
ar
X

iv
:1

20
5.

70
13

v1
  [

he
p-

la
t]

  3
1 

M
ay

 2
01

2
 

Neutral B-meson mixing from three-flavor lattice QCD:
Determination of the SU(3)-breaking ratio ξ

A. Bazavov,1 C. Bernard,2 C.M. Bouchard,3, 4, 5 C. DeTar,6 M. Di Pierro,7 A.X. El-Khadra,3

R.T. Evans,3, 8 E.D. Freeland,3, 9 E. Gámiz,4, 10, ∗ Steven Gottlieb,11 U.M. Heller,12

J.E. Hetrick,13 R. Jain,3 A.S. Kronfeld,4 J. Laiho,14 L. Levkova,6 P.B. Mackenzie,4

E.T. Neil,4 M.B. Oktay,6 J.N. Simone,4 R. Sugar,15 D. Toussaint,16 and R.S. Van de Water1

(Fermilab Lattice and MILC Collaborations)
1Physics Department, Brookhaven National Laboratory, Upton, New York, USA

2Department of Physics, Washington University, St. Louis, Missouri, USA
3Physics Department, University of Illinois, Urbana, Illinois, USA

4Fermi National Accelerator Laboratory, Batavia, Illinois, USA
5Department of Physics, The Ohio State University, Columbus, Ohio, USA

6Physics Department, University of Utah, Salt Lake City, Utah, USA
7School of Computing, DePaul University, Chicago, Illinois, USA

8Department of Nuclear Engineering,

North Carolina State University, Raleigh, North Carolina, USA
9Department of Physics, Benedictine University, Lisle, Illinois, USA

10CAFPE and Departamento de F́ısica Teórica y del Cosmos,
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Abstract
We study SU(3)-breaking effects in the neutral Bd-B̄d and Bs-B̄s systems with unquenched

Nf = 2 + 1 lattice QCD. We calculate the relevant matrix elements on the MILC collaboration’s

gauge configurations with asqtad-improved staggered sea quarks. For the valence light-quarks (u,

d, and s) we use the asqtad action, while for b quarks we use the Fermilab action. We obtain

ξ = fBs

√

BBs/fBd

√

BBd
= 1.268 ± 0.063. We also present results for the ratio of bag parameters

BBs/BBd
and the ratio of CKM matrix elements |Vtd|/|Vts|. Although we focus on the calculation

of ξ, the strategy and techniques described here will be employed in future extended studies of the

B mixing parameters ∆Md,s and ∆Γd,s in the Standard Model and beyond.
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I. INTRODUCTION

The observation of new particles at high-energy colliders is not the only way for new
physics to be discovered. It can also be unveiled through the observation of deviations
from the Standard Model (SM) via high-precision measurements of low-energy observables
in high-luminosity experiments. This requires matching precision in the theoretical SM
predictions for these observables. In principle, such a comparison could reveal the exchange
of virtual, new heavy particles involving scales much higher than those that can be achieved
in direct production at high-energy colliders.

Heavy-flavor physics and, in particular, neutral-meson mixing are potentially very sen-
sitive to these virtual effects. Neutral-meson mixing occurs at loop level in the SM, see
Fig. 1, and it is further suppressed by small Cabibbo–Kobayashi-Maskawa (CKM) matrix
elements, so the effect of new particles in the internal loops could be noticeable in the pa-
rameters describing the mixing. Indeed, there are several measurements for which there is
a 2–3σ difference from the SM prediction. These include sin(2β) [1], the like-sign dimuon
charge asymmetry [2], and unitarity triangle (UT) fits [3–7]. It has been argued that these
differences may be due to physics beyond the Standard Model (BSM) affecting the neutral
B-meson mixing processes [3, 4].

In the B0
s system, the relative phase between the decay amplitudes with and without

mixing, βs, could also show BSM effects, as pointed out in Ref. [8] and later hinted at in
a Tevatron measurement [9]. Although new measurements at CDF [10] and DØ [11] are
in better agreement with the SM, reducing the difference from ∼ 3σ to ∼ 1σ, there is still
room for a large deviation of βs from SM values.

The main parameters describing mixing in the B0
s and the B0

d systems are the mass
differences, ∆Ms(d), and the decay width differences, ∆Γs(d), between the heavy and light
B0

s(d) mass eigenstates, and the CP violating phases φs(d). The phases φs(d) are defined as
the argument of the ratio of the dispersive and absorptive off-diagonal elements of the time
evolution matrix which describes the mixing [12]. The existence of new, heavy particles in
loops could affect the value of the mass differences, given by the dispersive part of the time
evolution matrix. The mass differences ∆Ms [13–15] and ∆Md [16] have been measured
with an accuracy better than 1%. Improving the theoretical control on these quantities is
thus crucial in order to fully exploit the potential of CP violating observables to search
for nonstandard physics. In addition, the theoretical calculation of BSM contributions to
mixing and the experimental measurement of B0 mixing parameters can help in constraining
BSM parameters and understanding new physics [6]. Several recent studies have addressed
that task [3–7, 17–24], finding that one of the main limitations to further constraining the
parameter space in BSM theories is the error associated with the theoretical calculation of
the nonperturbative inputs.

The most interesting quantity to analyze in B0 mixing phenomena is the SU(3)-breaking
ratio ξ, which measures the difference between the mixing parameters in the B0

s and the
B0

d systems, and enters the relation between the ratio of mass differences and CKM matrix
elements as

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

= ξ

√

∆MdMBs

∆MsMBd

. (1.1)

Its value, together with the experimental measurement of the mass differences ∆Ms,d, deter-
mines the ratio of CKM matrix elements |Vtd/Vts|, which constrains one side of the unitarity

2



FIG. 1. Box diagrams contributing to B0 − B̄0 mixing in the SM. Gluon exchanges shown in the

plot are just representative of the QCD corrections.

triangle [25, 26]. Thus, ξ is one of the key ingredients in UT analyses [3, 5–7].

In the SM, mixing is due to box diagrams with the exchange of twoW -bosons, like those in
Fig. 1. These box diagrams can be rewritten in terms of an effective Hamiltonian with four-
fermion operators describing processes with ∆B = 2. In BSM theories, mixing processes can
receive contributions from additional diagrams due to the exchange of new, heavy particles.
These can also be parametrized in terms of four-fermion effective operators built with SM
degrees of freedom. The most general effective Hamiltonian describing processes with ∆B =
2 was given in [27, 28], and can also be found in [29]. There are a total of five independent
operators (plus parity conjugates) in the Hamiltonian, but only three of them contribute to
mixing in the SM

H∆B=2
eff,SM =

3
∑

i=1

CiOi , (1.2)

with

Oq
1 =

(

q̄iγν L bi
) (

q̄jγν L bj
)

,

Oq
2 =

(

q̄i L bi
) (

q̄j L bj
)

,

Oq
3 =

(

q̄i L bj
) (

q̄j L bi
)

, (1.3)

where i and j are color indices, and L and R are the Dirac projection operators 1
2
(1 − γ5)

and 1
2
(1 + γ5) respectively. The fields q denote strange or down fields for B0

s and B0
d mixing

respectively, and b represents the bottom field.

The matrix element of the first operator in Eq. (1.3), Oq
1, provides the mass difference in

the SM:

∆MSM
q =

G2
FM

2
W

6π2
|V ∗

tqVtb|2ηB2 S0(xt)MBq
f 2
Bq
B̂Bq

, (1.4)

where S0(xt) is the Inami-Lim function [30], which depends on the top quark mass through
xt = m2

t/M
2
W , and the quantity ηB2 is a perturbative QCD correction factor. The products

f 2
Bq
B̂Bq

parametrize the hadronic matrix elements in the effective theory by

〈B̄0
q |Oq

1|B0
q 〉(µ) =

2

3
M2

Bq
f 2
Bq
BBq

(µ) . (1.5)

The factors fBq
are the B0

q decay constants. The renormalization group invariant bag pa-

rameters B̂Bq
in Eq. (1.4) are related to the scheme and scale dependent bag parameters in
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(1.5) at next-to-leading order (NLO) by

B̂Bq
= [αs(µ)]

−6/23

[

1 +
αs(µ)

4π
J5

]

BBq
(µ) , (1.6)

where J5 is known in both MS-NDR (naive dimensional regularization) and MS-HV (’t Hooft-
Veltman) schemes [31]. Bag parameters have traditionally been used to measure the de-
viation of the four-fermion operator matrix elements from their vacuum insertion values,
BB = 1.

The SU(3)-breaking parameter ξ can be written in terms of decay constants and bag
parameters

ξ =
fBs

√

BBs

fBd

√

BBd

. (1.7)

Many of the uncertainties that affect the theoretical calculation of the decay constants and
bag parameters cancel totally or partially in this ratio, leaving the chiral extrapolation as
the dominant error. Hence, ξ and the combination of CKM matrix elements related to it,
can be determined with a significantly smaller error than the individual matrix elements.

The hadronic matrix elements in Eq. (1.5) encode the nonperturbative physics of the
problem and are best calculated using lattice QCD. Our current knowledge of them limits
the accuracy with which the CKM matrix elements appearing in Eq. (1.4) can be determined
from the experimental measurements of ∆Ms(d). In particular, the uncertainty associated
with the calculation of ξ is one of the main limiting factors in UT analyses, so improvement
in the knowledge of ξ is crucial to disentangle the origin of the 2–3σ tension.

There are two 2 + 1 unquenched lattice calculations of the ratio ξ in the literature. One
is by the HPQCD collaboration [32], which quotes the value ξ = 1.258(33). The other is an
exploratory study by the RBC and UKQCD collaborations [33] on a single lattice spacing
and using the static limit for the bottom quark; their result is ξ = 1.13(12). In this paper,
we report a lattice calculation of ξ at the few percent level.

Preliminary results related to the work here were presented in [34–37]. In Ref. [34], the
simulation and correlator fitting methods were described using data for one lattice spacing,
while Refs. [35, 36] focused on the discussion of statistical and fitting errors, and the chiral
extrapolation method. In Ref. [37] we studied the matching method and the heavy-quark
discretization errors.

The primary difference between this work and the HPQCD calculation in Ref. [32] is
the treatment of the valence b quarks. The HPQCD collaboration uses lattice NRQCD [38]
while we employ the clover action [39] with the Fermilab interpretation [40]. An advantage
of the Fermilab method is that it can also be efficiently used to simulate charm quarks, so
the analysis performed in this work can be easily extended to the study of the short-distance
contributions to D0-D̄0 mixing. Although in the case of neutral D mixing the long-distance
contributions are believed to be dominant, a calculation of the short-distance contributions
nevertheless can provide valuable constraints on extensions of the SM [41].

