
z > 1, which is the vast majority of SNe, will have nearly the same kinematic radial distance:
Rk Î 2.03 ± 0.27 Gpc.  This is indicative of the fact that Rk@zD  is mostly sensitive to the cos-
mology at  low redshifts.   One  can  quantify  the  sensitivity  to  parameters  in  a  rough way by
computing  the  variation  of  Rk@z = ¥D  with  parameter  changes  at  the  measured  parameter
values:

(21)

â ln@Rk@¥DD
â ln@Rlb@¥DD
â ln@Rco@¥DD

=

-1 +0.308 -0.197 -0.000166 -0.183 -0.0362
-1 +0.345 -0.274 -0.000428 -0.171 -0.0398
-1 +0.269 -0.392 -0.009822 -0.097 -0.0272

â ln@H0D
â ln@W0D

â ln@Wm0D
â ln@Wr0D

âw0

â Hwi - w0L

We see that Rk  has sensitivity to most parameters comparable to that of Rlb  or Rco,  with the
exception that it has much lower sensitivity to  Wr0 which describes the very early universe. 
If one knew the absolute distance to a SN one could determine the absolute neutrino mass by
measuring the  time delays.   Conversely  if  one  knew the  neutrino  masses  then  a  measure  of
the time delay tells us Rk directly, completely skipping the cosmological distance ladder [18].
In contrast SNe-Ia surveys which measure DL@zD, large-scale structure surveys which measure
Rco@zD  and  DA,co@zD,  and  cosmic  microwave  background  temperature  anisotropy  mapping
which determines DA@zrecD all require some knowledge of  H0 to translate their measurements
to  physical  distances.   Even  if  we  don’t  currently  have  absolute  measurements  of  neutrino
masses we see that  the measured laboratory mass differences are sufficient to determine the
relative time delays of two neutrinos in  different mass eigenstates.  Cosmological probes of
neutrino masses can determine the absolute neutrino mass scale independently of the cosmic
distance ladder [18], while a nearby SN could also do so in a way which skips much of dis-
tance ladder.
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If one knew the absolute distance to a SN one could determine the absolute neutrino mass by
measuring the  time delays.   Conversely  if  one  knew the  neutrino  masses  then  a  measure  of
the time delay tells us Rk directly, completely skipping the cosmological distance ladder [18].
In contrast SNe-Ia surveys which measure DL@zD, large-scale structure surveys which measure
Rco@zD  and  DA,co@zD,  and  cosmic  microwave  background  temperature  anisotropy  mapping
which determines DA@zrecD all require some knowledge of  H0 to translate their measurements
to  physical  distances.   Even  if  we  don’t  currently  have  absolute  measurements  of  neutrino
masses we see that  the measured laboratory mass differences are sufficient to determine the
relative time delays of two neutrinos in  different mass eigenstates.  Cosmological probes of
neutrino masses can determine the absolute neutrino mass scale independently of the cosmic
distance ladder [18], while a nearby SN could also do so in a way which skips much of dis-
tance ladder.

� Determining the Stress-Energy Directly
In  an  FRW  spacetime  knowledge  of  any  one  distance  function,  D@zD,  plus  one  number  is
sufficient  to  determine  H@zD  and  W0  which  completely  determines  the  space-time  geometry
and using Einstein’s equations the stress energy of all the matter.  In place of the one number
one  could  use  a  different  distance  function.   So  for  example  BAO  surveys  which  measure
Rco@zD and DA,co@zD completely determines the space-time apart from a normalization of scale
which requires knowledge of H0.  However this requires the assumption of the Cosmological
Principle.   The construction of  any measure of  comoving distance,  such as  BAO’s,  requires
the assumption of homogeneity.  
As pointed out in ref. [14] one can more directly measure space-time geometry if one supple-
ments  DA@zD   or   DL@zD  with  a  direct  measure  of  the  radial  distance.   The  kinematic  radial
distance  is  one  such  measure,  the  lookback  distance  is  another.   In  particular  in  any  space-
time along every line-of-sight

