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ABSTRACT

There is ample observational evidence that the star formation rate (SFR)

surface density, ΣSFR, is closely correlated with the surface density of molecular

hydrogen, ΣH2 . This empirical relation holds both for galaxy-wide averages and

for individual � kpc sized patches of the interstellar medium (ISM), but appears

to degrade substantially at a sub-kpc scale. Identifying the physical mechanisms

that determine the scale-dependent properties of the observed ΣH2 − ΣSFR rela-

tion remains a challenge from a theoretical perspective. To address this question,

we analyze the slope and scatter of the ΣH2 −ΣSFR relation using a set of cosmo-

logical, galaxy formation simulations with a peak resolution of ∼ 100 pc. These

simulations include a chemical network for molecular hydrogen, a model for the

CO emission, and a simple, stochastic prescription for star formation that op-

erates on ∼ 100 pc scales. Specifically, star formation is modeled as a Poisson

process in which the average SFR is directly proportional to the present mass

of H2. The predictions of our numerical model are in good agreement with the

observed Kennicutt-Schmidt and ΣH2 − ΣSFR relations. We show that observa-

tions based on CO emission are ill suited to reliably measure the slope of the

latter relation at low (� 20 M� pc−2) H2 surface densities on sub-kpc scales.

Our models also predict that the inferred ΣH2 − ΣSFR relation steepens at high

H2 surface densities as a result of the surface density dependence of the CO/H2

conversion factor. Finally, we show that on sub-kpc scales most of the scatter in

the relation is a consequence of discreteness effects in the star formation process.

In contrast, variations of the CO/H2 conversion factor are responsible for most

of the scatter measured on super-kpc scales.
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1. Introduction

The formation of stars is far from being a well understood and solved problem. The

complex interplay between star formation, the formation of molecular clouds, and the phys-

ical processes operating within the interstellar medium (ISM), such as turbulence, magnetic

fields, self-gravity, or feedback from the stellar population, poses many formidable challenges

to the proper interpretation and modeling of the star formation process (e.g., McKee & Os-

triker 2007). Fortunately, observations have revealed a number of empirical relations which

provide some guidance for the development of a theoretical model. This includes the well-

studied Kennicutt-Schmidt relation, a correlation between the surface density of the neutral

ISM and ΣSFR (Schmidt 1959; Kennicutt 1989, 1998). The realization that star formation

is more closely correlated with molecular gas than neutral gas (Talbot 1980; Wong & Blitz

2002, but cf. Kennicutt 1989) led to considerable interest in the study of the ΣH2−ΣSFR rela-

tion (e.g., Heyer et al. 2004; Gao & Solomon 2004; Greve et al. 2005; Krumholz & Thompson

2007; Kennicutt et al. 2007; Bigiel et al. 2008; Robertson & Kravtsov 2008; Gnedin et al.

2009; Krumholz et al. 2009; Gnedin & Kravtsov 2010, 2011; Bigiel et al. 2011; Feldmann

et al. 2011; Schruba et al. 2011; Rahman et al. 2011, 2012; Calzetti et al. 2012).

The properties of the ΣH2 −ΣSFR relation are tied to the small scale (scales of molecular

clouds and below) connection between star formation and the supply in form of molecular

gas. Therefore, measuring the slope and scatter1 of the ΣH2 −ΣSFR relation allows to probe

potentially relevant physical mechanisms that are involved in the star formation process.

This requires, of course, that biases in the observational tracers used to derive ΣH2 and ΣSFR

are properly accounted for. The main goal of this paper is therefore to study and isolate the

importance of both various physical mechanisms and observational biases for the slope and

scatter of the ΣH2 − ΣSFR relation.

Our theoretical predictions are based on high resolution, cosmological galaxy formation

simulations equipped with subgrid models to estimate H2 abundances and SFRs. We study

observational biases by post-processing our simulations with a model for the J = 1 → 0

line emission of CO (Feldmann et al. 2012; paper I from now on). CO line emission is the

1This is a somewhat imprecise, but common, terminology. Here (and in the rest of the paper) “slope”
and “scatter” of the ΣH2 −ΣSFR relation refer, more precisely, to the slope and to the standard deviation of
the residuals (estimated from a linear regression) of the log10 ΣH2 − log10 ΣSFR relation.
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most commonly used tracer to measure H2 abundances (e.g., Wilson et al. 1970; Scoville

& Sanders 1987; Brown & Vanden Bout 1991; Young et al. 1995; Regan et al. 2001; Helfer

et al. 2003; Solomon & Vanden Bout 2005; Tacconi et al. 2006; Riechers et al. 2006; Kuno

et al. 2007; Tacconi et al. 2010; Genzel et al. 2010; Daddi et al. 2010a,b; Ivison et al. 2011).

