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ABSTRACT

Reducing the scatter between cluster mass and optical richness is a key goal for cluster cosmology from
photometric catalogs. We consider various modifications to the red-sequence matched filter richness
estimator of Rozo et al. (2009b), and evaluate their impact on the scatter in X-ray luminosity at fixed
richness. Most significantly, we find that deeper luminosity cuts can reduce the recovered scatter,
finding that σlnLX |λ = 0.63 ± 0.02 for clusters with M500c & 1.6 × 1014 h−1

70 M⊙. The corresponding
scatter in mass at fixed richness is σlnM|λ ≈ 0.2− 0.3 depending on the richness, comparable to that
for total X-ray luminosity. We find that including blue galaxies in the richness estimate increases
the scatter, as does weighting galaxies by their optical luminosity. We further demonstrate that our
richness estimator is very robust. Specifically, the filter employed when estimating richness can be
calibrated directly from the data, without requiring a-priori calibrations of the red-sequence. We also
demonstrate that the recovered richness is robust to up to 50% uncertainties in the galaxy background,
as well as to the choice of photometric filter employed, so long as the filters span the 4000 Å break of
red-sequence galaxies. Consequently, our richness estimator can be used to compare richness estimates
of different clusters, even if they do not share the same photometric data. Appendix A includes
“easy-bake” instructions for implementing our optimal richness estimator, and we are releasing an
implementation of the code that works with SDSS data, as well as an augmented maxBCG catalog
with the λ richness measured for each cluster.
Subject headings: galaxies: clusters – X-rays: galaxies: clusters

1. INTRODUCTION

In the next few years, a host of large scale optical
surveys — e.g. the Dark Energy Survey (DES12), the
Panoramic Survey Telescope & Rapid Response Sys-
tems (Pan-STARRS13), Hyper-Suprime Camera (HSC;
Takada 2010), and the Large Synoptic Survey Telescope
(LSST14) — are expected to generate galaxy catalogs
spanning several thousands of square degrees to suffi-
cient depth to reliable detect galaxies at redshifts as
high as z ≈ 1. These surveys will be used to optically
select galaxy clusters, and in conjunction with stacked
weak-lensing mass calibration, can be used to place tight
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constraints on cosmological parameters (e.g. Rozo et al.
2010a,b; Oguri & Takada 2011).
One of the difficulties confronting cosmology with op-

tical clusters is the fact that optical richness estimates
are expected to be noisy tracers of the underlying halo
mass.15 This is particularly problematic because the sen-
sitivity of cluster abundance studies is sensitive to the
uncertainty in the scatter of the mass–observable rela-
tion, and this sensitivity increases with increasing scat-
ter (Lima & Hu 2005). In addition, high scatter increases
the sensitivity of cluster abundance measurements to
non-Gaussian fluctuations in the observable–mass rela-
tion (Shaw et al. 2010), which are often degenerate with
cosmological parameters. Consequently, in order to min-
imize the dilution of the cosmological information of op-
tically selected cluster samples, a richness estimator that
minimizes the scatter in the richness–mass relation is
highly desirable.
As an example of the magnitude of this problem, we

consider the scatter in mass at fixed richness for the
maxBCG cluster catalog (Koester et al. 2007a), which
is currently the best-studied optically selected cluster
catalog at moderate redshifts (e.g. Becker et al. 2007;
Rozo et al. 2007; Sheldon et al. 2009a; Johnston et al.
2007; Rykoff et al. 2008; Hansen et al. 2009). Rozo et al.
(2009a) finds that the scatter in mass at fixed richness
(N200) for maxBCG clusters is σlnM|N = 0.45 ± 0.1

for clusters with M200 & 1014h−1M⊙. For compari-
son, X-ray luminosity, which is the noisiest X-ray mass

15 As discussed in Rozo et al. (2009b), throughout this work the
word “richness” is meant to be understood as “optical mass tracer,”
and is not necessarily the actual number of cluster galaxies within
the virialized region of a cluster or the total optical luminosity of
the cluster.
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estimator, has a scatter of σlnM|LX
= 0.25 − 0.32

(Vikhlinin et al. 2009; Mantz et al. 2010),16. This is
comparable to the scatter in halo mass at fixed weak lens-
ing mass, which is also estimated to be about σlnM|WL =
0.25 − 0.30 (Becker & Kravtsov 2010). Clearly, there is
room for improvement for optical mass tracers.
Indeed, it has been argued on the basis of nu-

merical simulations that the intrinsic scatter of the
richness–mass relation is Poisson (e.g. Kravtsov et al.
2004; Berlind et al. 2003; Zheng et al. 2005). While
recent work indicates the scatter may be significantly
super-Poisson at the cluster scale (Boylan-Kolchin et al.
2010; Wetzel & White 2010; Busha et al. 2010), even in
this case the intrinsic scatter is expected to be closer
to σlnM|N = 0.20 − 0.25 rather than 0.45 at M200 ∼
2×1014M⊙, so it is apparent that the maxBCG richness
estimator is dominated by extrinsic sources of scatter.
This is the third in a series of papers whose goal is to

develop improved richness estimators that are both qual-
itatively and quantitatively understood in detail. The
first of these papers, henceforth referred to as Paper
I (Rozo et al. 2009b), laid the fundamental framework
of our new optical richness estimator and quantitative
techniques. There, we demonstrated that by relying on
a probabilistic approach toward red sequence color se-
lection, combined with an aperture optimization, one
achieves much more robust richness estimates.
In this paper and Paper I (see also Popesso et al. 2004;

Lopes et al. 2006) we use X-ray luminosity LX , as our
mass proxy. Our chosen figure-of-merit is the scatter
in LX at fixed richness, σlnLX |N , where N is an ar-
bitrary richness. The most important reason why we
choose this metric is that it is easily available for our large
cluster catalog via the ROSAT All-Sky Survey (RASS:
Voges et al. 1999). That said, there are strong physi-
cal motivations for relying on X-ray luminosities for this
study. Specifically, not only is the scatter in mass at fixed
LX smaller than the scatter in mass at fixed richness
(σM|LX

≈ 0.25 compared to σM|N200
≈ 0.45), the corre-

lation coefficient between LX and mass at fixed richness
is very nearly unity (r > 0.9; Rozo et al. 2009a). That
is, at fixed N200, clusters that are brighter in X-rays are
also more massive. Consequently, we feel confident that
reducing the scatter in the LX–richness relation will also
reduce the scatter in the mass–richness relation. Our fi-
nal richness estimator from Paper I was easily superior
to that of the maxBCG cluster catalog, with a scatter
in LX at fixed richness of σlnLX |N = 0.69 ± 0.02, com-
pared to σlnLX |N = 0.86±0.02 for the maxBCG richness
estimator.
In Rozo et al. (2011, henceforth Paper II), we inves-

tigated how extrinsic sources of scatter can impact the
observed scatter in the richness–mass relation. In that
work, we demonstrated that while optical richness is in
principle subject to many sources of noise, in practice
only a very small subset of these is observationally rel-
evant. For instance, both photometric errors in galaxy
magnitudes/colors and photometric redshift uncertain-

16 Vikhlinin et al. (2009) quote σlnLX |M = 0.396, and LX ∝

M1.61, which corresponds to a scatter in mass at fixed LX of
σlnM|LX

= 0.396/1.61 = 0.25. The same calculation using the

results of Mantz et al. (2010) gives σlnM|LX
= 0.32.

ties in cluster redshifts are unimportant with SDSS-
quality data or better. In Paper II we demonstrate that
there are two dominant sources of noise. The first, which
is an issue for all photometric cluster catalogs, is the den-
sity of background galaxies within which a cluster is em-
bedded. Because of galaxy clustering, this background
exhibits large cluster-to-cluster fluctuations, so a small
percentage of galaxy clusters end up embedded in very
large galaxy overdensities. Such occurrences inevitably
result in gross richness over-estimates, i.e. projections
onto correlated structures. The second is failing to iden-
tify the correct center of the galaxy clusters. This effect
leads to significant underestimation of cluster richness if
the centering offset is comparable to the aperture used to
estimate richness, and can be mitigated with improved
optical centering algorithms.
In this work, which we refer to as Paper III, we inves-

tigate which parameters from Paper I may be changed
to further improve the fidelity of our optical richness es-
timator. By monitoring the change in scatter, σlnLX |N ,
we can directly quantify which parameters significantly
improve the richness estimator. The specific modifica-
tions we consider are whether cluster richness can be
improved by counting blue cluster galaxies in addition
to the red-sequence galaxies; by summing red-sequence
optical luminosity rather than galaxy counts; and the im-
pact of measuring galaxies further down the luminosity
function.
In addition to exploring these various modifications,

we also test the robustness of our richness estimator to
various perturbations, similar to the tests made on sim-
ulated data in Paper II. This includes a measurement of
the bias and scatter of the richness when different optical
filters are used to isolate the red sequence. Finally, we
demonstrate the origin of the optimal radial and lumi-
nosity cuts using the methods of Paper II.
The end result of this investigation is a new richness

estimator that is both robust and, we believe, very close
to optimal. Importantly, because this is a stand-alone
richness estimator, our method can be applied to any
cluster catalog, and can therefore improve optically se-
lected cluster catalogs regardless of how the initial clus-
ter selection is done. Moreover, the insights that we have
gained while performing this work are now informing a
new cluster finding algorithm that revolves around the
probabilistic framework of our richness estimator. A de-
tailed comparison of our richness estimator to other es-
timators from the literature will be presented in a future
paper.
The paper is set up as follows: in Section 2 we intro-

duce the data sets upon which our analysis is based. Sec-
tion 3 briefly reviews the richness estimator from Paper I
and sets up the probabilistic framework employed in this
paper. Section 4 describes how we define our figure-of-
merit for assessing improvement in optical richness esti-
mation, as well as the various modifications we consider.
Section 5 tests the robustness of our richness estimator
to various sources of systematic errors, most notably the
choice of filters used to select red-sequence galaxies, as
well as the exact values of the model parameters that
define the filter employed in our richness estimates. Sec-
tion 6 follows the work of Paper II to show the origin of
the optimal radial and luminosity cuts. Our conclusions
are presented in Section 7. We have also summarized
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all the relevant information required to code our new
richness estimator in Appendix A. Finally, Appendix B
provides a tentative mass–richness relation for our opti-
mal estimator. We emphasize, however, that the problem
of deriving a robust calibration, with well characterized
uncertainties, is left for future work.

2. DATA

All data used in this work comes from two large
area surveys, the Sloan Digital Sky Survey (SDSS:
York et al. 2000) and the ROSAT All-Sky Survey (RASS:
Voges et al. 1999). SDSS imaging data is used to select
clusters and to measure their matched filter richness,
while RASS data provides 0.1-2.4 keV X-ray fluxes for
each cluster.
The input data and analysis in this work is similar to

Paper I, although there are some key differences noted
below. Of particular note is the change from an input
galaxy catalog based on SDSS DR4 to one based on SDSS
DR7. Here we summarize the key aspects of the analysis.
For full details see Paper I.

2.1. Cluster Sample

Following Paper I, cluster locations, redshift esti-
mates, and initial richness estimates are taken from the
maxBCG cluster catalog (Koester et al. 2007a,b), an op-
tically selected cluster catalog. The maxBCG algorithm
identifies galaxy clusters by relying on the observation
that the galaxy population of massive halos clusters
tightly in space and color, forming what is known as
the E/S0 ridgeline or red-sequence (e.g. Dressler 1984;
Kormendy & Djorgovski 1989; Hansen et al. 2009). This
feature allows for high-contrast detection of galaxy clus-
ters with optical data, both locally and out to high red-
shift(e.g. Gladders & Yee 2000; Eisenhardt et al. 2008).
The maxBCG catalog is approximately volume limited

in the redshift range of interest (0.1 ≤ z ≤ 0.3), with
very accurate cluster photometric redshifts (δz ∼ 0.01).
Studies with mock SDSS catalogs indicate that the com-
pleteness and purity are above 90% (Koester et al. 2007a;
Rozo et al. 2007). The maxBCG catalog has been used
to investigate the scaling of multiple cluster mass prox-
ies with richness, including line-of-sight velocity disper-
sion (Becker et al. 2007), X-ray luminosity (Rykoff et al.
2008), and weak lensing shear (Sheldon et al. 2009a),
as well as derive cosmological constraints from cluster
counts (Rozo et al. 2007, 2010a).
The richness estimator used in the maxBCG catalog

is N200, defined as the number of galaxies with g − r
colors within 2σ of the E/S0 ridgeline as defined by the
BCG color, that are brighter than 0.4L∗ (in i-band),

and found within a scaled aperture rgal200 of the cluster
center (Hansen et al. 2005). The full catalog comprises
13, 823 objects with a richness threshold N200 ≥ 10, cor-
responding to M & 5 · 1013 h−1 M⊙ (Johnston et al.
2007).