(22)
J

DA
¢

Rk
¢ N

¢ Rk
¢

DA
+

1
4

G¢2

1+G2 + Α¢2
G2

H1 + zL2 Rk
¢ 2

= -
1

2
nΜ nΝ RΜΝ = -

4 Π G

c4
nΜ nΝ TΜΝ = -

4 Π G

c2
Ρ +

p

c2

where ¢  is a derivative with respect to z, G is the reduced shear as measured by lensing, Α is
the position angle of the shear (in radians),  RΜΝ  is  the Ricci  curvature tensor,  TΜΝ  the stress-
energy and   nΜ is the null vector along the line-of-sight normalized such that nΜ uΜ = c where
uΜ  is the 4-velocity of the matter which defines the redshift.  The 1st equality applies to any
metric theory of gravity in which the light and matter are free-falling while the 2nd equality
assumes Einstein’s equations, and the third equality holds if the stress-energy takes a perfect
fluid form with 4-velocity uΜ,  i.e. TΜΝ = IΡ + p � c2M uΜ uΜ + p gΜΝ.   Note that the contribution

of  a   cosmological  constant,  p = - Ρ c2  to  the  right-hand-side of  eq.  (22)  is  zero.   Thus in  a
LCDM  model  where  there  is  only  a  cosmological  constant  (L)  and  “matter” ( p¤ `  Ρ¤ c2)
eq. (22) determines only the distribution of the matter.

Define  at  each  point  Hþ º
c

H1+zL2 Rk
¢
,  which  is  the  matter  frame line-of-sight  velocity  gradient

or  Hubble  parameter;  an  effective  density  parameter,  Wþ º
8 Π G Ρ

3 Hþ
2 ;  and  an  equation-of-state

parameters,  w º
p

Ρ c2 .  Then  in  any  geometry  at  every  point  along  all  lines-of  sight  eq.  (22)

reads

(23)
DA

¢

Rk
¢

¢ Rk
¢

DA
+

1

4

G¢2

1 + G2
+ Α

¢2
G

2
= -

3

2

Wþ H1 + wL

H1 + zL2

These  equations  are  exact  and  non-perturbative  and  hold  whether  or  not  the  Cosmological
Principal is true. If one had precision measurements of DA,  Rk,  G,  and Α  with dense redshift
coverage one could use this equation to map out the redshifts space distribution of Hþ, Ρ +

p

c2

and/or Wþ H1 + wL on your past light cone.  
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These  equations  are  exact  and  non-perturbative  and  hold  whether  or  not  the  Cosmological
Principal is true. If one had precision measurements of DA,  Rk,  G,  and Α  with dense redshift
coverage one could use this equation to map out the redshifts space distribution of Hþ, Ρ +

p

c2

and/or Wþ H1 + wL on your past light cone.  

The gravitational lensing terms, G  and Α,  are known to be small,  G d 10-2  and subdominant
for  most  lines-of-sight.   It  is  curious that  the  dominant  term on the  right-hand-side,  DA  and
Rk,  are  likely  both  obtained  from  SNe,  DA  from  Type  Ia  SNe  and  Rk  predominantly  from
Type II core collapse SNe.
It  will  not  be  easy  to  obtain  such  precision  measurements  with  dense  sampling.  One  can
average this equation over redshift space volumes since it is true at every point.  Since detect-
ing  SN  neutrinos  and  hence  measuring  Rk  is  increasingly  difficult  with  increasing  redshift
one  would  start  at  small  redshift  where  the  lensing  term  goes  to  zero.   So  long  as
 Wþ H1 + wL¤z=0 < ¥,  then  Rk = DA = 0,  Rk

¢ = DA
¢ = c � Hþ,  and  Rk

¢¢ = DA
¢¢ = -c Hþ

¢ � Hþ
2  at  z = 0

so

(24)Wþ H1 + wL¤z=0 =
2

3

Hþ

c
HRk

¢¢¢
- DA

¢¢¢L
z=0

Thus  one  needs  to  accurately  measure  third  redshift  derivatives  of  distances  to  determine
Wþ H1 + wL  at  low  redshift  from  eq.  (23).   The  flip  side  of  this  is  that  at  low  redshifts  the
kinetic radial distance is an accurate surrogate for the angular diameter distance:

(25)DA = Rk -
1

4

c

Hþ
Wþ H1 + wL

z=0
z3

+ OAz4E

as is apparent in figure 1 for a concordance cosmology where the two are nearly indistinguish-
able  up  to  z » 0.6.   The  agreement  between  these  two  distance  measures  is  one  power  of  z
better than is typical.  One could use this, for example, to obtain the distribution of absolute
luminosities of SN by measuring their apparent luminosities and Rk.