In order to achieve the few-percent level of precision required by phenomenology, we use
lattice QCD simulations with realistic sea quarks. In particular, we employ a subset of the
MILC configurations with 2+1 flavors of asqtad sea quarks [42–44]. In the valence sector,
we use the same staggered asqtad action to simulate the light quarks. The configurations
we use in this analysis were generated using the fourth-root procedure for eliminating extra
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degrees of freedom originating from fermion doubling. Despite the nonlocal violations of
unitarity of the rooted theory at non-zero lattice spacing [45, 46], there are strong theoretical
arguments [47–50], as well as other analytical and numerical evidence [51–54], that the local,
unitary theory of QCD is recovered in the continuum limit. This gives us confidence that
the rooting procedure yields valid results. We also explicitly tested the rooting procedure
as well as improvements in our heavy action by calculating the spin-dependent hyperfine
splittings for Bs and Ds mesons in Ref. [55].

Our collaboration has already successfully used the asqtad MILC ensembles in similar
calculations of other quantities involving B mesons, as part of a broad program of calculating
matrix elements: for example, the extraction of the CKM matrix elements |Vub| and |Vcb|
from the calculation of, respectively, the semileptonic form factors describing the processes
B → πlν [56] and B → D∗lν [57, 58]; or, more recently, the calculation of the fB and fBs

decay constants [59] and the form-factor ratios between the semileptonic decays B̄ → D+l−ν̄
and B̄s → D+

s l
−ν̄ [60].

This paper is organized as follows. In Sec. II, we describe the actions and parameters
used in our numerical simulations, as well as the construction of the mixing operators and
correlation functions. Section III presents the renormalization method using one-loop mean-
field improved lattice perturbation theory. We include a discussion of the errors associated
with the matching and numerical values of the matching coefficients used. Next, in Sec. IV,
we give the details of the procedure for the correlator fits. Section V is devoted to the chiral-
continuum extrapolation, which is performed within the framework of rooted staggered chiral
perturbation theory [63–67]. We describe and discuss the choice of the functional form used
in the extrapolation, the different fitting methods tested, and the choice of parameters and
parametrization. In Sec. VI, we list and estimate the different systematic errors. Finally,
Section VII compiles our final results for the parameter ξ as well as for |Vtd|/|Vts|, and the
ratio of bag parameters BBs

/BBd
. We also discuss planned future improvements in the

calculation of B0 mixing parameters by our collaboration. In Appendix A, we provide the
explicit formulas for the chiral fit functions used in the chiral fits described in Section V.
In Appendix B, we compile the functions needed to estimate the heavy-quark discretization
errors in our calculation. Finally, Appendix C discusses our choices for prior central values
and widths for the correlator fits.

II. NUMERICAL SIMULATIONS

A. Parameters of the simulations

The nf = 2 + 1 MILC ensembles [62] used in our calculation include the effect of three
sea-quark flavors: two degenerate light quarks corresponding to the up and down quarks
(although with larger masses than the physical ones), and one heavier quark corresponding
to the strange quark. These dynamical quarks are simulated using the asqtad improved
staggered action with errors starting at O(αsa

2) [68]. The gluon action is a Symanzik
improved and tadpole improved action, with O(αsa

2) errors coming from the gluon loops
removed [69, 70]. The couplings needed to remove the O(αsa

2) errors coming from quark
loops [71] were available only after the generation of configurations was well advanced, so
these effects are not accounted for in the MILC ensembles. The dominant errors in the
gauge action are thus also of O(a4, αsa

2).
The valence light-quark propagators are generated using the asqtad action and converted
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TABLE I. Parameters of the ensembles analyzed in this work. The first two rows show the approx-

imate lattice spacing and the volume. aml and amh are the light and strange sea quark masses,

respectively. Nconfs is the number of configurations analyzed from each ensemble, and amq are the

light valence quark masses. The r1/a values are obtained by fitting the calculated r1/a to a smooth

function [61], as explained in Ref. [62].

≈ a(fm)
(

L
a

)3 × T
a

aml/amh Nconfs amq r1/a

0.12 243 × 64 0.005/0.05 529 0.005, 0.007, 0.01, 0.02, 0.03, 0.0415 2.64

0.12 203 × 64 0.007/0.05 833 0.005, 0.007, 0.01, 0.02, 0.03, 0.0415 2.63

0.12 203 × 64 0.01/0.05 592 0.005, 0.007, 0.01, 0.02, 0.03, 0.0415 2.62

0.12 203 × 64 0.02/0.05 460 0.005, 0.007, 0.01, 0.02, 0.03, 0.0415 2.65

0.09 283 × 96 0.0062/0.031 557 0.0031, 0.0044, 0.062, 0.0124, 0.0272, 0.031 3.70

0.09 283 × 96 0.0124/0.031 534 0.0031, 0.0042, 0.062, 0.0124, 0.0272, 0.031 3.72

to naive quark propagators using the relation [72]

Snaive(x, y) = Ω(x)Ω†(y)Sstaggered(x, y). (2.1)

where Ω(x) = γx0
0 γ

x1
1 γ

x2
2 γ

x3
3 .

For the heavy bottom quarks we use the Sheikholeslami-Wohlert action [39] with the
Fermilab interpretation for heavy-quark systems [40]. This interpretation retains the full
mass dependence of the theory within the parameters of the lattice action. A tree-level
matching to QCD is then performed via heavy quark effective theory (HQET), after which
it can be shown that the errors in the action begin at O(αsΛQCDa,Λ

2
QCDa

2) times bounded
functions of mba, the b-quark mass in lattice units.

We perform our analysis at two different values of the lattice spacing, a ≈ 0.12, 0.09 fm,
and for a variety of sea-quark masses. The values used are shown in Table I. The mass of
the heavy b quark is fixed to its physical value by computing the spin-averaged Bs kinetic
mass [55]. This determines the b quark’s hopping parameters, κb = 0.0860 for the a ≈
0.12 fm lattice and κb = 0.0923 for the a ≈ 0.09 fm lattice [55], and thus the bare b
quark mass. We simulate the B mesons with the six different values of light-valence quark
mass listed in Table I, the smallest of which is around ms/8, in order to facilitate the
extrapolation/interpolation to the physical down/strange quark masses.

B. Correlators: the open-meson propagator

As described in the introduction, the study of the SU(3)-breaking ratio ξ requires the
calculation of the hadronic matrix elements1 〈Oq

1〉 and 〈Oq
2〉, the latter of which mixes with

〈Oq
1〉 under renormalization, for both q = d, s. The matrix elements are obtained from

three-point correlation functions with zero spatial momentum

COq
i
(tx, ty) =

∑

x,y

〈B̄0
q (ty,y)Oq

i (0)B
0
q (tx,x)

†〉 , (2.2)

1 To simplify the notation, we define 〈Oq

i 〉 ≡ 〈B̄0

q |Oq

i |B0

q 〉 for i = 1, 2.
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where i = 1 or 2, and theB-meson creation operatorB0
q (t,x)

† =
∑

x′ b̄(t,x′)S(x,x′)γ5q(t,x),
with q(t,x) the naive light quark field, whose propagator is constructed from the staggered
propagator via Eq. (2.1), and with S(x, x′) a smearing function. Our choice of smearing
function is discussed in Sec. IVA. The structure of the functions in (2.2) is depicted in Fig. 2.
The four-fermion operators Oq

i are placed at the origin while B-mesons are positioned at
x and y. This layout allows us to perform the three-point function fits over both tx and
ty, maximizing the information included in the fits. In order to extract the relevant matrix
elements from (2.2), we need to determine the overlap of the B-meson creation operator
with the ground state. Therefore, we also need the pseudoscalar two-point correlator with
zero spatial momentum

CPS(t) =
∑

x

〈B0
q (t,x)B

0
q (0, 0)

†〉 . (2.3)

The calculation of both three-point and two-point correlators can be organized into con-
venient structures. Starting with a general correlator with Dirac structure Γ1 × Γ2, which
accommodates a full set of ∆B = 2 four-quark operators, including those in Eq. (1.3),

C3(tx, ty) =
∑

x,y

〈B̄0
q (ty,y)q̄(0)Γ1b(0)q̄(0)Γ2b(0)B

0
q (tx,x)

†〉 , (2.4)

and performing the four possible Wick contractions, we obtain

C3(tx, ty) =
∑

x,y

{

tr[γ5Lq(x, 0)Γ1Hb(0, x)] tr[γ5Lq(y, 0)Γ2Hb(0, y)]

+ tr[γ5Lq(y, 0)Γ1Hb(0, y)] tr[γ5Lq(x, 0)Γ2Hb(0, x)]

− tr[γ5Lq(x, 0)Γ1Hb(0, y)γ5Lq(y, 0)Γ2Hb(0, x)]

− tr[γ5Lq(x, 0)Γ2Hb(0, y)γ5Lq(y, 0)Γ1Hb(0, x)]
}

(2.5)

=
∑

x,y

{

tr[Lq(x, 0)Γ1γ5H
†
b (x, 0)] tr[Lq(y, 0)Γ2γ5H

†
b (y, 0)]

+ tr[Lq(y, 0)Γ1γ5H
†
b (y, 0)] tr[Lq(x, 0)Γ2γ5H

†
b (x, 0)] (2.6)

− tr[Lq(x, 0)Γ1γ5H
†
b (y, 0)Lq(y, 0)Γ2γ5H

†
b (x, 0)]

− tr[Lq(x, 0)Γ2γ5H
†
b (y, 0)Lq(y, 0)Γ1γ5H

†
b (x, 0)]

}

, (2.7)

where Lq is the (naive) light-quark propagator, and Hb is the heavy-quark propagator. The
traces in Eq. (2.5) run over spin and color indices.

These correlators can be rewritten as

C3(tx, ty) = Γβα
1 Eαβ

aa (tx)Γ
τσ
2 E

στ
cc (ty) + Γβα

1 Eαβ
aa (ty)Γ

τσ
2 E

στ
cc (tx) (2.8)

−Γβα
1 Eασ

ac (tx)Γ
στ
2 E

τβ
ca (ty)− Γβα

1 Eασ
ac (ty)Γ

στ
2 E

τβ
ca (tx) ,

where summation over repeated indices is implied, and we have introduced the basic objects

Eαβ
ac (t) = γασ5 H∗τσ

b,da(t, 0)L
τβ
q,dc(t, 0) , (2.9)

with Dirac indices labeled as α, β, σ, τ and color indices labeled as a, c, d. We call the
combination of propagators Eαβ

ad (tx) defined in Eq. (2.9) “open-meson propagator”. Once the

7



tx + t0, ~x ty + t0, ~y

Qq
i

t0(source)

B0
q

B̄0
q

FIG. 2. Structure of the three-point correlators. A B0
q is created at rest at tx + t0 < t0. At time

t0, it oscillates into a B̄0
q via the operator Oq

i , which is subsequently annihilated at ty + t0 > t0.

open-meson propagators have been computed and saved, all correlation functions needed for
B-meson mixing, including BSM operators, can be immediately constructed by contracting
them with the appropriate Dirac structures. As shown in Eq. (2.8) the three-point correlators
are obtained by combining two open-meson propagators, while for the two-point correlators
we only need one open-meson propagator.