2.2. X-ray Measurements

The scatter in LX at fixed richness, σlnLX |N (where
N is an arbitrary richness) is estimated using the meth-
ods of Paper I and Rykoff et al. (2008). In brief, we use
the RASS photon maps to estimate the 0.5-2.0 keV X-
ray flux at the location of each cluster, which is turn

used to derive LX [0.1-2.4 keV] given the cluster’s pho-
tometric redshift (the conversion factors are similar to
those used in Böhringer et al. 2004). We then perform a
Bayesian linear regression to lnLX as a function of lnN ,
whereN is the richness parameter to be tested. The vari-
ance in lnLX is included as a free parameter. The fit is
done following the algorithm presented in Kelly (2007),
and correctly takes into account errors on the indepen-
dent variable as well as upper limits on LX for those
clusters without significant detection of X-ray emission.
This method has several advantages, in that it takes into
account all the available X-ray data, not only that for
clusters in X-ray catalogs.
When estimating LX , one must specify an aperture.

The matched filter richness estimators described in this
paper have the benefit of assigning a cluster radius Rc,
to each individual cluster. As in Paper I, we estimate
LX using the aperture derived from the cluster richness.
Alternatively, using a fixed 0.9 h−1Mpc aperture to esti-
mate LX does not have a significant effect on our results.
As discussed in Rykoff et al. (2008, see Section 5.6),

there is clear evidence that strong cool core clusters
increase the scatter in X-ray cluster properties. High
resolution X-ray imaging of clusters allows the exclu-
sion of cluster cores, reducing the scatter in observed
X-ray properties (e.g. O’Hara et al. 2006; Chen et al.
2007; Maughan 2007). Unfortunately, the broad PSF
of ROSAT means that it is impossible to do so in this
work. In Paper I, we analyzed both the full sample of
maxBCG clusters as well as a “clean” sample after re-
moving all 10 known strong cool core maxBCG clusters
that may significantly bias our results (see Section 2.4 in
Paper I). We concluded that although the absolute value
of the scatter in LX at fixed richness is reduced by using
the “clean” sample, the same general trends were evident
with the full and “clean” samples. In this work, we focus
exclusively on the “clean” sample of Paper I.

2.3. Input Galaxy Catalog

The input galaxy catalog for this work is derived from
SDSS DR7 data (Abazajian et al. 2009). This data
release includes nearly 10000 square degrees of drift-
scan imaging in the Northern Galactic Cap. How-
ever, as the maxBCG cluster catalog was created us-
ing data from DR4 (Adelman-McCarthy et al. 2006), the
relevant area covered is ∼ 7500 square degrees. Sur-
vey edges, regions of poor seeing, and bright stars are
masked as previously described (Scranton et al. 2002;
Koester et al. 2007a; Sheldon et al. 2009b). In this work
we use CMODEL COUNTS as our total magnitude, and
MODEL COUNTS when computing colors. All magnitudes
are corrected for Galactic extinction.
The careful selection of a clean input catalog is required

for proper richness estimation. In Section 5.6 we discuss
the effects of “catalog noise” on the richness–mass re-
lation, by which we mean the inclusion of stars and/or
artifacts as well as catastrophic photometric errors in
the galaxy catalog employed when estimating richnesses.
Our best input catalog was based on the same cuts
used in Sheldon et al. (2009b). After selecting galaxies
based on the default SDSS star/galaxy separator, we fil-
ter all objects with any of the following flags set in the
g, r, or i bands: SATURATED, SATUR CENTER, BRIGHT,
NOPETRO, DEBLENDED AS MOVING. These cuts remove ∼
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30% of the objects brighter than i > 22, including a
significant number of relatively bright stars that are er-
roneously tagged as galaxies in the SDSS pipeline.

3. THE MATCHED FILTER RICHNESS λ

Working within the same theoretical framework as Pa-
per I, we now attempt to improve upon the richness esti-
mator λ advocated in that paper. Consequently, we now
review the richness estimator λ as described in Paper I.
Let x be a vector describing the observable properties

of a galaxy (e.g. galaxy color, magnitude, and position).
We model the projected galaxy distribution around clus-
ters as a sum S(x) = λu(x|λ) + b(x) where λ is the
number of cluster galaxies, u(x|λ) is the cluster’s galaxy
density profile normalized to unity, and b(x) is density of
background (i.e. non-member) galaxies. The probability
that a galaxy found near a cluster is actually a cluster
member is simply

p(x) =
λu(x|λ)

λu(x|λ) + b(x)
. (1)

The total number of cluster galaxies λ must satisfy the
constraint equation

λ =
∑

p(x|λ) =
∑

R<Rc(λ)

λu(x|λ)
λu(x|λ) + b(x)

. (2)

The corresponding statistical uncertainty in λ is given by
(see Paper II)

Var(λ) =
∑

p(x|λ) [1− p(x|λ)] . (3)

In principle, these sums should extend over all galaxies.
In practice, one needs to add over all galaxies within some
cutoff radius Rc and above some luminosity cut Lcut. In
Paper I, Lcut was set to Lcut = 0.4L∗, while the radial
cut was assume to scale as a power-law with λ, such that

Rc(λ) = R0(λ/100.0)
β. (4)

The most important thing to note about Eqns. 2 and 4
is that the cluster richness is the only unknown. Con-
sequently, one can numerically solve Eqn. 2 for λ using
simple zero-finding algorithm. This automatically pro-
duces a cluster radius estimate Rc via equation 4.
In Paper I we considered three observable properties of

galaxies: R, the projected distance from the cluster cen-
ter; m, the galaxy i-band magnitude; and c, the galaxy
g − r color. We adopted a separable filter function

u(x) = [2πRΣ(R)]φ(m)G(c), (5)

where Σ(R) is the two dimensional cluster galaxy density
profile, φ(m) is the cluster luminosity function (expressed
in apparent magnitudes), and G(c) is color distribution
of cluster galaxies. The prefactor 2πR in front of Σ(R)
accounts for the fact that given Σ(R), the radial proba-
bility density distribution is given by 2πRΣ(R). In Paper
I, we showed that the color filter is by far the most im-
portant of the three filters in reducing the scatter. We
summarize below the specific filters employed in Paper I.

3.1. The Radial Filter

For the radial filter, Paper I adopted an NFW pro-
file (Navarro et al. 1995), which is a good descrip-
tion of the dark matter profile in N-body simulations,

and is found to be a good descriptor of the distribu-
tion of cluster galaxies (Lin & Mohr 2004; Hansen et al.
2005; Popesso et al. 2007). The corresponding two-
dimensional surface density profile is (Bartelmann 1996)

Σ(R) ∝ 1

(R/Rs)2 − 1
f(R/Rs), (6)

where Rs is the characteristic scale radius, and

f(x) = 1− 2√
x2 − 1

tan−1

√

x− 1

x+ 1
. (7)

This formula assumes x > 1. For x < 1, one uses the
identity tan−1(ix) = i tanh(x).
Following Koester et al. (2007a), Paper I set Rs =

0.15 h−1Mpc. Also, in order to avoid the singularity at
R = 0, they assumed Σ was constant for R ≤ Rcore =
0.1 h−1Mpc. This core density is chosen so that the mass
distribution Σ(R) is continuous. Finally, the profile Σ(R)
is truncated at the cluster radius Rc(λ), and is normal-
ized such that

1 = c

∫ Rc(λ)

0

dR 2πRΣ(R). (8)

For the NFW profile with the given values of Rs and Rc,
the normalization factor c can be parametrized as

c=exp(1.6517− 0.5479ρ+ 0.1382ρ2 − 0.0719ρ3 −
0.01582ρ4 − 0.00085499ρ5), (9)

where ρ = ln(Rc) and 0.001 < Rc < 3.

3.2. The Luminosity Filter

The luminosity distribution of maxBCG clusters is well
represented by a Schechter function (e.g. Hansen et al.
2009) which we write as

φ(m) ∝ 10−0.4(m−m∗)(α+1) exp
(

−10−0.4(m−m∗)
)

. (10)

Paper I set α = 0.8 independent of redshift. The charac-
teristic magnitude, m∗, is calculated for a k-corrected
passively evolving stellar population (Koester et al.
2007b). We assume M i

∗ = −21.22 for red galaxies, corre-
sponding to 2.25×1010L⊙. A PEGASE.2 stellar popula-
tion/galaxy formation model (e.g. Eisenstein et al. 2001)
was used to calculate the k-corrected magnitude at each
redshift. In the redshift range 0.05 < z < 0.35 appropri-
ate for maxBCG, m∗(z) is well approximated by a fourth
order polynomial:

m∗(z) = 12.27+62.36z−289.79z2+729.69z3−709.42z4.
(11)

For each cluster, m∗ is taken at the appropriate red-
shift and the filter is normalized by integrating down to
the magnitude cutoff. In Paper I, this was chosen to be
0.4L∗, or m∗ + 1mag.

3.3. The Color Filter

The old stellar populations in the red sequence galax-
ies have a prominent 4000 Å break in their spectra. In
the redshift range targeted by maxBCG, z . 0.35, the
4000 Å break is located in the g band. Therefore, the
g − r color of red-sequence galaxies correlates strongly
with redshift, and results in tight E/S0 ridgelines. Con-
sequently, Paper I relied on c = g − r for their color
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filter. They assume G(c) is Gaussian with a small in-
trinsic dispersion of σint = 0.05mag. The corresponding
color filter, G(c) is

G(c|z) = 1√
2πσ

exp

[

(c− 〈c|z〉)2
2σ2

]

, (12)

where c = g−r is the color of interest, 〈c|z〉 is the mean of
the Gaussian color distribution of early type galaxies at
redshift z, and the net dispersion σ is the sum in quadra-
ture of the intrinsic color dispersion σint = 0.05 and the
estimated color error σc. The mean color 〈c|z〉 = 0.625+
3.149z was determined by matching maxBCG cluster
members to the SDSS LRG (Eisenstein et al. 2001) and
MAIN (Strauss et al. 2002) spectroscopic galaxy sam-
ples. In Section 4.3 we investigate modifications of this
color model based on measurements of the red sequence
of maxBCG clusters measured in Hao et al. (2009).

3.4. Background Estimation

The last necessary ingredient for estimating λ is a back-
ground model. We assume the background galaxy den-
sity is constant in space, so that b(x) = 2πRΣ̄g(mi, c)
where Σ̄g(mi, c) is the galaxy density as a function of
galaxy i−band magnitude and g − r color. The mean
galaxy density is obtained by binning the full galaxy cat-
alog in color and magnitude using a cloud-in-cells (CIC)
algorithm (e.g. Hockney & Eastwood 1981) and dividing
by the survey area. For our cells, we use 40 evenly-spaced
bins in g−r ∈ [−1, 3] and 100 bins in i ∈ [12, 22]. The fi-
nal galaxy number density is normalized by the width of
each color and magnitude bin (0.1 mags each). We mark
as “bad” all cells that have fewer than 5 galaxies/sq. deg.
This has the effect of masking out erroneous photometric
artifacts that are called bright galaxies in the DR7 cat-
alog. Although these artifacts are rare, they may never-
theless significantly bias the luminosity-weighted richness
for a few clusters (see Section 4.6).17 We emphasize that
because the background is measured per square degree,
the average number of background galaxies is automat-
ically accounted for as the angular size of the clusters
changes with redshift.