� Neutrino Bursts and Flavor Segregation
While  we have indicated that  differential  time delays  can be  used to  measure  the  kinematic
radial distance we have been a bit vague how this would work in practice.  Here we attempt
to  illustrate  the  effect  graphically  and  clarify  how  flavor  oscillations  come  into  play.   It  is
well established that neutrinos oscillate between flavors which is another consequence of the
varying mass eigenstates and the origin of the experimental results listed in of eq. (1). 
Assuming three neutrino flavors the neutrino mass matrix is

(26)

M =

U ×

m1 0 0
0 m2 0
0 0 m3

× UT U =

Ue1 Ue2 Ue3

UΜ1 UΜ2 UΜ3

UΤ1 UΤ2 UΤ2

@

+0.820 +0.552 +0.153
-0.479 +0.513 +0.713
+0.315 -0.658 +0.684

where U  is the unitary Pontecorvo-Maki-Nakagawa-Sakata matrix, and the last expression is
gotten by taking the best experimental values (universal fit) to the neutrino mixing angles [1]
augmented by the recent Daya Bay measurement of Θ13  [10], and by setting the CP violating
phases to zero, which is consistent with current data.  This means that there is no oscillation
between neutrinos and anti-neutrinos and U is real and orthogonal.
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where U  is the unitary Pontecorvo-Maki-Nakagawa-Sakata matrix, and the last expression is
gotten by taking the best experimental values (universal fit) to the neutrino mixing angles [1]
augmented by the recent Daya Bay measurement of Θ13  [10], and by setting the CP violating
phases to zero, which is consistent with current data.  This means that there is no oscillation
between neutrinos and anti-neutrinos and U is real and orthogonal.
The neutrino flux of  flavor  Α  at  the  Earth  in  particles  per  unit  area  per  unit  energy per  unit
time (observer frame) is given by

(27)FΑ@EΝ, tD =
1

DA
2

â
i=1

3

UΑi
2 â

Β=1

3

UΒi
2

FΒBH1 + zL EΝ,
t -

Rlb

c
-

1
2

J mi c2

H1+zL EΝ

N
2 Rk

c

1 + z
F

in terms of FΒ@EΝ, tD which is the neutrino flux of flavor Β in particles per unit solid angle per
unit energy per unit time (SN frame) emitted toward the Earth from the SN in the SN frame.
The  time  arguments  of  FΑ  and  FΒ  are  the  cosmic  time  at  the  Earth  and  SN  respectively.
These two times are separated by a very large interval, the “lookback time” or “cosmic time-
of-flight” tlb = Rlb � c, but since we have no a proiri knowledge of the time of an explosion tlb
is  not  an  observable.   Nevertheless  it  is  interesting  to  see  that  three  distance  measures,  DA,
Rlb, and Rk enters this expression. 
Eq.  (27)  is  obtained  by  averaging  over  flavor  oscillations  which  at  cosmic  distances  are
extremely rapid functions of energy and essentially unobservable.  It is written as if neutrinos
are emitted (or last scattered) in flavor eigenstates which may or may not be the case.  What
really matters is the number of neutrinos which end up in different mass eigenstates which is
given  by  the  subexpression,   Fi@EΝ, tD = ÚΒ=1

3 UΒi
2

FΒ@EΝ, tD.   Since  U  is  orthogonal

ÚΒ=1
3 UΒi

2 = Úi=1
3 UΑi

2 = 1 so   DA
2 FΑ  is  a  weighted average of  the  different  mass  fluxes,  Fi,

which in turn is a weighted average of the different flavor fluxes, FΒ.

In figures 2&3 we plot  the neutrino burst  profiles at  Earth as a function of time and energy
for a simplistic initial profile, and for a variety of distance and neutrino mass scenarios.   In
many cases the effect of non-zero neutrino masses is obvious to the eye as a bend in the low
energy tail.  In some of these cases at low energies there is a clear separation in time between
the m1 + m2  pulse and m3  pulse as a split into a two colored tail, which is here called flavor
segregation.  Note we are Assuming no flavor segregation in the initial pulse.  Many modes
of neutrino detection, those involving charged current interactions, are only sensitive to elec-
tron neutrinos which contain only a small admixture of m3  and would not be sensitive to the
blue-green tail.  Neutral current interactions are sensitive to all flavors and could in principle
see both pulses.  However the  m1 + m2  pulse, involving two mass eigenstates, is likely to be
twice as strong as the m3 pulse involving only one.
The third column of figure 3 illustrates the effect of redshift which causes the neutrino burst
energy to decrease and it’s burst length (in observer time) to dilate.  Determining the time-of-
arrival  of  neutrino  events  accurately  is  not  technically  challenging.   The  largest  systematic
error in measuring the time delays is uncertainties in the burst shape.  One would expect the
size of  this  systematic goes like the ratio of  the time delay µ Rk EΝ