C. Doubler modes’ effect on the correlation functions

The remnant doubling degeneracy of staggered fermions leads to contributions of scalar
states, in addition to pseudoscalar states, in correlation functions with external pseudoscalar
particles. The scalar contamination yields oscillating terms in the correlation functions [72].
In this section, we extend the analysis of Ref. [72], for two-point correlation functions, to the
three-point functions introduced in Section IIB. We conclude that the effect of the doubler
modes on the three-point functions can be removed at leading order in the lattice spacing
through appropriate fits of the Euclidean time-dependence.

The doubling symmetry of the original naive action under the transformation

ψ(x) → eix·πgMgψ(x) , ¯ψ(x) → eix·πgψ̄(x)M †
g , (2.10)

where

Mg =
∏

µ∈g

iγ5γµ , (2.11)

G = {g : g = (µ1, µ2, . . .), µ1 < µ2 < . . .}, (2.12)

(πg)µ =

{

π
a

if µ ∈ g

0 otherwise
(2.13)

generates sixteen equivalent species of quarks, referred to as tastes, that can be reduced to
four by staggering the quark field [73]. Each element of G is a list of up to four indices, e.g.,
(2), (0,3), and (0,1,2,3) are elements of G, as is the empty set ∅. Different g’s label different
doubler modes, or tastes.
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Consider the general three-point function in momentum space,

CΓ1×Γ2(tx, ty) ≡
∑

x,y

〈b̄(x)γ5q(x) [q̄(0)Γ1b(0)q̄(0)Γ2b(0)] b̄(y)γ5q(y)〉 =

∫ π/a

−π/a

d3p

(2π)3
d3k

(2π)3
〈¯̃b(p, tx)γ5q̃(p, tx) [q̄(0)Γ1b(0)q̄(0)Γ2b(0)]

¯̃b(k, ty)γ5q̃(k, ty)〉 , (2.14)

where Γ1 × Γ2 denotes the Dirac structure of the four-fermion operators in (1.3). For
simplicity of notation, we omit the smearing function from the B meson operator and write
it as b̄(x)γ5q(x). It would be straightforward (but not particularly instructive) to generalize
the expressions of Eqs. (2.14)–(2.20) to include the smearing function.

For now the bracketed four-quark operator is left in position space and b̃, q̃ are the spatial
momentum-space bottom and strange/down fermion fields. Because of the doubling sym-
metry, we can integrate over the central half of the Brillouin zone and sum over the spatial
doublers

CΓ1×Γ2(tx, ty) =
∑

gs,g′s

∫ π/2a

−π/2a

d3p

(2π)3
d3k

(2π)3
〈¯̃b(p + πgs, tx)γ5q̃(p+ πgs , tx) [q̄(0)Γ1b(0)q̄(0)Γ2b(0)]×

¯̃
b(k + πg′s, ty)γ5q̃(k + πg′s , ty)〉, (2.15)

where gs denotes a particular spatial doubler mode. Due to the high momentum that is
imparted to the heavy quark when gs 6= ∅, such states are far off-shell and have a negligible
effect on the correlation function. The taste of the temporal modes can now be considered
by Fourier transforming the light quarks’ temporal component, and then again restricting
the Brillouin zone and summing over the doublers

CΓ1×Γ2(tx, ty) =

∫ π/2a

−π/2a

d3p

(2π)3
d3k

(2π)3

∫ π/2a

−π/2a

dp0
(2π)

dk0
(2π)

eip0tx+ik0ty (2.16)

×
〈

¯̃b(p, tx)γ5
[

q̃′(p, p0) + (−1)tx q̃′(p, p0 + π/a)
]

× [q̄(0)Γ1b(0)q̄(0)Γ2b(0)]
¯̃
b(k, ty)γ5

[

q̃′(k, k0) + (−1)ty q̃′(k, k0 + π/a)
]

〉

.

With the momentum space spinors f̃ ′
g
defined as

f̃ ′
g
(p) =

∑

µ∈g

iγ5γµq̃′(p+ πg) (2.17)

so that

q̃′(p, p0) = f̃ ′(p, p0), q̃′(p, p0 + π/a) = iγ5γ0f̃ ′
0
(p, p0), (2.18)

the three-point function can be written as

CΓ1×Γ2(tx, ty) =

∫ π/2a

−π/2a

d3p

(2π)3
d3k

(2π)3

〈

¯̃b(p, tx)γ5

[

f̃(p, tx) + (−1)(tx)iγ5γ0f̃
0(p, tx)

]

× [q̄(0)Γ1b(0)q̄(0)Γ2b(0)]
¯̃
b(k, ty)γ5

[

f̃(k, ty) + (−1)(ty)iγ5γ0f̃
0(k, ty)

] 〉

,(2.19)
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where the superscript 0 indicates a temporal taste and no superscript is the null taste at the
center of the Brillouin zone.

After Fourier transforming, the bracketed four-quark operator has no restrictions on the
tastes that contribute to it. However, it must be contracted with the external quark fields
to form the propagators. Because the asqtad action is used, contractions between tastes of
different types are suppressed to O(a2α2

s). The three-point function then takes the form

CΓ1×Γ2(tx, ty) =

∫ π/2a

−π/2a

d3p

(2π)3
d3k

(2π)3

〈

b̄(p, tx)γ5
[

f(p, tx) + (−1)txiγ5γ0f
0(p, tx)

]

×
[(

f̄(0) + iγ5γ0f̄
0(0)

)

Γ1b(0)
(

f̄(0) + iγ5γ0f̄
0(0)

)

Γ2b(0)
]

b̄(k, ty)γ5

×
[

f(k, ty) + (−1)ty iγ5γ0f
0(k, ty)

]

〉

, (2.20)

where higher order terms coming from contractions between quarks of different taste give
terms of O(a2α2

s) that are not considered here. The effects of such terms are comparable
to NLO terms in staggered chiral perturbation theory and need to be considered at that
order. They give rise to the “wrong-spin” terms discussed below. According to Eq. (2.20),
the leading-order correlation functions have contributions from both the pseudoscalar and
the scalar states. The latter ones are known as oscillating states, since the sign of their
contribution oscillates with time.

The fit ansatz for our correlators must model both regular and oscillating contributions,
so that we can remove the latter and extract the physical matrix elements. This is done
using the form

COq
i
(tx, ty) =

Nstates−1
∑

α,β=0

ZαZβ

Oi
αβ

√

2Eα2Eβ

(−1)(tx+1)α+(ty+1)β e−Eαtx−Eβty , (2.21)

where the sum is over a finite number of states Nstates. The time tx in Eq. (2.21) and in the
discussion on fitting in Sec. IV is the number of time slices between the initial state and
the operator, and thus it is a positive number, unlike the time tx defined in Fig. 2. The
oscillations in Euclidean time given by the factor (−1)(tx+1)α+(ty+1)β reflect the contribution
from the scalar states in Eq. (2.20). The matrix elements of interest are given by the three-
point amplitude of the ground state α = β = 0, Oi

00. Analogously, we incorporate regular
and oscillating contributions to the description of the two-point correlators by using the
following functional form in the fits

CPS(t) =
Nstates−1
∑

α=0

|Zα|2 (−1)(t+1)α
(

e−Eαt + e−Eα(T−t)
)

, (2.22)

where T is the temporal size of the lattice. Three- and two-point functions are fit simulta-
neously in our analysis, as described in Sec. IV.

D. Improving the heavy-light four-quark operator

In addition to the discretization errors in the heavy-quark action, the mixing operator
also has discretization errors due to the difference in the small-momentum behavior of lattice
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and continuum heavy quarks. In this section, we describe how the lowest order of operator
discretization errors are removed in our calculation. We first show that the errors start at
O(ap) and then discuss how the error at this order can be removed by a “rotation” of the
heavy-quark field.

To begin, consider the small ap expansion of the spinor for the Wilson-like fermion

ulat(χ,p) =
γ0 signχ sinhEa− iγj sin(pja) + L

√

2L(L+ sinhEa)
u(χ, 0)

= e−m1a/2

[

1− iγ · pa
2 sinhm1a

+O((ap)2)

]

u(χ, 0), (2.23)

where χ labels spin and particle vs. antiparticle, p̂ = (2/a) sin(pa/2), and for the clover
action L = 1 +m0a+

1
2
p̂ 2a2 − cos p0a. The continuum spinor has the expansion

ucont(χ,p) =

[

1− iγ · p
2m

+O((ap)2)

]

u(χ, 0). (2.24)

The mismatch between the small-momentum terms can be easily removed by “rotating” the
lattice heavy quark as was done to heavy-light bilinear operators in Ref. [40]. The light
lattice spinors for the staggered formulation have the same small-momentum behavior as in
the continuum up to O((pa)2, (mqa)

2) and need not be matched.

The analysis of Ref. [40] can be generalized from bilinears to four-fermion operators with
Dirac structure Γ1 × Γ2. We can take one of the terms in the contraction of the lattice
operator

〈q(p′q), b(p′b)|q̄Γ1bq̄Γ2b|q(pq), b(pb)〉lat =
Nq(p

′
q)Nq(pq)Nb(p

′
b)Nb(pb)ū(p

′
q)Γ1u

lat
h (p′b)ū(pq)Γ2u

lat
h (pb) + (additional contractions),

(2.25)

whereNq(p) andNb(p) are normalization factors for the q and b one-particle states. Following
the Fermilab interpretation in Ref. [40], we demand that lattice and continuum amplitudes
match through O(ap),

Z
(

ū(χ,p′
q)Γ1e

−amb
1/2

[

1− iγ · p′
ba

2 sinh amb
1

]

u(χ, 0)

×ū(χ,pq)Γ2e
−amb

1/2

[

1− iγ · pba

2 sinh amb
1

]

u(χ, 0)

)

+ aZDnQn

= ū(χ,p′
q)Γ1

[

1− iγ · p′
b

2mb

]

u(χ, 0)× ū(χ,pq)Γ2

[

1− iγ · pb

2mb

]

u(χ, 0)

+O((pa)2) , (2.26)

where Qn are dimension-seven lattice operators and Dn their corresponding coefficients.
These operators and coefficients are straightforward to identify (mb must be identified with
the Fermilab kinetic mass, M2 [74]). There are two dimension seven operators contributing
to the matching, Q1 = q̄Γ1γ ·Dbq̄Γ2b and Q2 = q̄Γ1bq̄Γ2γ · Db, which will remove the pa
discrepancy for appropriate values of the Wilson coefficients and the normalization constant.
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From the relation above, we find

D1 = D2 =

[

1

sinh amb
1

− 1

2amb
2

]

(2.27)

and
Z = eam

b
1 . (2.28)

Here, m1 and m2 are again the Fermilab rest and kinetic masses defined in [40].
However, through O(ap), adding these operators has the same effect as inducing a “ro-

tation” of the heavy field
br(x) = [1 + ad1γ ·D]b(x) (2.29)

where
d1 = D1 = D2. (2.30)

This removes O(ΛQCDa) discretization errors in the operator. The leading errors are then

O
(

(ΛQCDa)
2) and O(αsΛQCDa). In the way we have set up the calculation, the open-meson

propagators, Eq. (2.9), include the rotation.