4. IMPROVING λ

We now explore whether we can further improve upon
the results of Paper I in a variety of ways. We define our
metric to assess improvement in a richness estimator in
Section 4.1. Section 4.2 tests the impact of modifying the
color filter to account for the blue galaxy population of
cluster galaxies. In Section 4.3 we take into account the
small but non-zero tilt in the ridgeline. Section 4.4 ex-
plores the effect of the luminosity cut on the LX -richness
relation, and Section 4.5 focuses on the importance of the
choice of the radial filter function. Finally, in Section 4.6
we investigate whether red sequence luminosity is a bet-
ter LX tracer than λ. Throughout this discussion, we
have adopted a fixed metric aperture Rc = 0.9 h−1Mpc
for estimating richness, which we demonstrated in Pa-
per I was near optimal for the cluster sample under con-
sideration. In section 4.7 we relax this assumption and
optimize our choice of aperture.

17 We note that Paper I relied on random point sampling to
estimate Σ̄g rather than making use of the full survey area. This
does not impact our results in any way.

4.1. Richness Testing Methodology: What Constitutes
an Improved Richness Estimate?

The primary goal of this paper is to improve upon the
Paper I richness estimator. To do that, however, we must
first define the metric used to gauge improvement. As
discussed in the Introduction, our chosen figure-of-merit
is the scatter in LX at fixed richness. As in Paper I, we
limit ourselves to the richest 2000 clusters as ranked by
the richness estimate under consideration so that our re-
sults are insensitive to the N200 ≥ 10 cut in the maxBCG
catalog. For the original maxBCG richness estimator
N200, this is equivalent to N200 ≥ 20, or an equivalent
mass of M200 & 1×1014 h−1 Mpc (Johnston et al. 2007).
In Paper I we confirmed that our results with the top
1000 or 3000 clusters are consistent with the top 2000.
We denote the original matched filter richness estima-

tor described in Paper I as λ0. Using the top 2000 rich-
est clusters in the clean sample, and a fixed 0.9 h−1Mpc
aperture, we find σlnLX |λ0

= 0.69± 0.02.18 As discussed
in Section 5.3 of Paper I, comparing two richnesses is
complicated by the fact that the errors are correlated. In
all pairwise richness comparisons, we perform bootstrap
resampling on the clean cluster catalog and calculate the
scatter in the top 2000 clusters for both λ0 and the new
richness λnew. For each bootstrap resampling we cal-
culate r = σlnLX |λnew

/σlnLX |λ0
. If the improvement in

scatter is not significant, we will find that r is consistent
with unity, whereas an improved (worse) scatter will re-
sult in an r value that is significantly less than (greater
than) 1. This is our primary diagnostic for improvement.
In addition to the scatter, we also monitor the red-

shift evolution in the LX–richness relation of each of the
richness estimators we consider to ensure that no strong
redshift evolution is introduced by our alterations. We
measure the evolution using a stacking analysis as de-
scribed in Paper I and Rykoff et al. (2008, see Section
5.3). In brief, we measure 〈LX |N〉 where N is the rich-
ness measure of interest in three different redshift bins
(0.10 < z < 0.18; 0.18 < z < 0.26; and 0.26 < z < 0.30).
As shown in Rykoff et al. (2008), the stacking analysis
allows us to go much further down the richness function
than for the scatter analysis. While this introduces selec-
tion function effects near the N200 ≥ 10 threshold of the
maxBCG cluster catalog, we expect these to be minor
in the redshift evolution, which, as mentioned earlier, we
only use as a sanity check. We fit the stacked data with
a power-law evolution in redshift,

〈LX |N〉 = A

(

N

40

)α (

1 + z

1 + z̃

)γ

, (13)

where z̃ is the median redshift of the cluster sample and
N is the richness measure of interest. We find that γ =
0.7± 0.8 for λ0, consistent with no evolution.
As noted in Paper I, even if the relation betweenN and

cluster mass is redshift independent, we may expect to
observe evolution in the LX−N relation due to evolution
in the LX −M relation. The expectation for self-similar
evolution in LX at fixed mass is LX ∝ ρ̄c for soft-band
X-ray luminosities (Kaiser 1986), where ρc is the critical
density of the Universe at redshift z. In a ΛCDM Uni-
verse with Ωm = 0.25, LX ∝ ρc is well approximated by

18 We note that we get consistent values with DR4 and DR7
photometry; see also Section 5.6.
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LX ∝ (1 + z)1.10, or γ = 1.10. Thus, for λ0, the evo-
lution is consistent with both the no-evolution and the
self-similar evolution models. As we do not know what
the true evolution should be, we do not use the evolu-
tion parameter γ as a true comparison between richness
estimators. That said, modest evolution in the richness–
mass relation is a desirable property for richness estima-
tors, so we do check that γ remains in the range ≈ 0−1.5
as we modify λ.

4.2. Blue Cluster Members

The red sequence is well-suited to cluster finding due to
its high contrast with the background, and its strong red-
shift dependence (e.g. Bower et al. 1992; Gladders & Yee
2000; Koester et al. 2007a). However, not all cluster
galaxies are red, only the majority, with typical red-
fractions being of order ≈ 80% (e.g. Hao et al. 2009).
We now explore whether accounting for this blue galaxy
population in our color filter improves our richness esti-
mator.
We first empirically construct a new color filter that

accounts for both red and blue galaxies. As an input, we
use the 2000 richest clusters as measured by our origi-
nal matched filter richness estimator, λ0. We then bin
these clusters in 10 redshift bins of width 0.02, and se-
lect all galaxies within 0.9 h−1Mpc of the BCG brighter
than 0.4L∗. To estimate galaxy luminosity, we assume
all galaxies are at the cluster redshift. The empirical
color distribution of these galaxies is then background
subtracted and fit as a sum of two Gaussians using the
Error Corrected Gaussian Mixture Model (ECGMM) of
Hao et al. (2009), which allows us to properly take into
account photometric errors. The location, width, and
relative amplitude of these two Gaussians define the
appropriate color filter for the color distribution of all
(red+blue) cluster galaxies within our chosen aperture.
Additional tests have shown that the color distribution
does not depend significantly on cluster richness λ0.
Figure 1 shows our best fit model (solid green line) for

the lowest redshift bin (0.1 < z < 0.12) and the highest
redshift bin (0.28 < z < 0.30). Note our best fit model
is narrower than the binned histogram since the latter
is broadened by photometric errors, particularly in the
case of our high redshift bin.
Our empirically determined model filter takes the form

G(c|z)= αred√
2πσred

exp

[

(c− µred)
2

2σ2
red

]

+
αblue√
2πσblue

exp

[

(c− µblue)
2

2σ2
blue

]

, (14)

where αred and αblue are the relative weights of the red
and blue Gaussians; µred and µblue are the mean color
of the red and blue galaxies at redshift z; and σred,int

and σblue,int are the intrinsic scatter for the red and blue
galaxies. Each of these parameters is fit as a function of
redshift using a simple linear relation, with the exception
of the Gaussian widths, which we find is consistent with
no evolution. Our final model parameters are

µred =0.629 + 3.016z (15)

µblue =0.590 + 2.115z (16)

αred =0.786− 0.303z (17)

αblue = 1.0− αred (18)
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Fig. 1.— Color histograms of maxBCG clusters in the low-
est redshift bin (top panel) and the highest redshift bin (bottom
panel). The black histogram comprises the total of cluster mem-
bers brighter than 0.4L* within 0.9h−1 Mpc, after subtracting out
the predicted number of background galaxies. The green curve is
our best fit double-Gaussian model, taking into account the “obser-
vational broadening” brought about by photometric errors. This
explains why our best fit model is narrower than histogram, par-
ticularly for our high redshift bin.

σred,int = 0.05 (19)

σblue,int = 0.25. (20)

We can now replace the Gaussian color filter in Eqn. 12
with this new filter, and combine it with the original
luminosity and radial filters to measure a new rich-
ness, λred+blue. The scatter in LX at fixed richness is
σlnLX |λred+blue

= 0.72± 0.02, and the corresponding red-
shift evolution parameter is γ = 0.1 ± 0.6. We note
that the width of the color filter for the blue cluster
members derived here is slightly wider than that derived
from spectroscopically confirmed subsamples (Hao et al.
2009), implying that there is some contamination from
background galaxies. However, further tests have con-
firmed that our results are insensitive to the precise width
of this component (see also Section 5.3).
To measure the significance of the change, we use the

bootstrap resampling described in Section 4.1, and find
r = 1.04 ± 0.02. That is, including the blue galaxies in
the filter increases the scatter at a significance of 2σ.
This may be due to the fact that measuring blue cluster
members is inherently noisier due to the smaller contrast
with the background, or it may reflect that blue galax-
ies in clusters tend to have fallen in more recently (e.g.
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Abraham et al. 1996), thereby adding stochasticity to
the richness measure. Adequately addressing this issue
would require us to repeat this analysis using full spec-
troscopic membership information, which we do not cur-
rently have available for this sample. We also note the
possible correlation of the radial and luminosity filters
with the color filter, as blue cluster galaxies are gener-
ally fainter and further from the core than the red galax-
ies (e.g., Hansen et al. 2009). However, as we show in
Paper I, the color filter is dominant so we do not expect
this to be a significant issue. We conclude that attempt-
ing to include blue galaxies in richness estimates when
only photometric data is available will increase the scat-
ter of the LX–richness relation.

4.3. Red Sequence Tilt

Thus far, we have treated the color of the red sequence
cluster members as a function of redshift only. How-
ever, in addition to a zero-point (mean color) and scat-
ter, the ridgeline has a slope in color-magnitude space:
fainter (less massive) galaxies have bluer colors, pos-
sibly reflecting trends from the mass-metallicity rela-
tion (e.g. Kodama & Arimoto 1997; Bernardi et al. 2005;
De Lucia et al. 2007). In this section, we investigate the
effect of red sequence tilt and its redshift evolution on
the matched filter richness estimation.
Hao et al. (2009) used the maxBCG cluster catalog to

measure the slope and intercept of the g − r vs. i color–
magnitude relation for red-sequence galaxies. They find
that the ridgeline slope is nearly independent of cluster
richness, consistent with findings that the slope is inde-
pendent of environment (Hogg et al. 2004). The color
filter that incorporates this tilt is described as follows:

G(c,m|z) = 1√
2πσ

exp

[

− d(c,m|z)2
2σ2

]

, (21)

where

d(c, i|z) = c− (m17(i− 17.0) + b17). (22)

The slope and zero-point at i = 17 are taken from
Hao et al. (2009):

m17=−0.0701z − 0.008969 (23)

b17=3.2982z + 0.58907. (24)

As before, c = g − r is the relevant color and m denotes
the i band magnitude. The net dispersion σ is taken as
the sum in quadrature of the intrinsic color dispersion
σint = 0.05 and the estimated color error σc.

19

After replacing the Gaussian color filter in Eqn. 12
with the tilt-based filter in Eqn. 21, we measure the new
richness λtilt. The scatter in LX for the new richness is
σlnLX |λtilt

= 0.69± 0.02, and the corresponding redshift
evolution parameter γ = 1.3±0.5. The change in scatter
is insignificant, with r = 0.996 ± 0.01. Therefore, in-
corporating the tilt of the red sequence does not make a
significant difference in the scatter or redshift evolution.
This is not particularly surprising: not only is the tilt of

the red sequence small compared to the intrinsic scatter,

19 Note that in principle one could measure distances to the
perpendicularly to the ridgeline, as opposed to along the color axis
as we have done. Fortunately, the fact that the tilt of the red-
sequence is small implies that we do not expect such differences to
be significant.

in Paper I we demonstrated that the adopted Gaussian
color filter was very robust relative to small systematic
offsets between the center of the filter and the true mean
color of cluster galaxies. That said, the tilt of the red se-
quence evolves with redshift, becoming increasingly im-
portant at higher redshifts. Thus, it is possible — even
likely — that our above conclusion will not hold at high
redshifts, or when extending λ to fainter luminosities,
thereby increasing the lever-arm over which the tilt of
the red sequence can act. Therefore, despite the fact
that we do not observe a significant improvement, we
have opted to incorporate the tilt-based color filter from
Eqn. 12 into our standard definition of λ for further tests.