Detecting H2 in emission is difficult because of the high energy gap between the ground state

and the lowest excited levels of H2 and the lack of a permanent electric dipole moment of the

H2 molecule. Our CO emission model allows us to determine the CO/H2 conversion factor

(also called the X-factor or XCO) which is formally defined as

XCO =
NH2

WCO
, (1)

i.e., as the ratio between H2 column density, NH2, and the CO velocity integrated intensity,

WCO, of the J = 1 → 0 rotational transition. As shown in paper I, the X-factor depends

on the conditions of the ISM, in particular on the dust-to-gas ratio and the gas surface

density. Hence, a crucial question that we address in this paper is whether the use of a

constant value for XCO, as done in many observational studies, introduces significant biases

in the estimates of the slope and scatter of the ΣH2 −ΣSFR relation. Similarly, we use stellar

population synthesis modeling to compute the FUV and Hα fluxes of our model galaxies in

order to assess whether the use of these star formation tracers leads to observational biases.

From a theoretical perspective, the slope of the ΣH2 − ΣSFR relation provides us with a

means to distinguish between (and potentially rule out) different models of star formation.

In general, the slopes of the ΣH2 −ΣSFR relation and that of the underlying relation between

the spatial densities of SFRs and H2 (Guibert et al. 1978; Talbot 1980), the ρH2 − ρ̇∗ relation,

could be different due to variations in the gas scale height (Talbot 1971) or changes in the

density distribution (Feldmann et al. 2011). However, if the ρH2 − ρ̇∗ relation is linear, so is

the ΣH2 − ΣSFR relation (Schaye & Dalla Vecchia 2008; Feldmann et al. 2011).

We note that a linear relation has been interpreted as evidence that star formation

occurs in dense clumps within molecular clouds and that the number of such clumps scales

with the total amount of molecular gas (Bigiel et al. 2008). An alternative possibility that has

been suggested is that the timescale for star formation is controlled by small scale processes,

e.g., stellar feedback, ambipolar diffusion, etc. which do not vary much from one location

to the next, and hence ensure a steady (when averaged over sufficiently large spatial and

temporal scales) conversion of H2 into stars (Wong & Blitz 2002). In contrast, a slope of

∼ 1.3 can be explained by models that are based on a constant star formation efficiency per

free-fall time (Krumholz & McKee 2005; Krumholz et al. 2009). Star formation driven by

cloud-cloud collisions could lead to even steeper slopes (Tasker 2011).

While the slope of the ΣH2 −ΣSFR relation has been the subject of a number of observa-
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tional studies, there is, unfortunately, no clear consensus yet on its exact value. While many

studies find slopes that are close to unity (∼ 0.8 − 1.3, e.g., Wong & Blitz 2002; Komugi

et al. 2005; Bigiel et al. 2008; Blanc et al. 2009; Bigiel et al. 2011; Schruba et al. 2011;

Rahman et al. 2011, 2012), a number of works prefer a steeper slope, e.g., ∼ 1.4 (Heyer

et al. 2004; Kennicutt et al. 2007), ∼ 1.6 − 1.7 (Thilker et al. 2007; Bouché et al. 2007;

Bothwell et al. 2010), or even steeper (Liu et al. 2011; Narayanan et al. 2011b). Various

factors may contribute to these differences, including choices in the fitting methodology, how

star formation maps are corrected for dust extinction and diffuse emission, the resolution of

the observations, or the range in surface densities over which the fit is done. In particular,

assumptions about the amount of diffuse emission present in the star formation maps and its

subsequent treatment in the data analysis have a strong impact on the derived slope (Ken-

nicutt et al. 2007; Liu et al. 2011; Rahman et al. 2011). However, if the fitting is restricted

to regions of sufficiently high ΣH2 , then the impact of any diffuse emission is minimized and

the ΣH2 − ΣSFR relation is found to be close to linear (Rahman et al. 2012).

Besides the slope, the normalization of the ΣH2 − ΣSFR relation is an important pa-

rameter that needs to be matched by the theoretical models. Fortunately, studies that find

an approximately linear slope of the ΣH2 − ΣSFR relation also find little variation of the

normalization (ΣH2/ΣSFR ∼ few Gyr) with galaxy mass or other global galaxy properties

(e.g., Braine et al. 2001; Wong & Blitz 2002; Bigiel et al. 2008; Genzel et al. 2010; Bigiel

et al. 2011; Bolatto et al. 2011). A notable exception is the claim that the normalization

depends on the specific star formation rate (Saintonge et al. 2011), although there is a po-

tential worry that this result is, to some extent at least, an artifact of the large scatter in

the ΣH2 − ΣSFR relation and the use of correlated quantities (Rahman et al. 2012). Driven

by these observational findings we adopt in this paper a (stochastic) star formation model

that is based on a linear ρH2 − ρ̇∗ relation with a constant gas depletion time of a few Gyr.

The scatter in the ΣH2 −ΣSFR relation has received significantly less attention compared

to the slope or the normalization. The reason is probably that the scatter depends even more

on the specific details of the respective observational survey and the data analysis procedures

(Calzetti et al. 2012). The finding that the scatter increases with increasing spatial resolution

of a survey is sometimes used to argue that star formation scaling relations “break down”

on small scales (Momose et al. 2010; Onodera et al. 2010; Schruba et al. 2010). However, we

will argue in this paper that the proper interpretation is that on small scales the intrinsically

stochastic nature of the scaling relations becomes simply more evident.

A first step to understand and quantify the different contributors to the scatter was

made by Feldmann et al. (2011). Here, we extend our previous analysis in several ways.