III. MATCHING OF THE LATTICE MATRIX ELEMENTS

In order to cancel the scheme and scale dependence of the Wilson coefficients in the
effective Hamiltonian, we must relate the bare hadronic matrix elements of the lattice oper-
ators in Eq. (1.3) to a continuum scheme. We perform that renormalization and matching
perturbatively at one loop. In the lattice part of this renormalization calculation we use
mean-field improved lattice perturbation theory [75] to improve the convergence of the the-
ory by resumming the tadpole contributions.

Already at one loop, even in the continuum, the operators in Eq. (1.3) mix with each
other under renormalization. To extract the renormalized value of 〈Oq

1〉, we use the following
matching relation

〈Oq
1〉renor(µ) = C

{

[1 + αs · ζ11(µ,mb, amb)]〈Oq
1〉lat + αs · ζ12(µ,mb, amb)〈Oq

2〉lat
}

+O
(

α2
s, αsΛQCDa

)

, (3.1)

where the renormalization coefficients ζij are the difference between the renormalizations in
the continuum and on the lattice, ζij = Zcont

ij −Z lat
ij . The continuum renormalization scale at

which we perform the matching is µ. The lattice spacing is a and C is a factor which absorbs
the lattice field normalization conventions. The values of Zcont

ij are listed in Ref. [76] and a
detailed description of the calculation of the lattice renormalization coefficients will be given
in Ref. [77]. Table II lists the tadpole-improved renormalization coefficients relevant for the
lattice data analyzed in this paper. For each lattice spacing and b quark mass we show
the infrared (IR) finite part of the Z lat

ij ’s as well as the corresponding ζij (in the MS-NDR

continuum scheme). The ζij are IR finite since the IR divergent contributions to Z lat
ij and

Zcont
ij cancel in the difference. All the coefficients Z lat

ij in Table II are between 0.3 and 1,
which indicates a sensible behavior of the lattice perturbation series.

In order to apply the matching relation Eq. (3.1), we need to choose both a scale µ
and a value for the strong coupling constant αs. For the scale, we use the bottom quark
mass and, in that way, eliminate higher-order logarithmic contributions that come in powers

12



TABLE II. Values of the finite part of the lattice one-loop renormalization coefficients Z lat
ij , the

difference of the continuum and lattice one-loop coefficients ζij needed in (3.1) for the 0.12 fm and

0.09 fm lattices, and the coupling αs used in the matching relation. The continuum (MS-NDR)

scale used in the matching is µ = mb.

≈ a (fm) amb Z lat, finite
11 Z lat, finite

12 ζMS−NDR
11 ζMS−NDR

12 αs

0.12 2.1881 -0.726 -0.325 0.1998 -0.312 0.32

0.09 1.7728 -0.945 -0.369 0.3041 -0.268 0.26

of log(µ/mb). For the strong coupling constant, we use the renormalized coupling in the
V -scheme [70] evaluated at a scale q∗, as in Ref. [78]. The scale q∗ should be the size of
a typical gluon loop momentum in this process and can be calculated using the methods
outlined in Refs. [70, 79]. Here, we use q∗ = 2/a which is close to the calculated value for
heavy-light currents using the same actions we are employing [70, 80]. This is justified since
the contributions coming from the current renormalization are larger than the intrinsic four-
quark contributions [77]. The values of αV are determined from the static-quark potential
in a manner similar to that described in Ref. [78] and are also given in Table II.

IV. FITTING METHOD AND STATISTICAL ERRORS

The correlation functions are calculated at four different time sources t, and then averaged
over time sources. For the a ≈ 0.12 fm ensembles, t0 = 0, 16, 32, 48, and for the a ≈ 0.09 fm
ensembles, t0 = 0, 24, 48, 72. The statistical errors in the data and fits decrease with each
additional time source by approximately what is expected, suggesting that the correlators
from different time sources are weakly correlated and statistical power is gained by averaging.

In order to extract the renormalized matrix elements, we tried two methods for the
correlator fits. In the first method, we fit the bare correlators and combine the results
afterwards with the matching coefficients in Sec. III to get the renormalized matrix elements.
In the second method, we first apply the matching coefficients to the correlators for each
configuration and then perform the fits to obtain the renormalized matrix elements. The
central values are nearly identical with both methods, but the errors are slightly better and
the fits more stable with the latter, so for the rest of this article we discuss only the results
obtained with the second method.

A. Description of the Fitting Method and Stability Tests

The heavy-quark in the two-point and three-point correlation functions is always rotated
at the source as explained in Sec. IID. For three-point functions, we smear the heavy quarks
at the sink using a function based on the quarkonium 1S wavefunction [81, 82]. For two-
point functions, at the sink we either rotate local heavy quarks, or we smear them with a 1S
wavefunction. Smearing greatly improves the overlap with the ground state. The additional
rotation at the sink is to ensure that the local-local meson correlator is positive-definite.
The naive light-quark propagator is always local at source and sink.

The two-point and three-point correlators used to determine the matrix element 〈Oq
1〉 on

a particular ensemble and for a particular choice of valence-mass mq are fit simultaneously
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using the Bayesian fitting approach described in Refs. [83, 84]. For the matrix elements on
the coarse ensembles, we find the smallest errors and greatest stability using three correlators
(two two-point correlation functions and one three-point correlation function):

- CPS in Eq. (2.22) with local source and local sink.

- CPS with local source and 1S smeared sink.

- COq
1
in Eq. (2.21) with local source and 1S smeared sink.

For the fine ensembles the best results are obtained with only one two point function and
one three-point function:

- CPS with 1S smeared source and 1S smeared sink.

- COq
1
with local source and 1S smeared sink.

The prior central values function as the initial starting guesses for our fits. Hence we
choose ground-state values guided by our data to help the fits converge. The prior central
values for the ground-state masses are obtained from effective mass plots. For the overlap
factors Zd

0 and Z1S
0 , where superscripts d and 1S denote factors corresponding to local or

1S smeared sources/sinks, we examine the amplitude of the B meson propagator with the
exponential of the ground state removed. We do the same for O00, where the Z

1S
0 amplitudes

are accounted for. The prior widths are taken to be large compared with the statistical error
of the parameters as reported by the fitter to avoid influencing our fit results by our choice
of priors. For the higher states’ overlap factors, the prior width is chosen based on the
expectation that the overlaps should not be larger than the corresponding ground state
ones. The energy differences have prior central values and widths that allow them to vary
from ∆Ei+1,i ≡ a(Ei+1 − Ei) ≈ 0.14 − 0.37, where experimental values [16] have been used
as a guide. We checked that the prior widths for all fitting parameters are large enough so
they do not influence the central value of relevant quantities extracted from the fits.

The same priors are used for all ensembles, except for the masses of the regular and
oscillating ground states, E0 and E

′
0 respectively. These parameters are strongly determined

by the data, and very different at each lattice spacing, therefore the prior choice must also
be lattice-spacing dependent. Appendix C contains a list of the prior central values and
widths we use in the calculation.

Statistical errors are estimated with the bootstrap method. Specifically, for each ensemble
and valence mass, 500 bootstrap ensembles are constructed from the original ensemble by
sampling with replacement. A fit is then performed to each ensemble. We find that, as long
as the bootstrap ensembles are larger than ∼ 100, the estimated error is independent of
bootstrap ensemble size. For fitting methodology checks and plotting purposes in Figs. 3–6,
statistical errors in the parameters are estimated by the average 68% bootstrap error, which
is defined as half of the distance between the two points at which 16% of the distribution
has a higher (lower) value.

Autocorrelations necessarily exist between correlation functions calculated on different
configurations within an ensemble and can be minimized by binning the data. The autocor-
relations are observable only in a few ensemble and valence masses. In many ensembles and
mass combinations, the noise is large enough that the autocorrelations are not observable.
We choose a conservative bin size of 4.
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TABLE III. Number of states and time ranges used for each correlator in the fits for both the

a ≈ 0.12 fm and a ≈ 0.09 fm ensembles. For the number of states, the first value indicates the

number of regular states and the second one the number of oscillating states. The labels between

parentheses in the first column indicate the type of source/sink in that correlator.

Correlator Number of States Time Range

CPS (local/local) 3+3 2–20

CPS (local/1S) 3+3 2–20

CQi
q
(local/1S) 2+2 (2− 10)× (2− 10)

The number of states included in the sum in Eq. (2.21) and the time ranges we use in
the fits are shown in Table III. The minimum time slice is fixed to be the same for all the
correlators in the fit, three-point as well as two-point. However, the maximum time is fixed
separately for the two- and three-point functions. Following Ref. [83], the number of states
are determined by first performing the fit using 1+1 states (1 regular state + 1 oscillatory
state) starting at large time slices, where the higher energy states no longer contribute
significantly and a good χ2 per degree of freedom (d.o.f.) is obtained (≈ 1). The fit is then
performed using one lower time slice as the starting time tmin, and this is repeated, reducing
tmin until the χ2/d.o.f. is no longer reasonable, & 1.5. Then an additional pair of states is
added to the model function, and the process iterated. Once the timeslice t = 2 can be
included, that number of states is used in our central-value fits.2

For the three-point function, we fit using Nstates = N regular
states +Noscillating

states = 2 + 2 = 4 and
timeslices tx, ty ∈ [2, 10] for all ensembles. The two-point functions are fit for t ∈ [2, 20] using
3+ 3 states. The output of these fits successfully describe the oscillations in the correlation
functions as can be seen in Fig. 3, which shows the typical behavior in one of the ensembles
analyzed.

In order to check that this number of states is sufficient, we add more states and examine
the stability of the fits. Stability plots over numbers of states for the a ≈ 0.09 fm ensembles,
which illustrate the typical behavior of our fits, are shown in Fig. 4. The stability of central
values and errors is very good for Nstates ≥ 4 in all cases.