4.4. Going Deeper

When estimating richness, one must adopt a luminos-
ity or magnitude cut. In Paper I, we adopted a luminos-
ity cut Lcut = 0.4L∗, which was chosen to allow consis-
tent richness estimates across the entire survey volume
(0.1 ≤ z ≤ 0.3) while maintaining high precision photom-
etry for the faintest galaxies considered. However, this
cut is not uniquely specified by these conditions. The full
DR7 input catalog is complete to i ≈ 21.3, which corre-
sponds to a luminosity of 0.1L∗ at a redshift of z = 0.3, so
we can easily go deeper. We now explore whether doing
so can reduce the scatter in the richness–mass relation.
We have calculated the matched filter richness λ for a

set of luminosity cuts: Lcut/L∗ = {0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40} for every maxBCG cluster.20 For this
test, we use the color filter including the red-sequence
tilt, as described in the previous section.
Figure 2 shows the comparison of the scatter in LX

at fixed richness for different luminosity cuts for the
top 2000 clusters (black diamonds). We find that there
does in fact appear to be an optimal luminosity cut
Lcut = 0.2L∗ (m∗ +1.75mag) below which λ fails to im-
prove any further. We compare the richness for the differ-
ent luminosity cuts relative to this value using the boot-
strap resampling method, and find that the proposed cut
of 0.2L∗ is significantly (5σ) better than the original lu-
minosity cutoff of 0.4L∗. The resulting scatter value is
σlnLX |λ = 0.63±0.02, with a corresponding redshift evo-
lution parameter of γ = 0.6 ± 0.5, consistent with both
no evolution and self-similar evolution.
One question that may arise from looking at Figure 2

is whether the flattening in the scatter as a function of
luminosity cut is driven by the fact that by Lcut = 0.1L∗

one begins to approach the limiting magnitude of the
SDSS galaxy catalog for galaxies at z = 0.3. To test this
hypothesis, we have run the same scatter analysis on the
lower redshift half of our cluster sample, i.e., clusters
with redshift below the median redshift of the sample,
zmed < 0.23. We maintain the same equivalent space-
density cutoff as the full run (black diamonds) by lim-
iting the scatter measurement to the top 1000 clusters.
The resulting points are shown in Figure 2 as red squares,
and clearly display the same behavior as the full cluster
catalog. At z = 0.23, a luminosity of 0.2L∗ (0.1L∗) corre-
sponds to i = 19.9 (20.7), significantly brighter than the
limiting magnitude of the catalog. Thus, we can only
conclude that the flattening of the scatter below 0.2L∗ is
real, and not due to photometric errors of faint galaxies.

20 See Section 3.2 for details on the calculation of L∗.



8 Rykoff et al.

0.1 0.2 0.3 0.4
Luminosity cut (L*)

0.90

0.95

1.00

1.05

1.10

1.15

r 
=

 σ
ln

L|
λ/

σ l
nL

|λ
(0

.2
)

Fig. 2.— Comparison of the scatter in LX at fixed richness for
a set of luminosity cuts. To assess the significance of the improve-
ment, each richness scatter, σlnLX |λ is compared via the bootstrap
resampling method to the scatter measured with a luminosity cut-
off of 0.2L∗, σlnLX |λ(0.2). The black diamonds show the results for
the full cluster sample, and the red squares for the lower redshift
clusters with z < 0.23. In both cases the scatter decreases until
a luminosity cutoff of 0.2L∗, and does not improve with deeper
observations. Note that the comparison of λ at 0.2L∗ to itself is
identically 1.

For the time being, we simply adopt this new optimal
luminosity cut, postponing the discussion of the origin
of this cut to Section 6. For reference, decreasing our
luminosity cut from 0.4L∗ to 0.2L∗ increases the cluster
richness by an average of ≈ 65%.

4.5. Radial Filter

The NFW profile was originally introduced as a good
fit for the dark matter distribution in N-body simu-
lations (Navarro et al. 1995). Although galaxies will
not necessarily follow the same distribution as that of
dark matter, studies have shown that the number den-
sity of cluster galaxies can be described by an NFW
function (e.g. Lin & Mohr 2004; Popesso et al. 2007;
Hansen et al. 2005). Nevertheless, a filter based on an
NFW profile might not necessarily be ideal. In this sec-
tion we investigate the effect of changing the radial filter
function.
A projected NFW profile extends to infinity, so we are

required to normalize the filter taking into account the
cutoff radius. An alternative radial profile suggested by
Postman et al. (1996) instead goes to zero at the cutoff
radius:

Σpost(R/Rcore) ∝
1

√

1 + (R/Rcore)2
− 1
√

1 + (Rc/Rcore)2
.

(25)
The equation assumes R < Rc, where Rc is the clus-
ter radius as defined in Eqn. 4; outside of this radius,
P = 0. We follow Postman et al. (1996) in setting
Rcore = 100 h−1 kpc, and we normalize the filter as in
Eqn. 8. This profile gives more weight to the central
galaxies and less weight to the peripheral galaxies than
the NFW filter. We denote the resulting richness, λpost.

Finally, we also investigate a third possibility, that of
replacing the radial filter 2πRΣ(R) with a flat top-hat
function, i.e. Σ(R) ∝ 1/R or isothermal, which defines
λflat. This gives equal weight to cluster galaxies at the
center and those at the periphery.
We perform a pairwise comparison of the scatter in

LX at fixed richness among our three richness estima-
tors generated with three radial functions, λNFW, λpost,
and λflat. For these tests, we use the best luminos-
ity cutoff (0.2L∗), the color filter including tilt, and
fix the cutoff radius at 0.9 h−1Mpc. In the compar-
ison of the flat profile to the NFW profile, we find
r = σLX |λflat

/σLX |λNFW
= 1.03± 0.015. Thus, using the

NFW profile is better than using a flat radial profile at
the 2σ level. Comparing the Postman profile to the NFW
profile, we find r = σLX |λpost

/σLX |λNFW
= 1.016± 0.016.

The NFW profile gives slightly more weight to periph-
eral cluster galaxies than the Postman filter, and less
weight to the peripheral galaxies than the flat filter. The
NFW filter, somewhere in the middle, narrowly outper-
forms the other two, which are closer to the extremes.
That said, it is worth noting that up to ≈ 30% number
of BCGs in the maxBCG catalog may not be at the halo
center (Johnston et al. 2007). Therefore, we cannot rule
out the possibility that our results are driven at least
in part by miscentering inherent to the maxBCG cata-
log. Nevertheless, our tests in this section show that the
shape of the radial profile has a relatively weak effect on
the fidelity of the richness estimator λ. Thus, we do not
feel it is necessary to expend further energy in exploring
a broad variety of possible radial filter functions.

4.6. Luminosity Weighting

Total optical luminosity of a cluster has been sug-
gested as a superior mass tracer to simply galaxy count-
ing (e.g Popesso et al. 2005, and others), though any
such improvement is likely to be small as the optical lu-
minosity and total number of cluster galaxies are highly
correlated (e.g. Popesso et al. 2005, 2007; Koester et al.
2007a). In this section we explore this possibility by us-
ing the total optical luminosity of red sequence galaxies
in clusters as an X-ray luminosity tracer.
We have already seen that our λ formalism naturally

produces a red-sequence based cluster membership prob-
ability. Consequently, we can readily estimate the total
red-sequence cluster luminosity Lλ via

Lλ =
∑

j

Ljpj , (26)

where Lλ is the luminosity weighted lambda, pj is the
membership probability of galaxy j, and Lj is the lu-
minosity of galaxy j. The luminosity is defined as the
i-band luminosity of a galaxy at z = 0.25, and all galax-
ies are k-corrected assuming the galaxies are red galaxies
at the redshift of the cluster. We calculated Lλ for our
clusters using the the best luminosity cutoff (0.2L∗), the
color filter including tilt, and with a fixed 0.9 h−1Mpc
aperture. We find a scatter of σlnLX |Lλ

= 0.68 ± 0.02,
and a redshift evolution parameter γ = −1.0±, 0.6. The
bootstrap comparison to the corresponding λ estimate
results in r = σlnLX |Lλ

/σlnLX |λ = 1.09 ± 0.02. Thus,
calculating the red-sequence luminosity of the clusters is
a worse tracer of LX than pure red-sequence counts.
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One worry when interpreting this results is that the
result may be systematics driven. Specifically, in esti-
mating the cluster luminosity we assume all galaxies are
at the cluster redshift, which can dramatically boost the
luminosity assigned to any foreground galaxies. Even
with low membership probabilities, such boosts might
significantly bias the estimated cluster luminosity. To
test this hypothesis, we have repeated our experiment
while restricting the sum in Eqn. 26 to galaxies fainter
than the BCG. We find that our results are robust to
this change, which suggests foreground interlopers are
not the culprit. There is the additional possibility that
the more numerous faint galaxies, with larger photomet-
ric errors, are increasing the noise. However, the same
trend — that simple number counts are superior to lumi-
nosity weights — appears with richnesses using brighter
luminosity cuts. Thus, we conclude that the total red-
sequence cluster luminosity is a worse LX tracer than
red-sequence galaxy counts.
Another type of luminosity weighting that has been

suggested in the past is weighting by the luminosity of
the BCG (e.g. Reyes et al. 2008). In Paper I, we showed
that the richness estimate of Reyes et al. (2008), while
superior to N200, has a significantly larger scatter than
λ0. Similarly, in the preset work we did not observe any
significant difference when combining λ with the BCG
luminosity. This may be simply a fact that our tests
are primarily focused on the high richness end. It is
clear that at sufficiently low richness — e.g., λ = 1, or
a single red galaxy — the luminosity of the BCG must
contain additional information about the mass of the host
halo. We emphasize that these results do not contradict
those of Reyes et al. (2008). The reason is that although
significant improvements can be made relative to N200,
these are not as easily achieved relative to our optimized
λ richness estimator.

4.7. Aperture Optimization

Having explored ways in which λ could be improved
while relying on a fixed metric aperture, we now turn to-
wards optimizing cluster radii. Throughout this section,
we use our final set of filters, given by

u(c,m, r|z, λ) = [2πRΣ(R)]φ(m)G(c,m), (27)

where Σ(R) is given by Eqn. 6, φ(m) is given by Eqn. 10,
and G(c,m) is given by Eqn. 21. In addition, our lumi-
nosity filter now extends to a luminosity cutoff Lcut =
0.2L∗. For the rest of this paper, we denote the matched
filter richness estimate from this filter simply as λ. We
proceed now to optimize the radial scaling parameters
R0 and β from Eqn. 4.
We optimize the radial aperture using the procedure

laid out in detail in Paper I. Briefly, we begin by defin-
ing a coarse grid in R0 and β, and estimate the scatter
σlnLX |λ along this grid. Once we have a rough idea of
where the minimum lies in parameter space, we repeat
this search using a finer grid centered on the expected
minimum. We then use bootstrap resampling to esti-
mate the 1σ and 2σ confidence contours of the location
of the scatter minimum in the R0 − β plane. For a more
detailed description of this algorithm, we refer the reader
to Section 4 of Paper I.
Figure 3 shows our final set of contours. The mini-

mum on the fine grid is consistent with the coarse grid,
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Fig. 3.— Contours of the probability density of the location
of the point in the R0 − β plane that minimizes the scatter in
LX at fixed richness. The lines show the 1σ and 2σ contours.
In the interest of simplicity, we choose as our final fiducial pa-
rameters R0 = 1.0h−1 Mpc and β = 0.2 in the scaling relation
Rc = R0(λ/100)β , which are consistent with the minimum scatter.
We note that these parameters yield Rc ∼ 0.9h−1 Mpc for a clus-
ter with λ = 45, the median richness of the richest 2000 clusters,
and thus the reference aperture of 0.9h−1 Mpc is consistent with
the scaled aperture.

with radial scaling parameters of R0 = 1.0 h−1Mpc and
β = 0.2 for use in the scaling relation Rc = R0(λ/100)

β.
These values are in good agreement with the trends seen
in Paper I. Although the 1σ contour is closed, there is
a broad degeneracy region that extends down to a fixed
metric aperture with R0 = 0.9 h−1Mpc and β = 0.0. In
particular, for a cluster with λ = 45, the median rich-
ness of the richest 2000 clusters, the scaled aperture is
∼ 0.9 h−1Mpc. Therefore the reference fixed aperture of
0.9 h−1Mpc is consistent with the scaled aperture, and
the richness comparisons in the previous sections are in-
deed valid for our final richness estimator. However, as
discussed in Paper I, the existence of the degeneracy line
shown in Figure 3 is largely driven by the limited rich-
ness range that we can probe using X-ray luminosity. We
fully expect the variable aperture approach is superior to
a fixed metric aperture, particularly when probing lower
richness systems, although those systems are out of reach
for our present analysis.
For the radial scaling parameters of R0 = 1.0 h−1Mpc

and β = 0.2 used in the final version of λ, the scatter
in LX for the top 2000 clusters is σlnLX |λ = 0.63± 0.02,
and the evolution parameter is γ = 0.5 ± 0.5. These
values are consistent with those estimated for the fixed
0.9 h−1Mpc aperture, and the relative improvement is
not significant, with r = 0.99± 0.02.