We consider the scatter that results from spatial X-factor fluctuations. We also analyze the
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scatter related to star formation tracers (Hα and FUV). Finally, we highlight the importance

of stochasticity in the star formation process and propose a simple model of star formation

that allows a classification of the various mechanisms that contribute to the scatter in the

ΣH2 − ΣSFR relation.

The outline of the paper is as follows. In §2 we present the details of our numerical

approach, including the set-up of the simulations (§2.1), the star formation model (§2.2), de-

tails of sub-grid physics (§2.3), and the modeling of the H2 and star formation tracers (§2.4).

We then show in §3.1 that our simulations are able to reproduce the observed Kennicutt-

Schmidt and ΣH2 − ΣSFR relations. Next, in §3.2, we discuss observational claims of a

non-linear ρH2 − ρ̇∗ relation based on slope measurements of the ΣH2 −ΣSFR relation at low

ΣH2 . Then, in §3.3 we analyze the importance of the X-factor for high redshift galaxies with

high gas surface densities. We address the origin of the scatter in the ΣH2 − ΣSFR relation

in §3.4. In §4 we discuss our star formation model in the context of various observational

constraints. Finally, in §5, we summarize our results and conclusions.

2. Methodology

2.1. Simulations

All simulations have been run with the Eulerian hydrodynamics + N-body code ART

(Kravtsov et al. 1997, 2002) that uses an adaptive mesh refinement (AMR) technique to

increase the resolution selectively in specified regions of interest. We also use the standard

method of embedding these regions in layers of subsequently lower dark matter resolution

to further reduce the computational cost, but still capture the impact of large scale tidal

fields correctly (Katz 1991; Bertschinger 2001). The simulations were run with a 643 (for

the 6 Mpc/h box runs) or 2563 (for the 25 Mpc/h box runs) base grid and three additional

levels of refinement in the initial conditions. The run-time refinement was performed in a

quasi-Lagrangian manner (keeping the dark matter mass per cell approximately constant)

using 6 additional levels of refinement (9 additional levels of refinement altogether).

Simulation MW-fid focusses its computational resources on a Lagrangian region that

encloses five virial radii of a MW-sized halo at z = 0 (total mass ∼ 1012 M�) in a 6 Mpc

h−1 box. The simulation is started from cosmological initial conditions with the parameters

given in Table 1. It is run fully self-consistently down to redshift z = 4. At this point “fixed

ISM conditions” are imposed on the simulation as described in §2.3 and it is continued for

additional 600 Myr before it is analyzed. By then the high-resolution Lagrangian region

harbors a large disk galaxy with a virial mass of ∼ 4.2 × 1011 M� and several less massive
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galaxies. More details on the setup of the MW-fid simulation can be found elsewhere (Gnedin

& Kravtsov 2011; Feldmann et al. 2011; paper I).
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The simulations MW-dt5, MW-dt6, and MW-sl2 are spawned from the z = 4 snapshot

of MW-fid and continued for additional 600 Myr with fixed ISM conditions. The first two

simulations are run with reduced values of ∆tSF, the average time scale between individual

star formation events, see §2.2, but are otherwise identical to MW-fid. The run MW-sl2 uses

a modified star formation model, see §3.2 for details.

Simulation HZ-csm refines on seven regions within a 25 Mpc h−1 box. By z = 0, these

regions have collapsed to halos in the 1011 − 1013 M� mass range. The simulation is started

at z = 100 and is continued down to z = 1.8 fully self-consistently. The setup of the HZ-csm

simulation is discussed in detail in Zemp et al. (2012). Simulation HZ-fid is spawned from

the z = 2 snapshot of HZ-csm. It is continued with fixed ISM conditions for additional 200

Myr (down to z = 1.8) to allow the gas to react to the changes in the ISM properties and

to reach its new equilibrium state.

The main properties of our simulations are summarized in Table 1.

2.2. Star formation model

Since individual resolution elements in our simulations correspond to (at best) GMC

scales, it is clear that we are not able to follow in any realistic detail the formation and

evolution of individual bound star clusters, let along individual stars. Hence, our approach

is to marginalize over the complexities involved in star formation by describing star formation

on a statistical level. Such an approach will have its limitations, of course, and we are not

aiming at reproducing observations perfectly, but rather try to isolate and explain some of

the trends in the observational data.

There are several lines of evidence suggesting that a statistical description of star for-

mation is a plausible ansatz, at least on the level of star clusters and in relatively quiescently

star-forming galaxies. One is the observation that the scaling between ΣSFR and ΣH2 is

roughly linear and holds over a wide range of surface densities and galaxy metallicities (Bigiel

et al. 2008; Genzel et al. 2010), although it may break down in strongly out-of-equilibrium

situations such a major galaxy mergers (Teyssier et al. 2010; Bournaud et al. 2011). Another

one is provided by the similarity of the shape of the mass function of young star clusters

among non-starbursting galaxies (Portegies Zwart et al. 2010), which indicates that the con-

version of interstellar gas into star clusters proceeds on average in the same way in different

galaxies with different global properties. Also, the existence of a correlation between the

total number of clusters and the luminosity of the most luminous cluster in a galaxy can be

understood in a purely statistical formation scenario of star clusters (Larsen 2002).
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Our model assumes that H2 mass is a good tracer of the SFR (Pelupessy et al. 2006;