V. CHIRAL PERTURBATION THEORY

The light sea- and valence-quark masses that are used in our lattice simulations have
unphysically large values, with our lightest pion mass ≈ 240 MeV. To obtain information
about the quark-mass dependence of the relevant matrix elements, which allows us to ex-
trapolate our results to the physical masses, we perform our calculation at six sea × six
valence quark masses, thus including numerous partially quenched data points. In addition,
the leading-order taste violations, which arise at O(a2αs), are included in the theory and
then removed when the extrapolation is performed using rooted heavy-meson staggered chi-
ral perturbation theory (rHMSχPT) [63, 64, 67]. The χPT expression for 〈Oq

1〉, as well as
for the matrix elements of all the other operators in the ∆B = 2 effective Hamiltonian was
first described in Ref. [85] for partially quenched Wilson-type quarks in the framework of

2 Time slices t = 0 and t = 1 contain unconstrained contamination from higher energy states. At t = 0 all

states contribute because they have the same exponential weighting, and t = 1 is contaminated by higher

energy states because the degrees of freedom of staggered fermions spread over two time slices.
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FIG. 3. Comparison of a fit with correlator data for the correlation function COq
1
(tx, ty) at fixed

tx = 2-6 (labeled by color) and as a function of ty, for the a ≈ 0.09 fm ensemble with quark masses

0.0124/0.031 and valence quark mass amq = 0.031. The lines connect the fit function results for

integer values of tx, ty coming from the same single fit and evaluated at specific tx, and the dots

are the average over simulation data. Statistical errors on the simulation data are smaller than the

plot symbols. The fit results describe very well the oscillation in time shown by the data.

continuum heavy-meson χPT (HMχPT). With staggered fermions, we also must include the
effects of taste-violating interactions, using rHMSχPT [67].

With the four-quark operators, a careful examination of the Fierz properties shows that
there are additional operators with both wrong taste and spin, i.e, wrong (Γ1,Γ2). As far as
we know, this property of local heavy-staggered four-quark operators has not been discussed
in the literature before. The needed rHMSχPT expressions are derived in Ref. [86]. We
became aware of these contributions after our analysis was nearly complete, so we have not
included them in the chiral fit functions used here. We do, however, estimate the associated
systematic error on ξ in our error budget (cf. Sec. VIC). Explicit expressions for the chiral
fit functions used in this work are given in Appendix A.

The NLO rHMSχPT in Eq. (A1) and subsequent equations in the appendix can be
schematically written as

〈

B̄q|Oq
1|Bq

〉

=
2

3
M2

Bq
f 2
Bq
Bq =

MBq
α
[

1 + (Wq + Tq +Qq) + Lvmq + Ls(2ml +mh) + Laa
2
]

, (5.1)

where α, Lv, Ls, and La are low-energy constants (LECs) to be determined from fitting
the data, the factor of MBq

comes from the HQET normalization of states, and the masses
mq, ml, and mh are the light valence, light sea, and strange sea-quark masses, respectively.
The light sea quarks are treated as degenerate, and the isospin average is used, i.e., m̂ =
(mu+md)/2. For staggered quarks the taste-nonsinglet pseudoscalar meson masses are split

M2
ij,ρ = µ(mi +mj) + a2∆ρ , (5.2)
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of the number of states Nstates. The fit results for fBq

√

MBqBBq reach a plateau for Nstates ≥ 4.

where mi and mj are the quark masses and the sixteen meson masses are labeled by their
taste representation, ρ = P,A, T, V, I. The parameters µ and the ∆ρ’s are determined from
lattice calculations for pions and kaons [87]. Their values are collected in Table IV.

The chiral logarithms, Wq, Tq, Qq, stem from wavefunction renormalization, tadpole, and
sunset diagrams, respectively. The explicit expressions can be found in Appendix A.

In this work, we do not include the effects of the hyperfine splitting ∆∗ or the light flavor
splittings δk defined in the Appendix. The wrong-spin terms contribute to the tadpole and
sunset diagrams [86].

When extrapolating to the physical point, we set the parameters ∆ρ and δ′A,V (which
describe discretization effects) and the lattice spacing to zero, and set the sea quark masses
to their physical values, ml → (mu +md)/2, and mh → ms. We then obtain 〈B̄0

d |Od
1|B0

d〉 or
〈B̄0

s |Os
1|B0

s〉 by setting mq = md orms. Thus, it is an extrapolation to the u- and d-quark
masses and an interpolation to the s-quark mass.

An additional consideration is that SU(3) NLO χPT may not be valid for data with
masses as large as the strange quark’s. It would be desirable to include NNLO contributions
to test the validity of the NLO expression, but the effort needed to calculate the NNLO
logs is prohibitive. It is reasonable instead to test the chiral expansion by including just
NNLO analytic contributions. Wherever the quark masses or splittings are large enough for
such analytic NNLO terms to be significant, the NNLO logarithms should be slowly varying
and well approximated by the analytic terms. We follow this strategy and supplement the
NLO rHMSχPT expressions with NNLO analytic terms in our fits, with prior constraints
estimated based on χPT power counting as explained in the next section.

A. Parametrization of the Chiral Expression

Dimensionful quantities are extracted first in units of the lattice spacing and then con-
verted to their physical values using the r1 scale [88, 89]. This absolute scale is defined

17



as r21F (r1) = 1.0, where F (r1) is the force between static quarks. In our chiral fits, all
parameters are first converted to units of r1 by multiplying by the relative scale r1/a. The
values for r1/a on every MILC ensemble used in our calculation are listed in Table I. After
the chiral-continuum extrapolation, we convert from r1 units with a physical value of r1.
We take the result obtained by combining the 2009 MILC determination of r1fπ [90] and
the PDG value of fπ [16]. Following Ref. [59], the error for r1 is determined by averaging
the MILC value with the HPQCD value in [91] and then by inflating the uncertainty to
take conservatively into account the possible correlations coming from the use of the same
configurations in both determinations. The final value we use is r1 = 0.3117(22) [59]. The
error associated with r1 has a very small effect on the dimensionless quantity ξ.

The dominant lattice artifacts to take into account in our rHMSχPT expressions are
expected to be taste violating contributions of O(a2α2

s), since the O(a2αs) taste-violating
effects are absent for asqtad quarks. We parametrize these effects in our fits by defining a
quantity A2

a, which is the ratio of the size of taste violations on lattices with spacing a to
those on the a ≈ 0.12 fm lattices. Thus A2

0.12 fm = 1 and

A2
0.09 fm ≡ (α2

sa
2)0.09 fm

(α2
sa

2)0.12 fm
∼ 0.35 . (5.3)

The NLO rHMSχPT function in Eq. (5.1) can then be rewritten as

βq ≡
√

3

2
〈B̄q|Oq

1|Bq〉/MBq
= fBq

√

MBq
BBq

= βχ

[

1 +
1

2
(Qq +Wq + Tq) +

Lv

2
M2

qq +
Ls

2
(2M2

ll +M2
hh) +

La

2
A2

a

]

, (5.4)

where βχ =
√
α. The massesMij are defined in Eq. (5.2), but here we disregard a2 corrections

in the masses since they can be absorbed by a redefinition of the low energy constants at
higher order in the chiral expansion. To the NLO expression above we add, inside the square
brackets, the allowed NNLO analytic terms, which contribute with seven more unknown
LECs

Q1M
4
qq +Q2(2M

2
ll +M2

hh)
2 +Q3M

2
qq(2M

2
ll +M2

hh) (5.5)

+Q4(2M
4
ll +M4

hh) + P1A
2
aM

2
qq + P2A

2
a(2M

2
ll +M2

hh) + P3A
4
a .

In the above expressions, we have suppressed the factors of r1 for simplicity. They can be
deduced using dimensional considerations. In these expressions, which are the ones we use
as fit functions, we write the analytic terms for convenience as functions of the pseudoscalar
masses Mij rather than the quark masses.

The ratio ξ can be extracted by first interpolating βq to mq = ms and extrapolating to
mq = md separately according to expressions (5.4) and (5.5), and then forming the ratio
βs/βd. Alternatively, one can consider the ratio of chiral expressions and expand up to
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TABLE IV. Inputs for the priors of the free parameters and for the fixed parameters in the fits.

The NLO low energy constants Lv, Ls, and La are not constrained in the fits. The parameter s

is given by the quantity 1/(8π2(r1fπ)
2). We do not consider errors on the slope µr1 or the taste

splittings r21a
2∆ρ because those have negligible effect on the final results. In the right hand side

table, the two last columns correspond to lattice spacings a ≈ 0.12 fm and a ≈ 0.09 fm. See the

text for explanations of the choices of parameters.

Fit parameters (central value±width)

a ≈ 0.12 fm (a ≈ 0.09 fm)

β 1± 1

gB∗Bπ 0.51± 0.20

r21a
2δ′V 0.0± 0.07 (0.0± 0.07)× 0.35

r21a
2δ′A −0.28± 0.06 (−0.28± 0.06)× 0.35

Lv unconstrained

Ls unconstrained

La unconstrained

Q1−4 0± s2

P1−3 0± s2

Input (fixed) parameters

a ≈ 0.12 fm a ≈ 0.09 fm

fπr1 0.2106

µr1 6.234 6.382

r21a
2∆P 0 0

r21a
2∆V 0.439 0.152

r21a
2∆T 0.327 0.115

r21a
2∆A 0.205 0.0706

r21a
2∆I 0.537 0.206

NNLO to obtain

ξ′ =
βq′

βq
= ξ

√

MBq′

√

MBq

= 1 +
1

2
(Qq′ +Wq′ + Tq′ −Qq −Wq − Tq) +

Lv

2
(M2

q′q′ −M2
qq)

+Q1(M
4
q′q′ −M4

qq) +Q3(M
2
q′q′ −M2

qq)(2M
2
ll +M2

hh)

+P1(M
2
q′q′ −M2

qq)A
2
a , (5.6)

with mq′ fixed to the value closest to ms. In Eq. (5.6) we disregard the NNLO terms coming
from squaring the NLO terms in the denominator, since they are not necessary to obtain
good fits and they are difficult to disentangle from those already included. We can then
interpolate/extrapolate tomq′ = ms andmq = md. We call these two strategies for the chiral
and continuum extrapolation of ξ the indirect and direct methods, respectively. Many of
the fit parameters cancel in the chiral expression for ξ′ in Eq. (5.6), improving the reliability
and stability of the fits. In addition, discretization errors of O(αsΛQCDa, (ΛQCDa)

2) from the
heavy-quark action that are not included in the chiral perturbation theory, partially cancel
in the ratio. We thus choose this method as our preferred fitting strategy.