-2 µ Rk@zD H1 + zL2  to  the
Earth frame burst length µ H1 + zL.    So a systematic figure of merit  for measuring the time
delays might be
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(28)
∆Rk

Rk sys
µ

∆ t
�
obs

∆tSN
µ Rk@zD H1 + zL

which increases  with  distance  as  is  obvious  in  figures  1&3.   A far  more  important  effect  is
the  statistical  error  associated with  the  numbers  of  neutrinos  detected.   The neutrino flux at
Earth  decreases  as  DA

-2,  but  it  is  worse  than  that,  since  the  weak interaction  cross-sections
are  an  increasing  function  of  energy,  so  the  redshifting  of  neutrino  energy  leads  to  fewer
neutrinos detected.  This is exacerbated by the increasing backgrounds at lower energies from
solar  and  reactor  neutrinos  and  other  sources  of  radioactivity  as  well  as  the  degradation  of
energy resolution at low energies.   While the neutrino bursts in figures 2 & 3 extend down to
EΝ = 0.1 MeV  one usually considers detecting SNe neutrinos at EΝ > 10 MeV.  However sub-
MeV  neutrino  astronomy  is  possible  in  practice  [22]  although  non-solar  applications  must
contend with large backgrounds from solar and reactor neutrinos in addition to local radioac-
tivity.   Optimistically,  the  only  non-ameliorable  problem is  the  decreasing  weak  interaction
cross-section  which  scales  like  Σw ~GF

2 EΝ
2 � I2 Π HÑ cL4M a.   The  total  number  of  neutrinos

which goes through a detector scales µ DA
-2  however due to the redshifted energy the num-

ber of neutrinos detected (under these optimistic assumptions) scales µ DA
-2 H1 + zL-2.

One  would  expect  that  any  statistical  errors  associated  with  low neutrino  counts  scales  like
the  square  root  of  the  number  of  neutrinos  detected.   Thus  one  would  expect  the  statistical
error to scale like

(29)
∆Rk

Rk stat
= 2

∆mΝ

mΝ

µ ðΝ

∆ t
�
obs

∆tSN
µ

Rk@zD H1 + zL

DA@zD H1 + zL
=

Rk@zD

DA@zD
@

zd1
1.

For fixed neutrino masses and integrated neutrino flux, shorter bursts (smaller ∆tSN) are bet-
ter.   It  is  shown elsewhere that features in SN burst profile with smaller timescales than the
total  burst  length  will  determine  ∆tSN  [10].    It  was  shown  above  that  at  small  redshift,
Rk@zD @ DA@zD,  so this equation suggests the incredible (pun intended) result that the statisti-
cal errors in determining Rk@zD, from single SN by a fixed detector, is independent of distance
(out to z » 1).   The reason this formula is  not  fully credible is  that  ðΝ  is  an integer and one
learns  nothing  about  Rk  if  0  or  1  neutrinos  is  detected.   So  eq.  (29)  does  not  apply  unless
multiple neutrinos are detected from the SN b.  The proper interpretation of eq. (29) is that for
a given detector there is a distance range, DA

range,  below which the fractional errors on Rk  or

mΝ are independent of distance.   If DA
range extends to extra-Galactic SNe then the extra-Galac-

tic SN gives just as much information regarding neutrino-masses or SN distances as a Galac-
tic SN!  Since the SN rate increases with volume, scaling even faster than the volume, t DA

3,
due to the decreasing star formation rate with time, the information rate about distances and
neutrino  masses  are  dominated  by  the  most  distant  SNe  accessible  by  your  detector!   One
might  naively  think  that  the  infrequent  Galactic  SN would  give  the  most  information  about
neutrino masses,  but  for  large detectors  this  is  not  the case.   However a  Galactic  SN would
help to calibrate the neutrino burst profile and thus greatly decrease systematic errors.
Now let  us  review some,  well  known,  quantitative aspects  of  SN neutrino detection.   A SN
emits ~1058  neutrinos with mean energy ~20 MeV [8] so the number of  neutrinos detected
scales like

The Kinematic Radial Distance 11

FERMILAB-PUB-12-290-A arXiv:1206.YYYY



Now let  us  review some,  well  known,  quantitative aspects  of  SN neutrino detection.   A SN
emits ~1058  neutrinos with mean energy ~20 MeV [8] so the number of  neutrinos detected
scales like