5. SYSTEMATICS

In this section, we discuss several sources of systematic
error that may have an effect on the calculation of the λ
richness estimator. Our goal is to show that our method
is particularly robust to common perturbations, and fur-
thermore will produce consistent results even when we
are not using SDSS data. In particular, in Section 5.1
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we explore how λ changes if alternative filters are used
to isolate the red sequence. In Section 5.2 we look at the
effect of the normalization of the global background. In
Section 5.3 we look at variations in the width of the red
sequence in the model, and in Section 5.4 we look at the
effect of uncertainty in the photometric zero-point. In
Section 5.5 we investigate the effects on the calculation
of λ if we do not know the color–redshift relation. Fi-
nally, in Section 5.6, we determine the effect of “catalog
noise,” false galaxies that add noise to the input galaxy
catalog.

5.1. The Robustness of λ to the Choice of Filters

Up until now, we have focused our analysis on the
color-magnitude relation as described by g − r v. i. As
discussed above, the g − r color is well suited for clus-
ter photometric redshift and richness estimation in the
0.1 < z < 0.3 range covered by the maxBCG catalog.
However, this filter combination is not uniquely able to
isolate the cluster red sequence and evolve smoothly with
redshift. In order for the richness estimator λ to be gen-
erally useful, and to be extended to higher redshifts, it
must be robust to changes in filters. In this section we
use additional SDSS data to investigate how λ changes
with alternative filter choices.
We have chosen to focus our analysis on three alterna-

tive color combinations: g − i, r − i, and u − r. Three
bands — g, r, and i — have high quantum efficiency in
SDSS, and thus we do not need to worry about significant
problems with photometry near the limiting magnitude.
When using the u band data we limit the redshift range
to z < 0.25 (see below). The colors g − i and u− r have
the advantage of containing the g band which changes
strongly as the 4000 Å break moves with redshift. Al-
though the r − i color evolves with redshift and allows
us to pick out the red sequence, this evolution is not as
strong as when combined with the g color, and thus we
expect that λ may not perform as well.
To create the red sequence model of the filter, we fol-

low the method of Hao et al. (2009, see Section 5.1). For
each cluster with λ0 > 10 we take all galaxies within
0.9 h−1Mpc and brighter than 0.4L∗. We use the error-
corrected Gaussian mixture model to decompose the red
sequence and blue cloud/background for the color of in-
terest. We then fit a linear model to all galaxies with
±2σ of the red sequence, yielding a slope and intercept
at i = 17, m17 and b17 (as in Section 4.3). Next we bin
the clusters in redshift bins of width 0.02 and calculate
the mean 〈m17〉 and 〈b17〉. Finally, we fit a linear model
as a function of redshift to obtain a simple functional
form of 〈m17|z〉 and 〈b17|z〉 akin to Eqn. 23. This model
is used to calculate the given richness within a fixed met-
ric aperture of 0.9 h−1Mpc.
Figure 4 shows the comparison of λ calculated with

various color filters to the basic λg−r. In the top panel we
compare λg−i, in the middle panel we compare λr−i, and
in the bottom panel we show λu−r. The top two panels
show all maxBCG clusters, and the bottom panel only
those with z < 0.25 due to the smaller sensitivity in the
u band. The inset histograms illustrate the distribution
of differences between the given richness and λg−r.
Table 1 shows the results of comparing the richness es-

timates to the baseline λg−r. First, we have estimated
the width of the distribution, ∆λrms, shown in in the in-
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Fig. 4.— Comparison of λ calculated with different filter combi-
nations, and compared to the basic λg−r . In the top panel is λg−i,
in the middle panel is λr−i, and in the bottom panel is λu−r . The
inset histograms illustrate the distribution of δ = λalternate−λg−r .
Changing from the g − r color to the g − i color does not have a
significant effect on the richness estimation.

Table 1. Comparison of richnesses to benchmark λg−r

Richness ∆λ r

λg−i −0.9± 2.3 1.01± 0.01
λr−i −1.5± 5.2 1.11± 0.03
λu−r −0.5± 5.1 1.12± 0.03

Note. — All richnesses are measured in a fixed metric aperture
of 0.9h−1 Mpc. ∆λ shows the change relative to the benchmark
λg−r.

set plots of Figure 4. We report ∆λ rather than ∆λ/λ
because it is the former that is roughly constant with
richness. Second, we have compared the scatter in σLX |λ

using the bootstrap resampling ratio r described in Sec-
tion 4.1. For the first two alternative versions of λ we
use the top 2000 clusters in the full redshift range; for
λu−r we use the top 1000 clusters for the lower redshift
range 0.1 < z < 0.25.
It is readily apparent that the change from λg−r to

λg−i is nearly insignificant. The median richness of the
top 2000 clusters is ∼ 45, so the observed scatter is .
4%. For reference, Poisson scatter at this richness would
correspond to ≈ 15% scatter, while Rozo et al. (2010a)
estimate the scatter in N200 at fixed mass to be ≈ 35%.
In short, g − i is effectively as efficient as g − r for the
purposes of selecting red-sequence galaxies, reflecting the
fact that the 4000 Å break falls within the g filter.
Focusing now on the r−i and u−r filter combinations,

we see these choices exhibit a significantly larger scatter
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in ∆λ, of order 10%, still less than Poisson scatter, and
much less than the Rozo et al. (2010a) estimate for N200.
This increased scatter relative to g− r is also reflected as
increased scatter in LX at fixed richness. In the case of
r − i, this can be understood by the fact that our filter
combination does not straddle the 4000 Å break, and
therefore the red sequence is not as prominent against
the background. The u−r color does straddle the 4000 Å
break, but suffers from the much lower SDSS sensitivity
in the u band.
In summary, we see that an effective use of the λ rich-

ness does not require the specific g− r filter combination
used in this work. Indeed, use of any filter combination
that can effectively isolate the red-sequence will result in
nearly identical and unbiased values for λ, although the
scatter is reduced when using high sensitivity filters that
straddle the 4000 Å break. Even in the case of the less
optimal r − i and u − r combinations we get a reason-
able, although not ideal, richness estimator. Due to the
stability of λ when using different filter combinations, we
expect these methods to be easily generalizable for other
telescopes and higher redshifts.

5.2. Background Normalization

With the entire SDSS DR7 at our disposal, covering
∼ 7500 square degrees, we can make a very accurate
estimation of the global background as a function of color
and magnitude. In other instances, however, there may
be greater uncertainties in the true mean background for
a given filter combination. In this section we investigate
the effect of varying the background level on λ.
In general, uncertainties in the background will be

a function of color and magnitude. For simplicity, we
model uncertainty in the background as a boosting or
de-boosting of the background normalization. Our in-
tention with this approximation is to give a rough esti-
mate of the systematic uncertainty in richness estimates
given the uncertainty in the background. We expect that
a boost of the background normalization b(x) will cause
the richness λ to decrease by a fixed amount (indepen-
dent of λ) and a decrease of the background normaliza-
tion will cause λ to increase by a similar amount.
In Figure 5 we show the effect of changing the back-

ground normalization on the calculation of λ in a fixed
0.9 h−1Mpc aperture. When the background normaliza-
tion is deboosted by a factor of 0.5, then λ changes by
∆λ = 6.6±2.9, and when it is boosted by a factor of 1.5,
then ∆λ = −4.2±1.7. For a moderate richness cluster of
λ ∼ 30, incorrectly estimating the background by ∼ 50%
can bias the richness by ∼ 20%, appropximately equal
to the Poisson scatter. On the other hand, a ∼ 10%
error in the background normalization has a negligible
effect on the richness estimation of ∼ 3%. We emphasize
these values are only meant to help in estimating how
precisely the background must be modeled in order to
ensure a negligible impact on richness estimates.

5.3. Red Sequence Width

In our adapted color filter from Section 4.3, and in all
our tests, we fix the intrinsic scatter in the red sequence
at σint = 0.05. We now investigate the effect on λ and
σLX |λ on changes in the intrinsic scatter, similar to the
tests of Section 4.3 in Paper II. For this test, we fixed
the radial size at 0.9 h−1Mpc, and set the red sequence

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Background Adjustment Factor
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Fig. 5.— Change in λ (∆λ) as a function of background adjust-
ment factor. When the background normalization is deboosted by
a factor of 0.5, the richness estimate changes by ∆λ = 6.6 ± 2.9,
and when it is boosted by a factor of 1.5, then ∆λ = −4.2± 1.7. If
one knows the background normalization to ∼ 10% then the bias
in the richness estimation is less than the statistical error.

width to 0.03 mag and 0.07 mag, representing a narrow
and wide extreme.
In each case, we find that the effect on both the scatter

and the richness estimate is negligible. For σint = 0.05,
then ∆λ = −1.5 ± 1.0 and for σint = 0.07, then ∆λ =
1.2 ± 0.9. Unsurprisingly, if we take a narrower (wider)
red sequence then the richness estimate decreases (in-
crease) as we lose (gain) galaxies at the margins. How-
ever, the total probability of these additional galaxies is
quite small, and the overall bias in the richness estimate
is negligible. Note that one reason that λ is not very
sensitive to the red sequence width is because the color
filter in Eqn. 12 uses the sum in quadrature of the photo-
metric error and intrinsic color dispersion. We conclude
that our richness estimator is robust to changes in the
red sequence width, and thus is suitable for other filter
combinations that span the 4000Å break that may have
slightly different ridgeline widths.

5.4. Zero-Point Uncertainty

The calculation of λ requires measuring all the galaxies
above a given luminosity threshold that evolves with red-
shift. In practice, uncertainty in the luminosity threshold
is equivalent to uncertainty in the photometric zero-point
as well as systematic offsets in differing methods of calcu-
lating galaxy magnitudes. In this section we explore the
effect of an offset in the photometric zero-point, which is
equivalent to each of these effects.
As before, we run with a fixed 0.9 h−1Mpc aperture

with a range of systematic offsets in the magnitude limit
for the luminosity function filter (Eqn. 10). We find
that for small zero-point shifts – up to ±0.05mag – the
effect on λ is negligible (δλ < 1) for the vast majority of
clusters, consistent with the observation in Paper II that
such errors do not significantly impact the scatter of the
richness–mass relation. This is because only rarely is a
red sequence galaxy added or removed from considera-
tion when making such a small shift. Of course, large
photometric shifts in rich clusters can be significant. For
instance, a ±0.1mag shift in a rich cluster can change λ
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by ≈ 10%. Note, however, that such photometric errors
are much larger than expected for upcoming photometric
surveys.