B. Results from the chiral fits

In order to perform the chiral fits, we first create 200 bootstrap samples of βq for each
sea- and valence-quark mass combination from the two- and three-point correlator fits. The
bootstrap data is then fit to the chiral expression using Bayesian techniques. The fits are
simultaneously performed to all ensembles in Table I.

The input and fit parameters are set as in Table IV. We do not impose any constraint on
the NLO low energy constants. For the NNLO LECs we use prior widths based on a simple
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TABLE V. Results from the rHMSχPT fits. Errors are only statistical and obtained from 200

bootstrap samples. For a full discussion of systematic errors, see Sec. VI.

Ansatz χ2/d.o.f. ξ Direct χ2/d.o.f. ξ Indirect

NNLO 0.45 1.268+0.035
−0.044 0.23 1.255+0.034

−0.041

NLO 0.78 1.284+0.018
−0.016 0.49 1.262+0.008

−0.012

power counting argument. The NLO analytic terms should be of magnitude similar to the
NLO logs, which are ∼ m2

π/(8π
2f 2

π) = s(r1mπ)
2, (with s ≡ 1/(8π2(r1fπ)

2)). Hence, the

NNLO terms are ∼ (m2
π/(8π

2f 2
π))

2
= s2(r1mπ)

4. The taste-violating hairpin parameters,
δ′V and δ′A, were also determined from lattice calculations for pions and kaons in Ref. [62].
We constrain the parameters δ′V and δ′A in our fits using the results of Ref. [62] as prior
central values and widths. We also take the effective coupling of the B∗Bπ interaction,
gB∗Bπ, as a fit parameter in our analysis. The prior central value and width we use for this
parameter, shown in Table IV, covers the main ranges of determinations of gB∗Bπ [92–98],
as discussed in Ref. [57]. A more recent, precise value of gB∗Bπ, obtained with Nf = 2 + 1
domain wall fermions and static b quarks [99], was not yet available when this stage of
the analysis was carried out. Nevertheless, the result obtained by the authors in Ref. [99],
0.449 ± 0.047 ± 0.019, falls well within the prior central value and width considered here.
For the pion decay constant, we use the PDG value, fπ = (130.41± 0.20) MeV [16].

The fit results for ξ using different ansatzes for the fitting function and the direct and
indirect methods explained in Sec. VA are listed in Table V. The results and errors obtained
using the direct and indirect methods agree very well, especially when NNLO terms are
included. This constitutes a good check of how well our results are encompassing higher-
order terms in the chiral expansion, which are different in these two methods.

In Figs. 5 and 6, we show the NLO and NNLO fit results for ξ from the direct method
as a function of the light valence mass in r1 units, r1mq. The top plots in both figures show
only the full QCD points, mq = ml, while the bottom plots show all (partially quenched)
data included in the fits (see Table I). The fit curve is the same in both plots of each figure.
The black lines show the results of the fit in the continuum limit, after the dominant lattice
artifacts are removed using rHMSχPT, and after interpolating the physical sea and valence
strange-quark masses to the physical value, as a function of the valence light-quark mass.
The black point is our result for ξ at the physical masses, and includes statistical errors.

From the spread of data in the bottom plots of both figures (same data), one can see
that the light sea-quark mass dependence is mild; all different sea-quark masses (squares or
triangles at a particular axis value) agree within one statistical σ. The discretization errors
are also small, as can be seen in both the data and the extrapolation lines in the upper plots.

We obtain fits that match the data well and have good χ2/d.o.f. with only the inclusion of
NLO terms, as shown in Fig. 5. When we add the NNLO terms, the central values for ξ are
also within one statistical σ, although errors are significantly larger. This is to be expected,
since the NNLO LECs are poorly known. Related to this is the fact that the χ2/d.o.f. for
the NLO fits are larger than for the NNLO fits. At NNLO, we are including extra degrees
of freedom with large prior widths that are poorly determined by the fit, so, in practice, we
are dividing the same χ2 by a larger number of degrees of freedom. In fact, the NNLO fits
seem to give a slightly better description of the data, as can be seen in the full QCD plots.
The chiral extrapolation for ξ is also milder in the NNLO case. Based on these arguments
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FIG. 5. Fits results using the NLO rHMSχPT, first line in Eq. (5.6). The (black) star is the

physical value of ξ in both plots. The top plot shows only the full QCD data, while the bottom

one shows all the data included in the fits. The (green) squares and (red) circles and lines in the

upper plot represent the 0.12 fm and 0.09 fm data and fit results respectively. In the bottom plot,

each color (symbol) labels a different ensemble.

and, as mentioned above, the fact that direct and indirect fits agree better at NNLO, we
choose the direct NNLO fit for our central value and statistical error. The systematic error
associated with our choice of fit function is discussed in Sec. VID.
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FIG. 6. Fits results using the NNLO rHMSχPT in Eq. (5.6). The (black) star is the physical value

of ξ in both plots. The top plot shows only the full QCD data, while the bottom one shows all

the data included in the fits. The (green) squares and (red) circles and lines in the upper plot

represent the 0.12 fm and 0.09 fm data and fit results, respectively. In the bottom plot, each color

(symbol) labels a different ensemble.

VI. ERROR ANALYSIS

In this section, we discuss all sources of systematic uncertainty affecting our calculation
of ξ. The systematic errors have to be added to the statistical uncertainty listed in Table V,
which also encompasses our imperfect knowledge about chiral parameters such as gB∗Bπ and
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δ′V,A.

A. Heavy-quark mass uncertainty

The mixing parameters depend on the b quark mass used in our simulations through
the hopping parameter κb, which is tuned so that the kinetic meson mass, M2, agrees with
experiment. The dispersion relation for a heavy particle can be written for low-momentum
as

E(p) =M1 +
p2

2M2
− a3W4

6

∑

j

p4j −
(p2)2

8M3
4

+O(p6), (6.1)

where κb enters into the definitions of M1 and M2 [40]. W4 and the deviation of M4 from
M2 capture lattice artifacts. We calculated two-point functions for the pseudoscalar and
vector mesons at several momenta and extract the energy, E(p), for each particle at each
momentum. A fit to the dispersion relation then determines M2 and the spin average of the
results is taken. The κb value is then adjusted until M2 agrees with the spin-averaged Bs

meson mass.
In this work, we use the values for κb on the a ≈ 0.12 fm and a ≈ 0.09 fm ensembles

tuned this way in Ref. [55]. The error in the determination translates into a systematic
error in the mixing matrix elments. However, in the ratio ξ the effect of the uncertainty is
minimal, since the corrections go in the same direction in both denominator and numerator,
and, thus, largely cancel. In addition, most of the remaining dependence is encoded in the
decay constants rather than in the bag parameters, which are very insensitive to the exact
values of the quark masses. In Ref. [59], we studied the decay constants with the same choice
of actions, parameters, and configurations as here. We expect systematic errors to be very
similar in both analyses. We therefore adopt the error due to the uncertainty in the b quark
mass obtained in Ref. [59] for the ratio of decay constants fBs

/fBd
, namely, 0.4%, as a good

estimate of this systematic error for ξ.

B. Higher-order effects in the perturbative matching

The most straightforward and conservative way to estimate the effects of the missing
higher order terms in the perturbative matching is to assume two-loop coefficients of order
1 and to multiply the central value by α2

s = α2
V (2/a). This estimate gives an error ∼ 5% for

fB
√
BB on the a ≈ 0.12 fm lattices and ∼ 3.6% on the a ≈ 0.09 fm lattices, becoming the

main source of uncertainty for this quantity [37]. If there was no mixing between 〈O1〉 and
〈O2〉 under renormalization, there would be an exact cancellation of the renormalization
coefficients for the ratio ξ = (fBs

√

BBs
)/(fBd

√

BBd
), as long as the valence light-quarks are

taken to be massless in the renormalization calculation. The mixing under renormalization
prevents this exact cancellation from happening, but the renormalization corrections in
the ratio are still largely suppressed, by a factor of 〈Os

2〉/〈Os
1〉 − 〈Od

2〉/〈Od
1〉, with respect

to those for a single matrix element. We estimate this suppression factor via the ratio
(ms − md)/ΛQCD and multiply the perturbative error for fB

√
BB given above by it. As

a result, the perturbative matching uncertainty for ξ from this estimate is 0.2–0.5% (for
ΛQCD = 700 MeV).
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The ratio ξ changes by 0.2% when the one-loop renormalization is omitted entirely, sup-
porting our power-counting argument. Another way of estimating O(α2

s) effects is by varying
the scale q∗ at which αV is evaluated. If we change q∗ from our central value of 2/a to 1/a
and 3/a we find that the extrapolated ξ changes between 0.2–0.4%.

Since the initial estimate yields the largest uncertainty, 0.5%, we take this as the error
associated with the missing higher order terms in the perturbative renormalization. Hence,
this source of uncertainty is subdominant in our determination of ξ.

C. Mixing with wrong-spin four-fermion operators

As mentioned in Sec. V, there are contributions at NLO in rHMSχPT originating from
the mixing of 〈O1〉 with the matrix elements of four-fermion operators of different spin and
taste. We have omitted these contributions from our chiral fits, because we discovered these
terms after this stage of the analysis was complete. From Figs. 5 and 6, one can see that the
effect of the wrong-spin mixing is unlikely to be very large, perhaps being mostly absorbed
into the LECs.

We cannot include the effects of the wrong-spin contributions, because they require the
matrix elements of O3, which we have not computed here. Fortunately, however, we have
started a more comprehensive analysis of B-B̄ mixing on a larger set of higher-statistics
ensembles, including O3. We have added the wrong-spin operators to that analysis and
find that their inclusion tends to increase the slope of the continuum extrapolated chiral fit
function for 〈O1〉 and, hence, ξ. For example, taking priors and widths similar to those in
Table IV, we find a 2% increase in ξ, while for other reasonable choices of the priors the
variation is not larger than 3.2%. We add a 3.2% systematic error to account for the missing
terms in our chiral extrapolation functions.

D. Chiral-extrapolation systematics and light-quark discretization

The errors due to the choice of fit ansatz and light-quark discretization effects cannot be
disentangled, because every fit ansatz necessarily treats the discretization errors differently.
So any estimate of the systematic uncertainty associated with the choice of ansatz also
accounts for the light-quark discretization errors left over after removing the dominant ones
using rHMSχPT.