Robertson & Kravtsov 2008; Gnedin et al. 2009; Papadopoulos & Pelupessy 2010; Gnedin

& Kravtsov 2011; Feldmann et al. 2011; Kuhlen et al. 2012) and can be summarized by

the following three statements: (1) star formation is a stochastic process and the number

of individual star formation events2 in a given time interval is described by a homogeneous

Poisson process, (2) the average stellar mass formed per unit time is proportional to the

present H2 mass, and (3) the factor of proportionality, τ−1
dep, is a constant. Here, average

refers to the ensemble average over independent patches of the ISM of the same size and

with the same H2 masses, which may, however, differ in other properties. In other words, we

marginalize over most of the GMC parameters which may be potentially relevant for star

formation and keep only the explicit dependence of the SFR on H2 mass.

We give a detailed description of the model in the appendix. Here, we only summarize

the properties that we will need later in the paper.

The discreteness of star formation leads to scatter in the ΣH2 − ΣSFR relation because

the SFR that is realized in a given region and over a given period differs from the ensemble

average SFR tied to the present H2 mass. The scatter increases (up to a point) with increasing

average time between individual star formation events, ∆tSF, but decreases with increasing

life-time of a given star formation tracer ∆t∗. In fact, the scatter depends on these quantities

only in form of the dimensionless ratio ∆t∗/∆tSF, the average number of individual star

formation events during ∆t∗.

Our model contains three parameters: the average H2 depletion time scale, τdep, the

spatial scale on which our model operates, lSF, and ∆tSF. We fix τdep to 2.9 Gyr in order

to fit the observed normalization of the ΣSFR - ΣH2 relation, see §3.1. We stress that τdep is

not the H2 gas depletion time of individual star forming molecular clouds, but an average

depletion time that includes the non star forming molecular gas. Our model is assumed to

operate on scales of lSF = 60 − 100 pc scales, which is the peak resolution of our numerical

simulations, see Table 1. Our default value for ∆tSF is 10 Myr. This choice is based on the

following considerations.

First, the crossing time (or the free-fall time) of a molecular region should be a lower

limit on the time period between two bursts of star formation in that region. This time

tcross ∼ L/σ can be estimated from the Larson relation between cloud size L and cloud

velocity dispersion σ (Larson 1981; Solomon et al. 1987). It scales as ∼ 1 Myr (L/pc)0.5 and,

hence, tcross ∼ 8 − 10 Myr for regions of size lSF = 60 − 100 pc. Since the largest molecular

2The proper interpretation of an individual star formation event is as the simultaneous formation of a
number of embedded star clusters in a given region in space (∼ 60 − 100 pc in our simulations).
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cloud complexes in the Milky Way have radii of ∼ 100 pc (Dame et al. 1986), this line of

reasoning cannot be used to constrain ∆tSF on larger spatial scales. Despite having a similar

numerical value on ∼ 100 pc scales, ∆tSF and tcross are quite different physical quantities. In

fact, tcross, a measure of the duration of an individual star formation event, increases with

scale, while ∆tSF, the period between successive star formation events, decreases with scale

due to the smoothing effect of spatial averaging on Poisson noise.

Secondly, we have checked that with the choice ∆tSF = 10 Myr individual star formation

events in the simulations cover a broad range of masses up to 106 M�. The embedded star

clusters that form during a star formation event of total mass 106 M� will have masses up

to, but not exceeding, ∼ 105 M� for a reasonable choice of the slope of the embedded cluster

mass function (∼ 2.3 − 2.4). This compares well with the fact that, at least in the Milky

Way, young massive clusters exceeding 105 M� are rare (Portegies Zwart et al. 2010).

Finally, ∆tSF ∼ 10 Myr is consistent with the observed relation between SFR and max-

imum embedded star cluster mass (Weidner et al. 2004). We note that these considerations

do not rule out a moderately larger value, e.g, ∆tSF ∼ 20 Myr.

2.3. Further sub-grid modeling

All simulations include a photo-chemical network, metal enrichment from supernova

(type Ia and type II), but no thermal energy injection, optically thin radiative cooling by

hydrogen (including H2), helium, and metal lines, and 3D radiative transfer of UV radiation.

The details of the implementation can be found in Gnedin et al. (2009) and Gnedin &

Kravtsov (2011). Here, we give a brief recount.

The photo-chemical network in ART follows the formation and destruction of the five

major atomic and ionic species of hydrogen and helium. The formation of H2 on dust grains

and the destruction of H2 via photo-dissociation in the Lyman-Werner bands are taken into

account. The transfer of ionizing and non-ionizing UV radiation from stellar sources is com-

puted in the Optically Thin Variable Eddington Tensor (OTVET) approximation (Gnedin

& Abel 2001). Radiative stellar feedback is important for the heating and cooling balance

of the gas and for the abundance of H2 and CO. Unlike the re-ionized intergalactic medium,

the dense interstellar medium within galaxies may well be opaque to ionizing photons of all

but the nearest stars and radiative transfer effects cannot be neglected.