5.5. Uncertainty in the Color-Redshift Relation

In this section we investigate the effect of uncertainty
in the color-redshift relation for the Gaussian color fil-
ter. If we were to follow the strategy of the preceding
sections, we would approach this issue by systematically
shifting the slope and intercept of the color filter. How-
ever, this treatment would unrealistically ignore the data
at hand. When observing an actual galaxy cluster, we
can always measure the red sequence for each individual
cluster. Therefore, we explore the effect on λ if we mea-
sure the red sequence intercept and slope for each cluster
individually.
For each maxBCG cluster, we first take all the galaxies

within 0.9 h−1Mpc and brighter than 0.2L∗. To measure
the intercept and slope of the red sequence, we follow the
method of Sections 4.2 and 4.3. The color distribution
of galaxies is decomposed into two Gaussians (the red
sequence and the blue/background galaxies) using the
Error Corrected Gaussian Mixture Model of Hao et al.
(2009). To limit the degrees of freedom to allow for accu-
rate fitting of relatively poor clusters (λ . 30), we fix the
width of the red sequence component at σint = 0.05mag.
One could in principle also attempt to fit this from the
data, but we have already shown that the recovered rich-
ness is largely insensitive to this parameter, and the typ-
ical ridgeline width is ≈ 0.05. If the mixture model is
unable to identify two distinct components then the clus-
ter is flagged and λ is not measured. We then take all
galaxies within 2σint and fit the red sequence slope and
intercept. These values are then substituted for Eqn 23
to calculate the richness λ.
Figure 6 shows the comparison of λfit, where we fit for

the red sequence on a cluster-by-cluster basis, to λ in
a fixed 0.9 h−1Mpc aperture. Results are nearly identi-
cal with a variable aperture with R0 = 1.0 h−1Mpc and
β = 0.2. The inset plot shows that for individual clusters
λ shifts by a negligible 0.1 ± 0.6. Overall, the richness
measurement is extremely robust to perturbations in the
red sequence location. This is due to a combination of
the contrast of the red sequence with the background
galaxies, and the fact that the smooth Gaussian color
filter is more tolerant of color offsets than a top-hat filter
(as explored in Section 6 of Paper I). It should be noted
that our automated algorithm for red-sequence fitting
succeeded in measuring the red-sequence for all clusters
of richness λ & 50. At λ ≤ 40, the failure rate was
≈ 10%. We are confident that this failure rate could be
decreased if one incorporated even mild priors on the red-
sequence parameters, for instance from population syn-
thesis models. The main point here is not the automated
red-sequence fitting, but rather the fact that so long as
the red-sequence can be properly fit from the data, one
does not need an a-priori model for the red-sequence in
order to be able to compute λ. Of course, having such a
model will help in the limit of low signal-to-noise, and is
less computationally intensive.

5.6. Catalog Noise

As discussed in Section 2.3, a clean input catalog is
required for accurate cluster finding and richness estima-
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Fig. 6.— Plot of λfit, using the red sequence fit for each individual
cluster, against λ, our optimized richness, with a fixed 0.9h−1 Mpc
aperture. The inset shows the histogram of ∆λ, which has a neg-
ligible offset and scatter of 0.1 ± 0.6. However, at λ < 40, about
10% of the clusters are not measured as we were unable to prop-
erly decompose the red sequence component from the background
using the ECGMM method.

tion. The old mantra “garbage in, garbage out” is espe-
cially apt. We refer to the inclusion of any object that
is not a correctly measured galaxy as “catalog noise.”
This includes stars, asteroids, image artifacts, and im-
properly measured photometric errors. In general, it also
includes pipeline-to-pipeline variations in the reduction,
detection, and photometry for the same object. In this
section, we obtain a first-order estimate of the magnitude
of the effect of catalog noise on our richness estimation.
To test the effect of catalog noise, we compare the scat-

ter in LX at fixed richness for two versions of the input
catalog. The first is the “clean catalog” that has been
filtered as described in Section 2.3. The second is the
raw catalog, using all the objects marked as galaxies in
DR7 without any additional filtering. Figure 7 shows
the histogram of the number of objects as a function of
i-band magnitude for stripe 10 in SDSS. There are sig-
nificantly more galaxies at the faint end in the uncleaned
catalog (red dashed histogram), many of which are false
detections.
For each input galaxy catalog, we first compute the

background as described in Section 3.4. We then com-
pute both λ0, the original matched filter richness, and
λ, the optimized richness, both at the fiducial fixed
0.9 h−1Mpc scale. We expect that the effect of catalog
noise will be greater on λ, as it uses a deeper luminosity
cut where the catalog noise is greater. This is indeed
what we find for the top 2000 clusters, where the scatter
in the LX at fixed richness increases from 0.70± 0.02 to
0.72± 0.02 for λ0, and from 0.63± 0.02 to 0.66± 0.02 for
λ. Using the bootstrap resampling ratio r described in
Section 4.1, we find that using the noisy catalog increases
the scatter by r = 1.03± 0.02 for λ0 and r = 1.04± 0.02
for λ. In addition, we confirm that the scatter measured
is consistent between the cleaned DR7 catalog and the
cleaned DR4 catalog used in Paper I. Thus, at least for
different versions of the SDSS pipeline λ is robust to this
level of pipeline-to-pipeline variations.
Overall, with our current catalog and our best richness
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Fig. 7.— Histogram of number of galaxies in SDSS stripe 10 from
DR7. The solid black histogram shows the galaxies as a function
of i-band magnitude for the clean input catalog as described in
Section 2.3. The dashed red histogram shows the raw input catalog
from DR7, without the additional flag cuts. There are significantly
more galaxies at the faint end, most of which are false detections.

estimator, we can detect the effect of catalog noise at
the 2σ level in our chosen figure of merit. Therefore,
catalog noise is a nuisance, though it is not a critical
path item. This is partly due to the high quality of the
raw SDSS DR7 catalog. However, we emphasize that we
can detect this effect even though we are recomputing
the background for each input catalog, and these false
galaxies are presumably not correlated with the cluster
positions. Thus, increased noise in the background does
translate to increased scatter in the richness estimator,
and should be controlled as well as possible.

6. THE ORIGIN OF THE OPTIMAL RADIAL AND
LUMINOSITY CUTS

We have demonstrated the existence of optimal ra-
dial and luminosity cuts when evaluating the richness
of maxBCG galaxy clusters. We have not yet, however,
offered an explanation for the origin of these cuts. In-
deed, in a naive Poisson scatter model outlined in Paper
II, one should expect larger apertures and fainter mag-
nitude cuts to always result in reduced scatter simply
due to the larger galaxy count. What then changes these
conclusions?
We address these questions by relying on the simula-

tion method from Paper II, which we now briefly sum-
marize. We model galaxy clusters using an NFW profile,
with a Schechter luminosity function, and a Gaussian
color distribution. Each cluster realization is then em-
bedded in a realization of a uniform density field meant to
represent the local galaxy background. The background
density field can be set to the mean galaxy density of
the universe, which we refer to as uniform background,
or it can be modeled so as to match both the mean and
variance of the local density field around SDSS maxBCG
galaxy clusters. We refer to this latter model as the ran-
dom background model, since each cluster is embedded
in a different background.
There were two key insights from Paper II that are

relevant for this discussion. The first is that the scatter
in richness at fixed mass depends sensitively on miscen-
tering parameters. Indeed, Paper II concludes that the
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Fig. 8.— The scatter in richness at fixed mass in our Monte
Carlo simulations for four different models, as labeled (see text
for details on the models). We see that miscentering creates a
floor below which the scatter increases rapidly, while projection
effects in the realistic random background model (chosen to match
SDSS data) pushes the optimal aperture inward. Thus, the optimal
aperture reflects a compromise between these two sources of error.
Note that even without miscentering we find an optimal aperture
using the variable background model. The vertical dotted line is
the optimal aperture from section 4.7.

scatter for maxBCG clusters is dominated by miscenter-
ing. The second key insight concerns the local galaxy
background within which clusters are embedded. Specif-
ically, we find that the majority of clusters are embedded
in a low density background, with 1%−5% of the clusters
embedded in high density backgrounds that results in a
severe over-estimate of the clusters’ richness. These rare
occurrences were interpreted as the signature of projec-
tion effects in CDM cosmologies.
Given these two key insights, we consider whether

these two effects — miscentering and the stochastic na-
ture of the background galaxy density — give rise to the
optimal aperture and luminosity cuts we have uncovered
empirically. To do so, we perform Monte Carlo realiza-
tions of galaxy clusters with four different models:

1. No systematics (no variable background; no mis-
centering)

2. Miscentering (no variable background)

3. Variable background (no miscentering)

4. Miscentering and variable background

For each of these four models, we generate between 400
and 5000 Monte Carlo realizations of galaxy clusters21,
and then measure the richness using a variety of radial
aperture and luminosity cuts. This data is then used
to estimate the scatter in richness, which we plot as a
function of the radial and aperture cuts.
Figure 8 shows how the scatter in richness at fixed

mass varies for each of the four models detailed above.
For models with miscentering, we assumed 80% of the
clusters are centered correctly, while the remaining 20%
are radially offset by first picking a random axis, and

21 See Paper II for details on the construction of the realizations
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Fig. 9.— The scatter in richness at fixed mass in our Monte
Carlo simulations for four different models, as labeled (see text
for details on the models). In miscentering models, lowering the
luminosity cut tends to lower the scatter, but only up to a point.
The vertical dotted line in the figure is the luminosity cut below
which we did not see any significant improvement in the data.
Thus, it is likely that the flattening of the luminosity the scatter
in Figure 2 primarily reflects the miscentering properties of the
maxBCG catalog.

then displacing along this axis by randomly drawing
from a Gaussian of mean zero, and standard deviation
σ = 0.4 h−1Mpc (e.g., Johnston et al. 2007). The ver-
tical dotted line is the optimal fixed metric aperture of
0.9 h−1 Mpc that we found in the data. Not surprisingly,
miscentering requires that the optimal aperture be signif-
icantly larger than the miscentering kernel, creating an
aperture floor below which the scatter increases rapidly.
In the other direction, moving outward is penalized when
estimating the richness of clusters in the (realistic) ran-
dom background model. This is easy to understand: if
the background density is high, the larger the aperture,
the larger the noise in the richness estimate of those clus-
ters suffering from projection effects. The optimal aper-
ture is therefore a compromise between these two sources
of stochasticity. Note, however, that even without mis-
centering we find an optimal aperture using the variable
background model, which simply reflects the fact that
as the aperture goes to zero, the scatter necessarily in-
creases since there are fewer cluster galaxies.
Figure 9 illustrates how the scatter in richness at fixed

mass varies in our Monte Carlo simulation as a function
of the luminosity cut employed when estimating cluster
richness. The vertical dotted line corresponds to the opti-
mal luminosity cut from section 4.4. Even in the absence
of miscentering, it can be seen that the gains when using
a deeper luminosity threshold than 0.2L∗ are marginal.
However, miscentering introduces an additional “scatter
floor,” and once this floor is reached, reduction in the
scatter is no longer possible. We expect that when us-
ing cluster catalogs with improved centering properties
further reduction in the scatter should be possible. Ad-
ditional gains may be made by lowering the luminos-
ity threshold Lcut, although the rate of improvements is
rather low. Of course, at some point a new scatter floor
has to arise from other effects (e.g. triaxiality), but these
effects are not dominant in the maxBCG catalog if the

miscentering model of Johnston et al. (2007) is correct.

7. SUMMARY AND CONCLUSIONS

In this paper, we have shown the improvements in the
matched filter richness estimator presented in Paper I.
By gauging improvement by the decrease in scatter in
X-ray luminosity at fixed richness, we can quantitatively
determine which optical proxies are superior as a tracer
of halo mass. Our final optimized richness λ uses a proba-
bilistic formalism to estimate the number of red sequence
galaxies brighter than 0.2L∗ in the cluster. We empha-
size that our goal is to find a high fidelity mass tracer,
and we leave an analysis of the complete census of cluster
galaxies to separate work (e.g., Hansen et al. 2009).
Relative to the matched filter richness described in Pa-

per I we find:

1. Lowering the luminosity threshold results in de-
creased scatter, but only as far as 0.2L∗. Using
Monte Carlo simulations, we show that this limit
is partially driven by the miscentering properties of
the maxBCG catalog. Consequently, catalogs with
improved centering properties may benefit from go-
ing even deeper. However, even without miscen-
tering, the rate at which the scatter is reduced is
rather modest, so such benefits are likely to be lim-
ited.