(30)ðΝ »
1058

2 Π

GF
2 H20 MeVL2

DA@zD2 H1 + zL2

Mdet

mtarget
» 200 f

Mpc

DA@zD H1 + zL

2 Mdet

1 MTon

10 amu

mtarget

where  f  is  the  fraction  of  neutrinos  flavors  to  which  it  is  sensitive,  Mdet  is  the  mass  of  the
detector  and  mtarget  the  mass  associated  with  each  target  particle.   For  example  a  water
molecule provides two hydrogen nuclei as inverse beta decay targets only sensitive to Νe  and

has mass 18 amu so f >
1
6

 and mtarget = 9 amu.  If we take a threshold of 5 neutrinos a water
Cerenkov detector has distance threshold

(31)DA
range

» 3 Mpc
Mdet

1 MTon

1�2

for z ` 1.  So one can’t see much further than the next galaxy (Andromeda) with a 1 MTon
water detector like the proposed Hyper-Kamiokande [23,24].  Much larger neutrino detector
arrays, 104  times larger, have been proposed, not for scientific but rather socio-political rea-
sons [25], and could also be used for neutrino astronomy.
Eq.  (31)  assumes  negligible  confusion  with  background  events.   Both  the  foreground  and
background  event  rates  scale  linearly  with  detector  mass  and  for  very  large  detectors  the
number  of  SN  neutrinos  from  a  distant  burst  may  be  large  but  the  number  of  background
events  during  the  burst  may  be  comparable  to  or  larger.   When  this  ratio  exceeds  unity  the
threshold distance starts to scale more slowly: DA

threshold µ Mdet
1�4.  

Since the SNe rate increases rapidly with distance, scaling like DA
3  one can imagine statisti-

cally analyzing neutrino counts from SNe more distant than DA
range.  One does not need multi-

ple neutrinos from all the SNe only from some of them to get distance information.  Since SN
neutrinos are clustered in time while background events are not they are distinguishable and
one  can  glean  information  about  neutrino  masses  and  distances  from  the  statistics  of  the
diffuse supernova neutrino background (DSNB).  A companion paper will examine the these
issues quantitatively [10].  

� Summary
This paper has examined the use of time delays associated with the mass of ultra-relativistic
particles (namely neutrinos) as a probe of space-time geometry.   This leads to a new distance
measure,  the  kinematic  radial  distance,  Rk.   This  distance is  defined in  eq.  (10)  for  an  arbi-
trary space-time geometry and it  is shown that it  is distinct from other measures of distance
such as the angular diameter distance, DA.  It is also shown that for ultra-relativistic particles
the  proper  time-of-flight  experienced  by  the  particle  carries  the  same  information  as  Rk  for
arbitrary space-time geometry.   Eq.  (22)  shows how one can combine Rk@zD  with DA@zD  and
gravitational  lensing  shear  to  measure,  along  any  line-of-sight,  one  component  of  the  Ricci
curvature, which yields one component of the of stress-energy assuming Einstein’s equations.
In the standard model of cosmology (LCDM) we show the component determined is Ρm  (the
dark  matter  plus  baryon  density)  but  it  is  shown  that  for  z d 1  determining   Ρm  requires
extremely precise measurements of both Rk@zD and DA@zD.  In fact Rk@zD @ DA@zD to high accu-
racy, for, z d 1 so one can use one as a surrogate for the other.
We review some practical aspects of measuring Rk in light of recent experimental determina-
tions of neutrino properties.  We show that for allowable neutrino masses that the time delays
can be larger than the expected length of a neutrino burst from a supernova, and the effect of
Rk  is  readily  apparent  in  the  burst  profile.   In  some  cases  the  differential  time  delay  of  the
different  mass  eigenstates  will  lead  to  significant  flavor  segregation  in  the  burst.   It  was
argued  that  within  the  range  of  a  given  neutrino  telescope  the  sensitivity  to  non-zero  Rk  is
independent  of  distance.    While  detecting  the  effect  of  finite  Rk  on  SNe  neutrino  bursts  is
challenging  the  current  neutrino  parameters  gives  a  well  defined  target  for  future  neutrino
telescopes.
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We review some practical aspects of measuring Rk in light of recent experimental determina-
tions of neutrino properties.  We show that for allowable neutrino masses that the time delays
can be larger than the expected length of a neutrino burst from a supernova, and the effect of
Rk  is  readily  apparent  in  the  burst  profile.   In  some  cases  the  differential  time  delay  of  the
different  mass  eigenstates  will  lead  to  significant  flavor  segregation  in  the  burst.   It  was
argued  that  within  the  range  of  a  given  neutrino  telescope  the  sensitivity  to  non-zero  Rk  is
independent  of  distance.    While  detecting  the  effect  of  finite  Rk  on  SNe  neutrino  bursts  is
challenging  the  current  neutrino  parameters  gives  a  well  defined  target  for  future  neutrino
telescopes.
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Footnotes