Most of our simulations are run with “fixed ISM conditions” (see Gnedin & Kravtsov

2011). First of all this means that the dust-to-gas ratio DMW, which is normally assumed
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to scale linearly with the local gas metallicity, is kept fixed at a value that corresponds to3

Z�, and we will denote this as DMW = 1. The gas-to-dust ratio is a crucial parameter

that enters the formation rates and the dust shielding of molecular hydrogen and also our

CO emission model. The metallicities of the self-consistently enriched gas are still used to

compute the cooling rates that enter the hydrodynamical solver. This is done in order to

avoid numerical artifacts such as sudden increases in the gas accretion rates resulting from

excess, non-equilibrium cooling.

Furthermore, in the fixed ISM runs, the normalization of the radiation field at 1000 Å is

fixed to JMW = 106 photons cm−2 s−1 sr−1 eV−1, a value typical for the solar neighborhood

in the Milky Way (Draine 1978; Mathis et al. 1983). We use the notation UMW = 1, where

UMW is the intensity of the radiation field at 1000 Å in units of JMW. We stress that only the

normalization of the radiation field computed with the OTVET solver is fixed. The shape

of the radiation spectrum is not modified.

2.4. Postprocessing: CO, FUV and Hα emission

The J = 1 → 0 12C16O emission is computed as described in paper I. In short, for

each resolution element (leaf cell in the AMR grid) we estimate CO abundances using the

predictions of the suite of small scale magneto-hydrodynamical ISM simulations by Glover

& Mac Low (2011). These simulations follow the non-equilibrium evolution of a total of 32

hydrogen, oxygen, and carbon species in a (20 pc)3 box that is irradiated by an external UV

radiation field with UMW = 1 (see Glover et al. 2010 for details on the adopted reactions and

reaction rates). If a weaker or stronger UV radiation field is present, we compute the CO

abundance relative to the UMW = 1 case under the assumption of photo-dissociation equi-

librium (see paper I for details). Next, we compute the CO emission from each resolution

element using the escape probability formalism. This requires picking adequate CO bright-

ness temperatures and line widths, a choice we will discuss below. Finally, the contributions

from these individual, ∼ 60− 100 pc sized resolution elements are combined in the optically

thin limit to derive the CO emission from larger regions.

A free parameter of the model is the CO brightness temperature that is related to

both the temperature of the CO emitting gas and the temperature of the cosmic microwave

background (CMB). In §3.1, §3.2, and §3.4 we study the ΣH2 - ΣSFR in the local Universe

3In this paper Z� refers to the metallicity of the solar neighborhood. Specifically, we use Z� = 0.02 or 12
+ log10(O/H) = 8.92, which is somewhat larger than the metallicity of the Sun according to recent estimates
(Allende Prieto et al. 2001; Asplund et al. 2004, 2009).
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and we adopt an excitation temperature of 10 K (∼ kinetic temperature of molecular clouds

in the Milky Way). The corresponding brightness temperature is 6.65 K. In §3.3 we predict

the CO emission for galaxies at z ∼ 2. We assume that the increase in the CMB temperature

at those redshifts is compensated by an increase in the gas temperature from 10 K to 14.5

K, such that the brightness temperature remains approximately constant. Such a moderate

increase in gas temperature is consistent with the detailed modeling of the gas temperature

in non-starbursting high redshift galaxies using photon-dissociation regions codes coupled

with a semi-analytic galaxy evolution model (Lagos et al. 2012).

The other parameter that enters the model is the CO line width. By default we assume

that the CO line width ∆v scales proportional to the square root of the gas surface density

Σgas, as expected if molecular clouds are virialized. More specifically, we assume ∆v =

(0.5GΣgasL)0.5 with L = 20 pc. The gas surface density includes the Helium mass fraction

and is estimated as the product of the local density and Lsob = ρ/|2∇ρ|.
The FUV and Hα emission of each stellar particle is computed with Starburst-99 (Lei-

therer et al. 2010) assuming solar metallicity, high mass loss Geneva tracks. We checked

that switching to, e.g., Padua tracks does not affect any of our results in a significant way.

The Hα luminosities are directly taken from the Starburst-99 output, while the broad-band

FUV luminosities are computed using the Galex FUV transmission curve (Morrissey et al.

2005) and the UV spectra provided by Starburst-99.

3. Results

3.1. Actual and inferred star formation relations

It has been shown (Gnedin et al. 2009; Krumholz et al. 2009; Gnedin & Kravtsov 2010)

that an H2-based star formation prescription is able to reproduce the relation between the

surface densities of neutral gas and SFRs (the Kennicutt-Schmidt relation) both for galaxies

in the local Universe and for galaxies at high redshift. In fact, the connection between star

formation and molecular hydrogen provides a simple physical interpretation for the drop in

the SFR surface densities at low gas surface densities (Robertson & Kravtsov 2008). In this

picture the drop is a manifestation of a transition between a neutral and a molecular hydrogen

phase. Specifically, above a characteristic gas surface density the gas is shielded from the

interstellar radiation field by a sufficiently large dust optical depth and the molecular phase

prevails. The characteristic surface density depends on the dust-to-gas ratio, the strength

of the interstellar radiation field, and the density structure of the ISM, see, e.g, Gnedin &