2. Modifying the color filter to account for the blue
galaxy population (which makes up & 20% of the
galaxy population) results in increased scatter. We
are unable to determine whether the increased scat-
ter is intrinsic (e.g., the blue galaxies have more
recently fallen into the cluster), or if it is simply
caused by the fact that the blue galaxies are much
less prominent against the background, yielding a
noisy measurement. Either way, generalizing color
filters to include blue galaxies is inadvisable for
photometric catalogs.

3. Weighting each galaxy by its luminosity results in
increased scatter, and weighting each cluster by the
BCG luminosity (e.g., Reyes et al. 2008) does not
improve the scatter. However, our tests only probe
the high richness end, and the possibility of further
improvements at low richness, where the luminosity
of the BCG is more dominant, are not ruled out.

4. Incorporating red sequence tilt does not have a
measurable impact on the recovered scatter. Nev-
ertheless, we have modified our estimator to include
this tilt, both because it may become relevant for
fainter luminosity cuts, and because we expect the
tilt to become more important at higher redshifts
with different filter combinations.

Following Paper I, we also optimized the radial aper-
ture used to estimate cluster richness. Our best fixed
metric aperture is 0.9 h−1Mpc, though we expect scaled
apertures should be better due to the standard “bigger
things are bigger” maxim. Assuming a power-law rela-
tion between radial cutoff and cluster richness, we find
that Rc = 1.0(λ/100)0.2 h−1 Mpc. Although we cannot
test the scaling relation at low richness, we expect the
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scaled aperture to be superior to the fixed metric aper-
ture further down the richness function. Following Pa-
per II, we used Monte Carlo simulations to demonstrate
that the optimal aperture we have measured reflects a
compromise between cluster miscentering and projection
effects; cluster miscentering creates a hard floor on the
minimal aperture, while projection effects push towards
smaller apertures. Even in the absence of miscentering,
simple counting statistics (smaller apertures find fewer
galaxies) combined with projection effects would yield a
similar optimized aperture. We also investigated whether
the shape of the radial filter can result in improved rich-
ness estimators, but found that the detailed shape of this
filter has only a very modest impact on the recovered
scatter.
Our work is most comparable to that done using

the X-ray selected RASS–SDSS galaxy cluster catalog
(Popesso et al. 2004), who first explored the idea of us-
ing X-ray data to improve and calibrate optical rich-
ness/luminosity estimators. Popesso et al. (2004) found
an optimal aperture significantly smaller than the ≈
0.9 h−1 Mpc value advocated here. This is not surpris-
ing. Popesso et al. (2004) did not rely on red-sequence
galaxy selection, which lowers the density contrast of
galaxy clusters. Consequently, we expect the optimal
aperture to move inwards. It is also worth noting that
Popesso et al. (2004) report a scatter in LX at fixed op-
tical luminosity Lopt of σlnLX |Lopt

= 0.41, which is much
smaller than what we have achieved. We caution, how-
ever, that the Popesso et al. (2004) value has not been
corrected for selection effects. Indeed, they also report
σlnLopt|LX

= 0.46, with a scaling of Lopt ∝ Lα
X with

α = 0.45. For power-law abundance functions, applica-
tion of Bayes’s Theorem relates these two scatters via

σlnLopt|LX
= ασlnLX |Lopt

. (28)

That this equality does not hold for Popesso et al. (2004)
analysis is a direct consequence of having neglected se-
lection effects. As a rough estimate, we expect for the
scatter σlnLopt|LX

to be more robust to X-ray selection
— one finds all clusters of a given X-ray flux, but not all
clusters of a given Lopt — so we can use can use equa-
tion 28 to estimate the corrected scatter in LX at fixed
Lopt. We find σlnLX |Lopt

= 0.46/0.45 = 1.02. Given that
Popesso et al. (2004) did not use color information when
estimating optical luminosity, it is not surprising that the
corrected scatter would be this large.
The scatter in X-ray luminosity at fixed richness for

our final richness estimator is σlnLX |λ = 0.63± 0.02. As
was argued in Paper II, this scatter is likely dominated by
the miscentering properties of the maxBCG cluster cata-
log, rather than by intrinsic scatter in the richness–mass
relation. Consequently, we expect that making improve-
ments to the centering algorithm used in cluster finding
may result in a further reduction of the scatter in LX at
fixed richness.
We also performed extensive tests on the robustness of

the richness estimator λ to the details of the measure-
ment. We find that our richness estimator is robust to
various modifications, including:

1. It is robust to the choice of optical bands used
for color selection, provided the bands straddle the
4000 Å break.

2. It is robust to changes in the overall background
normalization, for changes . 50% for the richest
clusters.

3. It is robust to moderate changes in the intrinsic
width of the red sequence.

4. It is robust to uncertainty in the photometric zero-
point up to ±0.1mag.

5. It is robust to uncertainty in the color-redshift re-
lation. In particular, consistent results can be ob-
tained by fitting the red-sequence directly for each
individual cluster as are obtained for the global
model.

The uncertainty associated with most of these effects is
∆λ ≈ 1−2, which is significantly smaller than the intrin-
sic scatter of the richness–mass relation. Consequently,
one can implement our optical richness estimator regard-
less of the details of the optical data at hand, and be con-
fident that the resulting richness estimates can be fairly
compared to those from other data sets. Appendix A
contains a summary of how to implement our richness
estimator λ. Finally, in order to try to improve its use-
fulness, we provide a preliminary mass–richness relation
for λ in Appendix B. We emphasize that this mass cali-
bration is preliminary, and that a robust calibration with
well understood error must await for future work.
We believe that the method for calculating λ is close

to an optimal richness estimator for photometric cata-
logs, while the parameters described here are optimized
for this particular cluster sample. Importantly, this esti-
mator can be applied irrespective of the cluster selection
algorithm, while its robustness to the details of the im-
plementation ensure that one can fairly compare differ-
ent data sets. Moreover, the detailed understanding we
have gained on how to properly estimate cluster richness
and galaxy membership of galaxy clusters can help guide
cluster finding efforts. Indeed, we are currently develop-
ing such a cluster finding algorithm. In short, we are
confident that the detailed studies we have performed in
this context will prove to be of critical importance for
maximizing the cosmological utility of upcoming optical
surveys such as the Dark Energy Survey, Pan-STARRS,
and Hyper-SuprimeCam.
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Gottlöber, S., Allgood, B., & Primack, J. R. 2004, ApJ, 609, 35
Lima, M., & Hu, W. 2005, Phys. Rev. D, 72, 043006
Lin, Y.-T., & Mohr, J. J. 2004, ApJ, 617, 879
Lopes, P. A. A., de Carvalho, R. R., Capelato, H. V., Gal, R. R.,

Djorgovski, S. G., Brunner, R. J., Odewahn, S. C., & Mahabal,
A. A. 2006, ApJ, 648, 209

Mantz, A., Allen, S. W., Ebeling, H., Rapetti, D., & Drlica-Wagner,
A. 2010, MNRAS, 406, 1773

Maughan, B. J. 2007, ApJ, 668, 772
Mortonson, M. J., Hu, W., & Huterer, D. 2011, Phys. Rev. D, 83,

023015
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1995, MNRAS,

275, 56
Oguri, M., & Takada, M. 2011, Phys. Rev. D, 83, 023008

O’Hara, T. B., Mohr, J. J., Bialek, J. J., & Evrard, A. E. 2006,
ApJ, 639, 64
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M., Yepes, G., Gottlöber, S., & Holz, D. E. 2008, ApJ, 688, 709

Vikhlinin, A. et al. 2009, ApJ, 692, 1033
Voges, W. et al. 1999, A&A, 349, 389
Wetzel, A. R., & White, M. 2010, MNRAS, 403, 1072
York, D. G. et al. 2000, AJ, 120, 1579
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APPENDIX

A USER FRIENDLY GUIDE FOR IMPLEMENTING THE RICHNESS ESTIMATOR λ

In this appendix, we lay out the “recipe” for implementing the richness estimator λ. First, we list the “ingredi-
ents” that are necessary, followed by the “cooking instructions.” As described in Section 5, several substitutions for
certain ingredients can be made without a significant effect on the richness parameter. We make note of the possible

http://www.sdss.org/
http://arxiv.org/abs/astro-ph/0703571
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substitutions below.

Ingredients

1. All galaxies within ∼ 1.25 h−1Mpc of the cluster center. The richest maxBCG cluster has λ = 216 and Rc =
1.17 h−1Mpc, so this is the largest size that is needed.

2. If the cluster redshift z is between 0.1 and 0.3, you will need the g − r color (c) of each galaxy. As described
in Section 5.1, any pair of sensitive bands that straddle the 4000 Å break may be substituted. Similarly, if you
work at higher or lower redshift, you will need to change your filter appropriately.

3. The i-band magnitude of each galaxy, or a suitable red filter.

4. The k-corrected value of 0.2L∗ for the band in question. For SDSS i-band and 0.05 < z < 0.35, m∗(z) is well
described by Eqn. 11, and the luminosity cut is given as m∗ + 1.75mag.

5. The mean galaxy background as a function of color and magnitude (see Sections 3.4 and 5.2).

6. The ridgeline slope and intercept, as described in Eqn. 23. Alternatively, you can fit for the ridgeline slope and
intercept with σint = 0.05 from the list of galaxies.

“Baking” Instructions

1. Calculate the luminosity filter value for each galaxy, φ(m), as described in Eqn. 10 in Section 3.2. Note that the
filter is normalized such that the integral from m = −∞ to mcut is exactly one.

2. Calculate the radial filter value for each galaxy, 2πRΣ(R), as described in Eqn. 6 in Section 3.1. The radial
filter needs to be normalized by integrating Rc as per equation 8. Thus, the amplitude of Σ(R) is a function of
Rc, with the normalization constant for the particular implementation of the NFW profile adapted in this work
given in Eqn. 9.

3. Calculate the color filter value for each galaxy, G(c,m|z), as described in Eqn. 21 in Section 4.3.

4. Calculate the background filter value for each galaxy, b(m, c) = 2πRΣ̄g(m, c)/C(z)2. We have defined Σ̄g(m, c)
as the mean galaxy background in N/sq.deg./mag/mag, and the conversion factor C(z) is given in degrees/Mpc
at the redshift of the cluster.

5. Using a zero-finder (e.g., bisector or Newton’s method), solve the following equation:

0 = λ−
∑

R<Rc(λ)

pi (A1)

where

pi =
λ2πRiΣ(Ri)φ(mi)G(ci)

λ2πRiΣ(Ri)φ(mi)G(ci) + b(mi, ci)
(A2)

and
Rc(λ) = R0(λ/100.0)

β. (A3)

Note that once the root λ of equation A1 has been found, equation A2 can be used to estimate the membership
probability of every galaxy.

6. To estimate the statistical error in λ, use equation 3. This measurement error is typically very small, of order
∆λ/λ = 0.4λ−1/2, or ≈ 4% (9%) for λ = 100 (15).