In Fig. 7, we show the distribution of values for ξ obtained with the NNLO direct fit
for the 200 bootstrap samples analyzed. We check that 200 bootstrap samples is enough to
obtain a (nearly) Gaussian distribution, as can be seen in the plot. With the goal of testing
our choice of functional form and the error associated with the truncation of the chiral
series, we perform fits with only two of the three NNLO terms, omitting each one in turn.
All fits give good values of χ2/d.o.f. and p value. The values of ξ obtained are scattered
around the distribution in Fig. 7 but always within 1.5 statistical σ of the central value.
This consistency, together with the fact that the NNLO LECs are not well determined by
the fit, indicates that the statistical error already accounts for the possibility of having one
of the unknown constants equal or close to zero. If we inflate and symmetrize our statistical
errors to ±0.047, we cover the spread of results from the different fitting functions tried
(including the NLO one). We take this value as our estimate of both statistical and chiral
systematic uncertainties.
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FIG. 7. Histogram of the distribution of values of ξ obtained from the 200 bootstrap samples.

The red line is a Gaussian distribution corresponding ξ = 1.268 ± 0.047 (the NNLO result with

augmented errors as explained in the text).

TABLE VI. Input for the physical light-quark masses used in the chiral extrapolations. These

values were determined by the MILC collaboration [87, 100]. Physical values are found from chiral

fits that have been extrapolated to the continuum, but masses are still in units of the a ≈ 0.09 fm

lattice spacing.

Quantity Physical

ams × 102 2.72 (8)

a (mu+md)
2

× 103 0.997(35)

amd × 103 1.40(6)

An alternative way of estimating the uncertainty in the truncation of the chiral series
and the fitting function would be taking the difference between the NLO and the NNLO
fits results. If we add this difference with the statistical errors in Table V in quadrature,
the uncertainty would be slightly smaller than the ±0.047 we are taking as our estimate of
these two sources of error.

In the rest of this section, we list the errors associated with the uncertainty of several
input parameters used in the continuum and chiral fits, that typically can be estimated by
varying the inputs and redoing the fits.

1. Light-quark mass uncertainty

The physical values of the light-quark masses used for the extrapolations and interpola-
tions for ξ are determined by the MILC collaboration [87, 100]. They are obtained by making
the charged pions and kaons take on their physical values after removal of electromagnetic
effects and are listed in Table VI.
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The error on ξ due to the light-quark mass uncertainties is obtained by individually
varying each quark mass within this uncertainty and repeating the preferred chiral fit and
extrapolation. The central values arrived at using each mass variation are compared to the
results of the fit which used the central values for the masses, and their differences are added
in quadrature. This gives a total systematic error due to the light-quark mass uncertainties
of 0.5% for ξ.

2. Uncertainty in the scale r1

The value of r1 used in this analysis to convert from lattice to physical units, as described
in Sec. VA, is r1 = 0.3117(22) fm. The results discussed in previous sections are obtained by
fixing r1 to its central value. In order to estimate the uncertainty due to the error in r1 we
change r1 by ±0.0022 fm and all parameters that depend on the physical r1 are appropriately
adjusted. The uncertainty in scale gives a systematic error of 0.2%, which is very small due
to the fact that ξ is a dimensionless quantity and the scale only enters in the normalization
to lattice units of the chiral corrections (1/(fπr1)

2) and indirectly via the tuning of the quark
masses.

E. Heavy-quark discretization effects

The discretization errors associated with our choice of heavy-quark action to simulate
the bottom quarks can be described in terms of the difference in the lattice and continuum
Wilson coefficients of higher dimension operators in the HQET expansion. Those come
from two sources: the mismatch between continuum and lattice in the Lagrangian and the
mismatch in the four-fermion operators whose matrix elements yield fB

√
BB and, thus, ξ.

For a particular operator Qi the error can be written in terms of the usual power counting
magnitudes times functions that reflect the particularm0a dependence of the action [56, 101]

errori = zifi(m0a) (aΛQCD)
si , (6.2)

where si = dimQi − 4 for Lagrangian operatorsQi of dimension 4 and 5, and si = dimQi − 6
for four-fermion operators Qi of dimension 7 and 8, and the zi are constants. The functions
fi(m0a) can be deduced from references [40, 102] and were discussed in detail in [56] for the
form factors parametrizing B → πlν decays and in [59] for heavy-light decay constants. A
detailed study of these corrections for the matrix elements of all the operators contributing
to neutral B mixing in the SM and beyond will be presented elsewhere [77]. Here we only
summarize the sources of the different corrections for 〈O1〉 and ξ. The explicit form of the
different functions fi(m0a) can be found in Appendix B.

From the Lagrangian, there are O(a2) errors and O(αsa) errors which are identical to
those in Eqs. (A12) and (A19) in Ref. [59]. They are proportional to the functions fE(m0a)
in Eq. (B1) and fB(m0a) in Eq. (B2) of Appendix B, respectively.

From the four-fermion operators, we have O(a2) errors coming from higher order cor-
rections to the rotation relation Eq. (2.29). They are generated by the mismatch between
lattice and continuum coefficients of the operators q̄ΓD2b, q̄ΓiΣ ·Bb and q̄Γα · Eb in the
same way as in Eqs. (A13) and (A14) of Ref. [59], but with an extra overall factor of two due
to the fact that we have two heavy fields in our leading-order operator, not one. These cor-
rections are proportional to the functions fX(m0a) and fY (m0a) in Eq. (B3) of Appendix B,
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TABLE VII. Heavy-quark discretization errors given in percent.

Contribution fi zi
Error fB

√
BB (%)

(coarse,fine)

Error ξ (%)

(coarse,fine)

O(a2) Lagrangian fE 2 (0.28,0.16)

O(αsa) Lagrangian fB 2 (0.96,0.58)

O(a2) Operator fX 4 (1.29,0.74)

fY 2 (0.23,0.18)

O(αsa) Operator f3 3 (1.32,0.75)

Total error (2.1,1.3) (0.2,0.1)

respectively.
The last contribution, and the least straightforward, comes from the O(αsa) corrections to

the four-fermion operators. In principle, to subleading order, there are a basis of twelve new
local operators in the effective Hamiltonian. However, using symmetry constraints, Fierz
transformations and rewriting some combinations as total derivatives, only five independent
operators remain [37, 103]. Because we separate the temporal and spatial parts of the
operators through this analysis, the total temporal and spatial components of those five
operators should be compared with the temporal and spatial parts of the leading operators.
As explained in Ref. [77], this produces a difference of 3f3(m0a), where f3 is given in Eq. (B4).

In Table VII, we list all the contributions together with the functions fi, and the pro-
portionality constant zi in Eq. (6.2). We also list the numerical values of the different
contributions to the heavy-quark discretization error in percentage for fB

√
BB. In order to

get the numerical results, we use ΛQCD = 700 MeV and αs = αV (2/a) listed in Table II.
The final heavy-quark discretization error for fB

√
BB is 1.3% for the a ≈ 0.09 fm ensembles

and 2.1% for the 0.12 fm ones.
These errors largely cancel in ξ. The effect of the cancellation on the error can be

estimated by multiplying the errors in fB
√
BB by a factor of (ms −md)/ΛQCD which gives

a final heavy-quark discretization error for ξ of 0.2% for the coarse lattice and 0.1% for the
fine lattice. This agrees well with the estimate of this type of error for the ratio fBs

/fB [59],
∼ 0.3%, using a very similar set of data and statistics. The strategy followed in Ref. [59]
differs from the one described here. In that paper, terms of the form in (6.2) were directly
added to the chiral and continuum extrapolation fitting functions with a coefficient of order
one to be determined by the fit. Ultimately, we would like to employ that strategy also for
B0-B̄0 mixing studies. For this work, however, we simply take the larger estimate from the
ratio fBs

/fB as our estimate of the uncertainty in ξ due to heavy-quark discretization errors.

F. Finite volume corrections

In order to evaluate the finite volume corrections in our calculation, we follow the pre-
scription in Refs. [67] and [104]. The MILC lattices are large enough in the time direction
that it can be treated as infinite to a very good approximation, so we are interested in cor-
rections due to finite spatial volume only. They are estimated by replacing infinite-volume
integrals in the chiral expression with finite sums over the spatial momentum.

Including finite volume corrections in the chiral expressions and redoing the fits reveals

27



TABLE VIII. Complete error budget and total error for the B0 mixing parameter ξ. All errors are

given in percent.

Source of uncertainty Error (%)

Statistics ⊕ light-quark disc. ⊕ chiral extrapolation 3.7

Mixing with wrong-spin operators 3.2

Heavy-quark discretization 0.3

Scale uncertainty (r1) 0.2

Light-quark masses 0.5

One-loop matching 0.5

Tuning κb 0.4

Finite volume 0.1

Mistuned coarse u0 0.1

Total Error 5.0

negligible errors, < 0.1%.

G. Tuning of the tadpole parameter u0

The tadpole improvement factor u0 is a parameter of the gauge and asqtad staggered
(sea) quark action and is determined from the fourth root of the average plaquette. The
tadpole improvement factor also enters into the valence light and heavy quark actions. On
the a ≈ 0.09 fm ensembles, the valence quarks are generated with the same values of u0 as
the sea. However, on the a ≈ 0.12 fm ensembles, the valence quark actions use values of u0
obtained from the average link in Landau gauge instead. The differences between the values
of u0 obtained with the two methods is around 3-4%.

The effect on fBs
/fB of the mismatch between u0 values in the valence and the sea sectors

of the a ≈ 0.12 fm ensembles was estimated to be < 0.1% in Ref [59]. Since this is much
smaller than the errors due to statistics, chiral fits, and continuum and chiral extrapolation,
we take this estimate as our error on ξ.

VII. DISCUSSION OF RESULTS AND FUTURE IMPROVEMENTS

The error budget for the SU(3)-breaking mixing parameter ξ described in the previous
sections is summarized in Table VIII. For the first error in the table we prefer not to attempt
to disentangle the statistical, light-quark discretization, and chiral extrapolation errors since,
as explained in Sec. VID, the lack of knowledge about the LECs at NNLO makes a reliable
separation impossible. Our final result is

ξ = 1.268± 0.063 . (7.1)

The total uncertainty is dominated by the combined statistical, light-quark discretization,
and chiral extrapolation error, and the uncertainty associated with the wrong-spin operators
in the chiral-continuum extrapolation.
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Combining our result in Eq. (7.1) with the averages of the experimentally measured values
of the mass differences ∆Md = (0.507±0.004) ps−1 [16] and ∆Ms = (17.69±0.08) ps−1 [105],
and the meson masses MB0

s
= (5366.0± 0.9) MeV and MB0

d
= (5279.5± 0.5) MeV [16], we

quote a value for the ratio of the CKM matrix elements
∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

= 0.216± 0.011 , (7.2)

assuming no new physics in B0
(s)-B̄

0
(s) mixing. The error includes the uncertainties in the

B-meson masses and mass differences but it is strongly dominated by the error in ξ.