a  The  Σ µ GF
2 EΝ

2  scaling  derives  directly  from  W±  or  Z0  boson  exchange  but  neglects  kinematic
factors which generally suppress the cross-section.   Processes like inverse Β decay have a threshold (Q)

below which the cross-section goes to zero and only achieves the EΝ
2  scaling when EΝ - Q p me.  Neu-

trino-electron scattering is kinematically suppressed by a factor me � EΝ  until EΝ p me.  So Σw µ GF
2 EΝ

2

really only applies for EΝ p 1 MeV, which is true for the bulk of the neutrinos in a SN burst but not to
the low energy tail.

b   One must also be able to determine that the neutrinos detected are from the same SN but this is the
same requirement as there being negligible backgrounds.  
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Figure 1. Plotted are five measures of distance for a concordance cosmology as a function of redshift.  From
top to bottom these are the bolometric luminosity distance, the comoving radial distance, the lookback dis-
tance, the kinetic radial distance, and the angular diameter distance.  The comoving angular diameter dis-
tance  is  obscured  by  the  comoving  radial  distance  because  this  concordance  model  is  flat  (W0 = 1)  so

DA,co@zD = Rco@zD.
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Figure  2.  Plotted  is  a  (idealized)  neutrino  burst  profile  as  would  be  observed  from  a  SN  at  Rk = 500  Mpc
away.  It is assumed that each flavor of neutrino was emitted with the same T = 6 MeV Fermi-Dirac spectrum
releasing a total energy of 3�1053ergs spread over a Gaussian time window such that half the neutrinos are
emitted in a 7sec interval in the SN rest frame.  The RGB color, plotted as a function of time and energy, is
proportional  to  the  cube root  of  the  neutrino flux  in  particles  per  unit  time per  unit  energy (the  cube root  is
used to increase the contrast) for electron (R), muon (G), and tau (B) neutrinos.  The colors are normalized to
pure  white  at  burst  maximum.  The  best  fit  mixing  angles  and  differences  in  mass  squared  are  used,  the
normal mass hierarchy (m1 < m2 < m3L  is  assumed, as is  Úi=1

3 mi = 0.17 eV�c2  corresponding the most strin-

gent cosmological limit at this time.  Most notable is the low energy tail which swings to the right due to the
time delays which increase with decreasing energy.  The difference in the mass eigenstates causes this tail
to be split in three but only two tails are discernible corresponding to mass splitting between m1, m2  and m3.
The smaller m1-m2 mass splitting is washed out by the relatively long duration of the burst.  The reddish tail is
a mixture of m1and m2  and carries 2/3rds of the neutrinos in the tail while the blue-green tail is from the m3
and carries 1/3rd of the tail.  Electron neutrinos which interact with normal matter through a charged current
are  predominantly  in  the  red  tail,  while  the  other  flavors  including  those  in  the  blue-green  tail  can  interact
through neutral currents. The time splitting between the two tails is fully determined by current measurements
of  mass  splittings,  but  the  overall  swing  of  the  tail  is  determined  by  the  currently  unknown  absolute  mass

scale of the neutrino mass hierarchy. 
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Figure 3.  An array of  plots like figure 2 with same energy and time scale but  for  a variety of  distances and
absolute neutrino mass scales.  The left column is for SNe at a distance corresponding to the nearest concen-
tration  of  galaxies,  the  middle  is  at  the  distance  of  the  largest  known  notable  feature  in  the  distribution  of
galaxies, and the left for z t 1.  Both the normal (m1 < m2 < m3) and inverted (m3 < m1 < m2) mass hierarchies
are considered.  Note that the order of the red and blue-green tail are reversed between normal and inverted
mass  hierarchies  but  the  time  splitting  is  the  same.   The  top  two  rows  are  for  the  minimal  absolute  mass
scale allowed by current  observations.   This  mass scale is  roughly the sensitivity  of  the upcoming KATRIN
experiment.  The middle  two rows are  for  the  maximum absolute  mass  scale  allowed by  the  most  stringent
published cosmological limits.  The bottom row is for the maximum absolute mass scale allowed by current

laboratory limits.
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