Sample IDL code that will calculate λ for SDSS data is available at http://kipac.stanford.edu/maxbcg/

THE MASS–RICHNESS RELATION

The goal of this paper was to extensively test and optimize the richness measure proposed by Rozo et al. (2009b).
A careful calibration of the mass–richness relation is beyond the scope of the current paper, though we do intend
to address this problem in subsequent work. Nevertheless, we felt it was important to provide a rough calibration
that may be used for comparison purposes, and to test the efficacy of our estimator. To this end, we have relied
on abundance matching techniques. Briefly, we compute the cumulative cluster abundance function Nclusters(> λ),
defined as the number of maxBCG clusters of richness λ or higher. We then also compute the expected cumulative
mass function Nhalos(> m) as a function of mass by integrating the Tinker et al. (2008) mass function for our fiducial
cosmology over the maxBCG survey volume.22 When computing the mass function, we adopt as our fiducial mass
definition M200m, the mass contained with a 200 overdensity relative to the mean matter density. A cluster of richness

22 maxBCG clusters probe the redshift region z ∈ [0.1, 0.3] over a survey area Ω = 2.25356 srad.

http://kipac.stanford.edu/maxbcg/
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Fig. B10.— Left: The scatter in mass at fixed richness, as estimated via equation B2. The scatter is estimated using all clusters above
a given richness, as opposed to using narrowly binned samples. The triangles with error bars show the recovered scatter assuming r = 0,
while the dashed lines illustrated how the scatter changes as we vary the correlation coefficient between LX and λ at fixed mass. The
small vertical solid line along the x axis marks the richness threshold for the top-2000 clusters. Below this richness, we expect the scatter
is compromised due to the original maxBCG selection. Right: Mass as a function of λ obtained via density matching, scaled to M500c
(Eqn. B6). Dotted lines are the expected 90% scatter contours obtained from the X-ray constraints. For reference, X-ray masses from
two cluster samples that overlap the maxBCG footprint are overplotted. Blue squares are from BCS sample (Mantz et al. 2010), and red
triangles are from the LoCuSS sample (Zhang et al. 2008, 2010). See text for discussion of the possible origin of the normalization offsets
between the two data sets. In each case, the observed mass scatter agrees well with the predicted mass scatter.

λ is assigned a mass M by solving the equation Nclusters(> λ) = Nhalos(> M) for M(λ). We call this mass estimate
the density matching mass, denoted Mdm(λ).
As detailed in Mortonson et al. (2011), mass estimates from density matching are expected to be biased high relative

to the Bayesian posterior by an amount equal to 1
2γσ

2 in the log. Here, γ is the slope of the halo mass function at
mass M , and σ is the scatter in mass at fixed richness. Thus, in order to correct for this bias, we must first estimate
the scatter in mass at fixed richness for λ. To do so, we rely on the scatter in LX at fixed richness. Assuming
lnLX = a+ α lnM , it follows that a scatter in mass σM|λ corresponds to a scatter in LX given by ασM|N . If LX and
λ are uncorrelated, then on simply needs to add in quadrature the intrinsic scatter in LX at fixed mass, σLX |M , to
arrive at the total scatter in LX at fixed richness:

σ2
LX |λ = σ2

LX |M + α2
LX |Mσ2

M|λ. (B1)

With this equation, one can straightforwardly solve for σM|λ. In the slightly more general case when LX and λ are
correlated, one finds

σM|λ = rσM|LX
+

[

σ2
LX |λ

α2
LX |M

− σ2
M|LX

(1 − r2)

]1/2

. (B2)

In the above equation, r is the unknown correlation coefficient between the richness λ and LX at fixed mass, while
αLX |M is the slope of the LX −M relation. We adopt the fiducial values αLX |M = 1.61 and σM|LX

= 0.246 as per
Vikhlinin et al. (2009). As for the correlation coefficient r, because the scatter in LX is dominated by emission from
the core, we do not expect λ and LX to be strongly correlated. Here, we simply consider three values for r, r = ±0.3,
and r = 0. Setting the scatter σLX |λ = 0.63 as appropriate for our top 2000 clusters, we arrive at σM|λ = 0.31+0.08

−0.07,
where the error bars reflect the change in the scatter for r = ±0.3. Figure B10 (left panel) illustrates how our recovered
scatter σM|λ changes as a function of the minimum richness λ of the sample under consideration.
One interesting feature of the scatter in mass at fixed richness as a function of λ is that the the scatter appears to

increase slowly with decreasing richness for λ & 60, but begins to climb much faster below λ . 60. Remarkably, in
Paper II we found that λ ≈ 60 is the richness at which the miscentering of maxBCG galaxy clusters is expected to
become important. Moreover, as we argue in Paper II, cluster miscentering “turns-on” very quickly. Consequently, it
is possible that the rapid rise of the scatter with decreasing richness below λ . 60 does not reflect the true intrinsic
scatter of the estimator λ, but is rather a reflection of the miscentering properties of maxBCG clusters. Above λ & 60,
however, we do not expect cluster miscentering to play as significant a role. Thus, it is likely that the observed scatter
at λ & 60 is close to the intrinsic scatter of our richness estimator.
Based on the results shown in Figure B10 (left panel), we adopt a fiducial scatter σM|λ = 0.25. With this scatter in

hand, we can correct the density matched masses by the expected bias. If Mdm(λ) is the density matched mass of a
cluster of richness λ, we set the cluster’s final mass to

M(λ) = exp

(

−1

2
γ(Mdm(λ))σ

2
M|λ

)

Mdm(λ) (B3)
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where γ(Mdm) is the slope of the halo mass function dN/d lnM ∝ M−γ evaluated at the density matching mass Mdm.
Having assigned a mass to every cluster in this fashion, the resulting mass–richness relation is fit to a power-law using
all clusters of richness λ ≥ 60. We restrict ourselves to these clusters given that we believe cluster miscentering might
be starting to become important below this richness. We finally arrive at

ln

(

M200m

h−1
70 10

14 M⊙

)

= 1.72 + 1.08 ln(λ/60). (B4)

Note that we have scaled the masses relative to h = H0/100kms−1Mpc−1 = 0.7, and we have made explicit that this
scaling relation is appropriate for a mass overdensity of 200 relative to the mean matter density. Equation B4 is our
proposed scaling between mass and richness, while σM|λ = 0.25 is our fiducial value for the scatter in mass at fixed
richness. This value my be somewhat overestimated at the high mass end. Note, however, that the amplitude A of this
relation can shift by ≈ 0.1 depending on the value of the correlation coefficient r, the choice of fiducial cosmology, etc.
Adopting a 20% systematic uncertainty the overall amplitude, and adding in quadrature to the expected statistical
uncertainty σM|λ = 0.25, we find that the total uncertainty in the mass of any given cluster is ≈ 0.33 at the 1σ level.
We can also compute the corresponding mass–richness relations for other mass definitions by rescaling all assigned

cluster masses using the formulas in Hu & Kravtsov (2003), and refitting to a power-law. We find

ln

(

M200c

h−1
70 1014 M⊙

)

=1.48 + 1.06 ln(λ/60) (B5)

ln

(

M500c

h−1
70 1014 M⊙

)

=1.14 + 1.04 ln(λ/60). (B6)

We emphasize again, however, that these are not meant to be a rigorous mass calibration, a problem that we defer to
future work.
As a check of our mass calibration, we have assembled two cluster samples that overlap the maxBCG footprint

and redshift range. The first sample is drawn from the LoCuSS observations of high luminosity clusters from RASS
cluster catalogs (Ebeling et al. 1998, 2000; Böhringer et al. 2004). These clusters have been observed with both
XMM/Newton to obtain hydrostatic mass estimates (Zhang et al. 2008, 2010), with Subaru wealk lensing follow-up
to provide independent estimates of the masses of several clusters (Zhang et al. 2010). Here we concentrate on the
hydrostatic mass estimates of Zhang et al. (2008, 2010). The ROSAT Brightest Cluster Sample (BCS; Ebeling et al.
1998) has been observed with Chandra, with hydrostatic mass estimates obtained by Mantz et al. (2010). The X-ray
mass values for the BCS clusters have been reduced by 11% to account for the Chandra calibration update described in
that paper (Mantz, A., private comm.). For each cluster, we have used the X-ray center and spectroscopic redshift to
estimate λ from SDSS DR7 photometric data. We emphasize that we cannot use this data to provide a rigorous mass
calibration due to the fact that these cluster samples do not constitute a random sampling of the maxBCG clusters.
We only use this data for illustrative purposes, and to test whether the mass calibration derived from density matching
is reasonable.
Figure B10 (right panel) shows the mass as a function of λ obtained via density matching, scaled to M500c (Eqn. B6).

Dotted lines are the expected 90% confidence interval assuming an uncertainty ∆ lnM = 0.33 as discussed above (25%
intrinsic scatter, 20% systematic uncertainty). The LoCuSS sample is overplotted with red triangles, and the BCS
clusters are shown with blue squares. It is clear that there is a normalization offset between the two data sets, which
corresponds to a systematic offset ∆ lnM = 0.45 in mass. A full accounting of this offset is beyond the scope of
this paper, but there are several possibilities. First, the analyses were done with different data sets (XMM and
Chandra); second, there is an additional 10% systematic uncertainty in the normalization of the BCS clusters due
to the uncertainty in fgas used to calculate the masses; third, because the masses are calculated in a scaled aperture
(r500c), any slight normalization offset is magnified in the full analysis; fourth, Zhang et al. (2008) note that if one
changes their parametrization of the temperature profile below ≈ 0.5R500 so as to allow for a rapid drop in the cluster
temperature, their hydrostatic masses can increase by as much as 25%.
Regardless of what the ultimate source of the difference in the normalization between the two data sets is, it is

reassuring to see that our rough mass calibration fits between these two data sets. Moreover, the scatter in the mass–
richness relation is clearly smaller than the overall difference in normalization between the two sets, and consistent with
our 25% estimate for the scatter. This demonstrates both that the richness estimator λ is indeed tightly correlated
with cluster mass with scatter at the ∼ 20%− 30% level, and that our 33% estimate for the uncertainty in the mass of
any one cluster is reasonable. Note that since the scatter in mass at fixed richness for the original maxBCG richness
(N200) was estimated to be σlnM|N = 0.45 Rozo et al. (2009a), this means that even this rough mass calibration allows
us to predict individual cluster masses with significantly higher precision than we could using the maxBCG richness.

THE AUGMENTED MAXBCG CLUSTER CATALOG

Table C2 contains the improved richness, λ, for each cluster in the maxBCG cluster catalog. The positions (RA,
Dec), photometric redshifts (z), and original richness estimate (N200) are taken directly from Table 1 in Koester et al.
(2007a). The spectroscopic redshifts (zBCG

spec ), are obtained by cross-identifying the maxBCG BCG positions with the

full spectroscopic catalog from SDSS DR823, thus increasing the number of BCGs with spectra from 5413 to 9409.

23 http://www.sdss.org/dr8/spectro/
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Table C2. maxBCG Cluster Catalog With λ Richness

R.A. (deg) Decl. (deg) z zBCG
spec N200 λ λe

239.58334 27.233419 0.103 0.091 188 199.82 3.84
140.10742 30.494063 0.292 -1.000 126 181.24 6.22
198.77182 51.817380 0.286 -1.000 87 172.22 5.00
126.37104 47.133478 0.135 0.129 99 147.35 3.72
203.16008 50.559919 0.284 -1.000 114 174.03 5.71
354.41554 0.271383 0.286 0.277 88 129.53 4.85
213.78496 -0.493247 0.135 0.139 115 77.89 3.34
189.24684 63.186584 0.294 -1.000 89 114.17 4.81
216.48612 37.816455 0.167 0.170 98 118.92 3.62
187.70363 10.546381 0.167 0.170 70 120.36 4.07

Note. — A full electronic version of Table C2 is fits format is available at http://kipac.stanford.edu/maxbcg/ . A portion is shown
here for guidance regarding its form and content.

Finally, the improved richness and error estimates (λ, λe) are taken from this work. Note that the catalog is complete
in N200, but is not complete in λ. We set zBCG

spec = −1.0 when a spectrum is not available, and set λ = −1.0 when
no significant number of red galaxies above background is found by the richness estimator. In addition, we note that
the DR7 galaxy catalog used to calculate λ covers a slightly different footprint than the original DR4 catalog used
to construct the original maxBCG catalog. There are 80 maxBCG clusters that we cannot calculate reliable richness
estimates as they are in newly masked regions. For these, we set λ = −2.0 in the catalog.

http://kipac.stanford.edu/maxbcg/