Kravtsov (2011).
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Fig. 1.— Relation between the molecular gas (neutral gas) surface density ΣH2 (ΣHI+H2)

and the surface density of the star formation rate ΣSFR as predicted by our fiducial SF

and CO emission model for Milky-Way like ISM properties (DMW = 1, UMW = 1). The

left panel shows the ΣH2 vs ΣSFR relation, the right panel the classical Kennicutt-Schmidt

relation (ΣHI+H2 vs ΣSFR). The spatial resolution is chosen to match as closely as possible the

resolution of the observational studies (Bigiel et al. 2008, 2011). The gas surface densities

include a factor 1.36 that accounts for the presence of Helium. The red dot-dashed line

shows the median ΣSFR (time averaged over the past 20 Myr) for a given “true” H2 or total

gas surface density (as computed in the simulation). The blue solid line shows instead the

median of ΣSFR as a function of the “inferred” H2 or total gas surface density, i.e., a gas

density in which ΣH2 is inferred from the CO intensity, as predicted by our model, using the

galactic X-factor. The magenta hashed region indicates the typical scatter in ΣSFR (25 and

75-th percentiles in the left panel, 16 and 84-th percentiles in the right panel, ). The black

dashed line (best fit) and the contour lines (containing 90% and 50% of the data) in the

left panel are observational measurement of the ΣH2 - ΣSFR relation by Bigiel et al. (2011)

on kpc scales. The contour line in the right panel shows the distribution of sub-kpc sized

patches in the sample of nearby galaxies by Bigiel et al. (2008), see their Fig. 7. The figure

demonstrates that our modeling of the star formation and the CO emission is consistent

with the observed relations between ΣSFR and the molecular and neutral gas surface density,

respectively.
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However, this interpretation of the Kennicutt-Schmidt relation neglects a potentially

relevant detail. While theoretical models predict H2 surface densities directly, observations

often rely on CO observations to infer H2 surface densities. A crucial test of our understand-

ing of the Kennicutt-Schmidt relation is therefore whether this agreement still holds even if

we take the effects of the CO/H2 conversion factor into account. In other words, we need

to compare theory and observations on an equal footing, i.e., using H2 surface densities that

are derived from CO emission in both cases.

Our star formation model contains the gas depletion time τdep as a free parameter. This

parameter is the conversion factor between H2 mass and the ensemble average SFR, see §2.2,

but, since we assume τdep =const, it also corresponds to the normalization of the ΣH2 −ΣSFR

relation. We find that a depletion time τdep of 2.9 Gyr leads to an inferred (CO based)

depletion time of ∼ 2.35 Gyr (including Helium, Bigiel et al. 2011) and, thus, to excellent

agreement between predictions and observations, see Fig. 1a. We note that the proper choice

of τdep is largely degenerate with the value of the X-factor. Specifically, our CO emission

model prefers a median XCO value for a Milky Way like ISM that that is ∼ 65% larger than

the value XCO,MW = 2 × 1020 cm−2 K−1 km−1 s used by Bigiel et al. (2011), explaining the

need for a somewhat larger H2 depletion time.

Fig. 1a shows the inferred (CO based) ΣH2 − ΣSFR relation based on our simulation

MW-fid. It is an approximately linear relation over two orders of magnitude in H2 surface

density. This is not an entirely obvious result since, at least on sufficiently small scales,

the CO/H2 conversion factor is strongly dependent on surface density (paper I). However,

it turns out that the spatial averaging over a large set of regions with different XCO values

erases most of this surface density dependence on kpc and larger scales. Hence, the actual

(linear) slope of the ΣH2 − ΣSFR relation is recovered (but see §3.3).

We show our predictions for the Kennicutt-Schmidt relation in Fig. 1b, finding good

agreement between our theoretical predictions and observations of the inferred (CO based)

Kennicutt-Schmidt relation. We thus conclude that a star formation model that depends

linearly on the abundance of H2 is consistent with both the observed Kennicutt-Schmidt

relation and the observed ΣH2 − ΣSFR relation of normal star-forming galaxies in the local

Universe.

3.2. The slope of the ΣH2 − ΣSFR relation

The slope of the ΣH2 − ΣSFR relation has been a subject of significant debate over the

last years. While a number of studies find a slope of about unity, other observational works
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Fig. 2.— Same as the left panel in Fig.1, but for a SF model in which ρ̇∗ ∝ ρ2
H2

. The

left panel uses surface densities measured on kpc scales, while the right panel shows the

corresponding results for spatial averaging scales of 250 pc. This SF model leads to a

steepening of the inferred ΣH2 −ΣSFR relation at sufficiently high H2 surface densities (� 20

M� pc−2). However, this steepening is suppressed for ΣH2 < 20 M� pc−2, especially when

measured at sub-kpc spatial resolution, as a result of the increase of XCO with decreasing

ΣH2 at low surface densities (paper I). It will therefore be challenging to extract an unbiased

estimate for the slope of the relation between SFR and gas density from CO observations of

MW-like galaxies at low surface densities.
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favor steeper slopes. It has been argued that these discrepancies arise from observational

obstacles such as diffuse emission in the infrared, or uncertainties in the dust absorption

that make it challenging to obtain reliable SFR estimates, especially in regions of low star

formation activity and gas surface density (Liu et al. 2011; Rahman et al. 2011; Leroy et al.