We can also take our result for ξ and combine it with the value of the decay constant
ratio fBs

/fBd
= 1.229± 0.026 calculated by our collaboration [59] to determine the ratio of

bag parameters

BBs

BBd

= ξ2
(

fBd

fBs

)2

= 1.06± 0.11 . (7.3)

The two results for ξ and fBs
/fBd

are correlated, but the statistical analyses were done
indepedently so we cannot include the correlations in calculating the uncertainty in the ratio
of bag parameters. Therefore the error shown in the result of Eq. (7.3) is overestimated.
However, as part of the future work, we plan to perform a common analysis of matrix
elements and decay constants, from which we will be able to account for correlations in
extracting the value of the bag parameters and thus greatly reduce the error in (7.3). We
will do the same for the individual bag parameters corresponding to all the operators in the
basis in (1.3).

Our result for ξ in Eq. (7.1) is in good agreement with the HPQCD value obtained in
Ref. [32], ξ = 1.258(33). Note, however, that HPQCD did not estimate the effects of the
wrong-spin operators that appear in the complete NLO chiral expression, so the full error
in their result may be somewhat bigger than what was quoted. The agreement of these two
determinations of ξ provides an excellent check of the methodology and systematic error
study in both analyses. In addition, it helps to increase the confidence in the robustness
of lattice results for a parameter of great importance in phenomenological studies. In this
article, we have established and tested the methodology to apply to broader studies of B0

mixing with the same lattice formulations for light and bottom quarks as used here.

Statistical errors could be reduced significantly by expanding the analysis to include
the full set of available configurations (approximately 2000) at each of the a ≈ 0.12 fm and
a ≈ 0.09 fm ensembles. The current runs of our collaboration on the extended ensembles are
also implementing sources located at a random spatial and time location to reduce further
the statistical errors. We expect a reduction of the statistical errors by about a factor of
two.

The other dominant error of our calculation, the omission in the rHMSχPT analysis of
terms generated by wrong-spin operators, will be eliminated when a complete analysis is
done with the full rHMSχPT expressions [86]. A result for ξ that properly includes the
wrong-spin terms requires the calculation of the continuum matrix elements not only of the
operator O1 as we have done in this work, but also of O2 and O3, and simultaneous chiral
and continuum extrapolations of all three matrix elements.

The discretization errors, related to both heavy and light quarks, will be reduced in a
straightforward way by simulations at smaller lattice spacing, i.e., on the a ≈ 0.06 fm and
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a ≈ 0.045 fm MILC lattices. The reduction of both statistical and discretization errors will
also yield cleaner and more accurate continuum and chiral extrapolations. Including data
at smaller lattice spacings will also reduce the uncertainty associated with the perturbative
matching from the reduction of αs = αV (2/a). Although not relevant for the reduction of
the total error in ξ, this will be important in the determination of the matrix elements 〈Oi〉
themselves.

Similarly, although the uncertainty associated with heavy-quark discretization effects is
a subdominant source of error in the determination of ξ, it is one of the main errors in the
determination of 〈Oi〉 [37]. In order to have a more reliable, data-driven estimation of these
effects, in our on-going analyses we plan to employ the strategy used in Ref. [59], in which
terms like the ones in (6.2) are included in the chiral-continuum extrapolation fitting form
with free parameters to be determined from the fit.

Our new analysis, which incorporates the improvements mentioned above, includes the
study of the matrix elements of all five operators that contribute to H∆B=2

eff [29]. This will
allow not only the precise SM determination of ∆Ms,d, ∆Γs,d, and ξ, but will also provide
the nonperturbative inputs needed to put constraints on BSM models using experimental
data on B0 mixing and related observables.
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Appendix A: Staggered Chiral Perturbation Theory for B0-B̄0 mixing

In this appendix we describe the functional form we use in the chiral and continuum

extrapolation of the matrix elements 〈B0

q |Oq
1|B0

q 〉. Further discussion, as well as complete

30



NLO rHMSχPT expressions for 〈B0

q|Oq
i |B0

q 〉 with i = 1, . . . , 5 and the corresponding bag
parameters can be found in [86].

At NLO in rHMSχPT and at first order in the heavy-quark expansion we use

〈B0

q |Oq
1|B0

q 〉 = α

(

1 +
Wqb +Wbq

2
+ Tq +Qq

)

+Lvmq + Ls(2ml +mh) + Laa
2 . (A1)

α, Lv, Ls, and La are constants to be determined from the fits to lattice data. The quantities
in script for the partially quenched 2+1 (mu = md 6= ms) case are

Wqb = Wbq =
ig2B∗Bπ

f 2
π

{

1

16

∑

S,ρ

Nρ H∆∗+δSq
qS,ρ +

1

3

[

R
[2,2]
XI

(

{M (5)
XI

}; {µI}
) ∂H∆∗

X,I

∂m2
XI

−
∑

j∈{M
(5)
I

}

D
[2,2]
j,XI

(

{M (5)
XI

}; {µI}
)

H∆∗

j,I

]

+ a2δ′V

[

R
[3,2]
XV

(

{M (7)
XV

}; {µV }
) ∂H∆∗

X,V

∂m2
XV

−
∑

j∈{M
(7)
V

}

D
[3,2]
j,XV

(

{M (7)
XV

}; {µV }
)

H∆∗

j,V

]

+
(

V → A
)

}

. (A2)

Tq =
−i
f 2
π

{

1

16

∑

S,ρ

Nρ IqS,ρ +
1

16

∑

ρ

NρIX,ρ +
2

3

[

R
[2,2]
XI

(

{M (5)
XI

}; {µI}
)

(

∂IXI

∂m2
XI

)

−
∑

j∈{M
(5)
I

}

D
[2,2]
j,XI

(

{M (5)
XI

}; {µI}
)

Ij

]

+ a2δ′V

[

R
[3,2]
XV

(

{M (7)
XV

}; {µV }
)

(

∂IXV

∂m2
XV

)

−
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j∈{M
(7)
V

}

D
[3,2]
j,XV

(

{M (7)
XV

}; {µV }
)

Ij

]

+
(

V → A
)

}

, (A3)

Qq =
−ig2B∗Bπ

f 2
π

{

1

16

∑

ρ

NρH∆∗

X,ρ +
1

3

[

R
[2,2]
XI

(

{M (5)
XI

}; {µI}
)

(

∂H∆
XI

∂m2
XI

)

−
∑

j∈{M
(5)
I

}

D
[2,2]
j,XI

(

{M (5)
XI

}; {µI}
)

H∆
j

]

}

, (A4)

In the equations above, the index ρ runs over the taste representation (P,A, T, V, I) with
degeneracies Nρ (Nρ =1,4,6,4,1, respectively), and S runs over the sea flavors u, d, s. The
meson X is made of two light valence quarks q, and mX is its mass. The functions H and
I are the integrals defined in Appendix A of [85]. The subscripts on those functions label
the flavor and taste of the meson masses at which they are evaluated.

The superscript in H is the second argument for that function as defined in [85]. In
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addition to the hyperfine splitting ∆∗ = MB∗ −MB, it includes a light flavor splitting δSq
whenever the light flavor of the vector meson in the loop is different from the external flavor.

The splitting is δSq ≡ MB0
S
− MB0

q
= 2λ1µ(mS − mq), where λ1 and µ are low energy

constants. The constant λ1 comes from heavy quark effective theory, and µ is defined in
(5.2).

The residues functions R
[n,k]
j and D

[n,k]
j,l in the expressions above are defined by [65]

R
[n,k]
j ({m}, {µ}) ≡

∏k
a=1(µ

2
a −m2

j )
∏

i 6=j(m
2
i −m2

j )
,

D
[n,k]
j,l ({m}, {µ}) ≡ − d

dm2
l

R
[n,k]
j ({m}, {µ}). (A5)

The mass combinations appearing as arguments of these functions in the 2+1 partially
quenched theory are

{M (5)
X } ≡ {mη, mX},

{M (7)
X } ≡ {mη, mη′ , mX},
{µ} ≡ {mL, mH} , (A6)

where mL is the meson mass made from ll̄ sea quarks, and mH is the meson mass made from
hh̄ sea quarks. The tastes of these mesons are indicated explicitly in the equations above.

Since we are not including the effects of the hyperfine splitting ∆∗ or the light flavor
splittings δk in this work, the functions H and I appearing in the wave function, tadpole,
and sunset contributions simplify to

iH0
k,Ξ = −3iIk,Ξ = − 3

16π2
M2

k,Ξ ln

(

M2
k,Ξ

Λ2
χ

)

. (A7)

Appendix B: Functions parametrizing heavy-quark discretization errors

In this Appendix we collect the functions fi needed in Eq. (6.2) to estimate the heavy-
quark discretization errors affecting our calculation. For details on the origin of these func-
tions and the effects of higher-dimension operators in the lagrangian, see [102]. For further
details on the application to the estimation of heavy-quark discretization errors in B0 − B̄0

mixing, see [77].

• O(a2) errors from the Lagrangian.

fE(m0a) =
1

2

[

(1 +m0a)− 1

m0a(2 +m0a)(1 +m0a)
− 1

4(1 +m0a)2

]

(B1)

• O(αsa
2) errors from the Lagrangian

fB(m0a) =
αs

2(1 +m0a)
(B2)
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• O(a2) errors from the four-fermion operator

fX(m0a) =
1

2

[

1

2(1 +m0a)
−
(

m0a

2(2 +m0a)(1 +m0a)

)2
]

fY (m0a) =
2 + 4m0a+ (m0a)

2

4(1 +m0a)2(2 +m0a)2
(B3)

• O(αsa
2) errors from the four-fermion operator

f3(m0a) =
αs

2(2 +m0a)
(B4)

Appendix C: Prior central values and widths for the correlator fits

In the table below we collect the prior central values and widths used in the correlator
fits described in Sec. IV. The amplitude parameters are defined in Eqs. (2.21) and (2.22),
and the energy differences are defined as ∆Ei+1,i ≡ a(Ei+1 −E1).

TABLE IX. The priors with index 0 refer to the ground state. Superscripts d and 1S refer to the

local and 1S smeared sources respectively. Higher energy state priors have indices i and j. The

prime in E′
i refers to an opposite parity (oscillating) state.

Prior central value Prior width

Z1S
0 2.2 0.5

Z1S
i 0.01 0.5

Zd
0 0.45 0.45

Zd
i 0.01 1

O00 0.01 0.02

Oij 0.01 0.1

E0 (0.12 fm) 1.95 0.15

E ′
0 (0.12 fm) 2.25 0.15

E0 (0.09 fm) 1.65 0.15

E ′
0 (0.09 fm) 1.85 0.15

log∆Ei+1,i -1.5 0.5

log∆E ′
i+1,i -1.5 0.5
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