2012).

A varying CO/H2 conversion factor is another of those potential obstacles, but has been

largely neglected since there is no general observational handle on this quantity in different

galaxies (but see Ostriker & Shetty 2011). The aim of this section is to test the implications

for the observed ΣH2 −ΣSFR relation if the ρ̇∗ − ρH2 relation is highly non-linear and the X-

factor is taken into account. In the following we assume that any observational uncertainties

related to the estimates of SFR (e.g., diffuse infrared emission, dust absorption, etc.) are

under control and corrected for. We focus instead on the role of the CO/H2 conversion

factor.

For this test we use simulation MW-sl2, which uses the same general approach to star

formation as presented in §2.2, but with a density dependent gas depletion time. Specifically,

we assume that τdep ∝ 1/ρH2 which implies that (on average) ρ̇∗ ∝ ρ2
H2

. The factor of

proportionality is chosen such that the gas depletion time, as estimated from the inferred

(CO based) ΣH2 −ΣSFR relation measured on kpc scales, is ∼ 2.3 Gyr at ΣH2 = 10 M� pc−2.

The results of this test are shown in Fig. 2. While the actual ΣH2 − ΣSFR relation

is very steep with a slope n ∼ 2, the inferred (based on CO observations) ΣH2 − ΣSFR

relation flattens significantly at ΣH2 � 20 M� pc−2. This effect is already pronounced on

kpc scales, but becomes very strong on scales of 250 pc. In other words, we predict that the

H2 gas depletion time derived from CO emission would appear to decrease, not increase, with

decreasing surface density at ΣH2 � 20 M� pc−2 on sufficiently small scales. This effect is a

consequence of the anti-correlation between XCO and ΣH2 at low gas surface densities, caused

by the presence of large amounts of CO-dark molecular gas (Wolfire et al. 2010; Krumholz

et al. 2011; Narayanan et al. 2011b; paper I; Shetty et al. 2011; Narayanan et al. 2012).

For 20 M� pc−2 � ΣH2 � 100 M� pc−2, on the other hand, the X-factor plays only a

small role and the steep slope (n ∼ 2) is recovered. At such gas surface densities the diffuse

emission in the star formation maps is also expected to be less of an obstacle (Rahman et al.

2012). Hence, the good news is that a robust measurement of the slope of the ΣH2 − ΣSFR

relation based on CO data will be possible in areas of moderately high gas and SFR surface

density. At low ΣH2 , however, and especially on sub-kpc scales, an accurate determination

of the slope on the basis of CO observations will be difficult.
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3.3. Comparison with z ∼ 2 galaxies

Studies of the ΣH2 −ΣSFR relation that are based on samples of galaxies from both the

local Universe and from high redshift indicate that the slope is close to (but not quite) linear

over many orders of magnitude of ΣH2 (Genzel et al. 2010). In particular, if one selects only

non-interacting galaxies, the slope of the ΣH2 − ΣSFR relation is approximately ∼ 1.1 − 1.2.

This, however, appears to be driven by a steepening at high surface densities, because the

slope measured on intermediate H2 surface densities is much closer to unity (Bigiel et al.

2008).

In our analysis we focus on non-interacting galaxies, that presumably form stars in

an approximately steady state. We do not include interacting or merging galaxies in our

discussion, as they may not follow the same ΣH2 − ΣSFR relation (Genzel et al. 2010; Daddi

et al. 2010b).

While there are several ways to explain a non-linear slope of the ΣH2 −ΣSFR relation, we

demonstrate below that our star formation and CO emission model coupled with an actually

linear ΣH2 −ΣSFR relation does predict a slightly non-linear slope of the inferred (CO-based)

ΣH2 − ΣSFR relation at high ΣH2 , consistent with observations. In essence, we argue that

non-interacting galaxies at high gas surface densities are under-luminous in CO and, hence,

that the observed super-linear slope can be understood as an X-factor effect.

In contrast, interacting and merging galaxies as well as z ∼ 2 highly star bursting

galaxies (Tacconi et al. 2008; Daddi et al. 2010a; Genzel et al. 2010) deviate from the linear

ΣH2 − ΣSFR relation, likely because they form stars more efficiently (e.g., Bouché et al.

2007; Genzel et al. 2010; Teyssier et al. 2010; Lada et al. 2012), or because of their out-of-

equilibrium ISM and high gas fractions (Papadopoulos & Pelupessy 2010).

Our predictions for the inferred (CO based) ΣH2 − ΣSFR relation at z ∼ 2 are shown in

Fig. 3a. Galaxies with inferred molecular gas densities ΣH2 � 100 M� pc−2 are shifted off

the actually linear ΣH2 −ΣSFR relation. The origin of this offset is the small, but systematic,

variation of the X-factor with surface density.

As discussed in paper I, at high ΣH2 the CO emission from a small ISM patch (∼ 20−100

pc) ceases to scale linearly with the gas column density (and thus the H2 surface density)

due to the increased optical thickness at the line center of the CO emission line. This effect

is somewhat, but not fully, compensated by an increase in the width of the emission line, so

that overall there is a remaining increase of the X-factor with increasing H2 surface density.

For this reason, the use of a constant CO/H2 conversion factor leads to systematic shifts in

the inferred ΣH2 − ΣSFR relation. At intermediate H2 surface densities (the precise range

depends on the spatial scale) the conversion factor is essentially constant and, hence, in this
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Fig. 3.— The ΣH2 − ΣSFR relation as predicted by a fully cosmological, hydrodynamical simulation at
z ∼ 2 (simulations HZ-csm, HZ-fid). Each panel shows the predictions of the “inferred” ΣH2 −ΣSFR relation,
i.e., the one where H2 surface densities are derived from 12CO emission maps using a galactic conversion
factor XCO,MW = 2 × 1020 K−1 cm−2 km−1 s. (Left) the interstellar radiation fields and metallicities as
computed self-consistently within the simulation at z = 1.8. The H2 weighted mean metallicity at this epoch
is only ∼ 0.5 Z� but spans a broad range from (1-σ) 0.25 to 0.75 Z�. This results in a value of XCO that is
above the galactic conversion factor and hence shifts the median of the inferred ΣH2 −ΣSFR relation slightly
toward lower surface densities when compared with the observations by Bigiel et al. (2011) for galaxies in the
local Universe. The more interesting result is, however, that the slope of the ΣH2 − ΣSFR relation appears
to steepen, in particular at high ΣSFR. (Right) The simulation is restarted at a slightly earlier epoch and
continued for ∼ 200 Myr down to z = 1.8, but this time with dust-to-gas ratios and UV radiation fields fixed
to DMW = 1 and UMW = 1, respectively. The steepening of the ΣH2 − ΣSFR relation remains visible and is
therefore not a result of changes in the dust-to-gas ratios or interstellar radiation fields. Symbols and lines
are as in Fig. 1b. In addition, the gray dashed line shows the fit to the observed ΣH2 −ΣSFR relation based
on a large sample of low and high-z galaxies by Genzel et al. (2010). The red triangles mark the individual
positions of simulated galaxies with stellar masses exceeding 1010 M�. All simulation predictions are based
on our fiducial SF and CO model. The latter assumes a virial scaling of the CO line width. The red arrow
at the top indicates the median shift in the inferred H2 column density of the simulated galaxies if the CO
line width would be fixed to a constant value of 3 km s−1. The figure shows that galaxies with high gas or
SFR surface densities appear to deviate from a linear ΣH2 −ΣSFR relation, consistent with the observations
of Genzel et al. (2010), despite the fact that the underlying relation between SFR and H2 mass is perfectly
linear. The super-linear slope (∼ 1.1 − 1.2) of the inferred ΣH2 − ΣSFR relation is caused to a large extent
by the increase of XCO with increasing ΣH2 at high gas column densities. Our results apply only to galaxies
that are in an equilibrium mode of star formation, not to star-bursting galaxies. In the latter environments
our CO model becomes unreliable and the galaxy-wide ratio between the total molecular gas and the for
star formation relevant dense molecular gas (n > 104 cm−3) may change (Gao & Solomon 2004; Lada et al.
2012; Papadopoulos et al. 2012).
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case the measured slope is predicted to be very close to linear, as observed (Bigiel et al.

2008).

We note that the conversion factor in non-interacting, high gas surface density galaxies

needs to be only slightly larger than the galactic XCO in order to steepen the ΣH2 − ΣSFR

relation by the required amount (from slope 1 to slope ∼ 1.15). Estimates of XCO in z ∼ 2

BzK selected galaxies (Daddi et al. 2010a; Magdis et al. 2011) find an X-factor that is much

larger than the X-factor in SMGs (Tacconi et al. 2008) or local (U)LIRGs (Scoville et al.

1997; Downes & Solomon 1998), but of the same magnitude as the galactic XCO. Given

the significant uncertainties in the X-factor estimates of high z galaxies, there is at least no

apparent conflict between our predictions and observations.

Star forming galaxies at higher redshifts typically have lower metallicities than galaxies

of a similar mass in the local Universe, e.g., Maiolino et al. (2008). Our fully self-consistent

cosmological simulation HZ-csm predicts average metallicities ∼ 0.5 Z� at z ∼ 2. Hence,

DMW ∼ 0.5 and the combination of a high redshift, low metallicity sample and a low redshift,

high metallicity sample can contribute the observed super-linearity of the ΣH2−ΣSFR relation.

In order to test the importance of the metallicity dependence of CO/H2 conversion factor, we

rerun the HZ-csm simulation with fixed Milky-Way like ISM conditions (simulation HZ-fid,

see §2.1).

Fig. 3b shows that galaxies lie along the observed, slightly super-linear ΣH2 − ΣSFR

relation, even if they had DMW = 1. We therefore conclude that the super-linear slope is

caused to a large extent by the scaling of XCO with H2 surface density, but that metallicity

and dust-to-gas ratio variations contribute on a significant level.

We note that our predictions rest on a number of assumption. For instance, our predic-

tions are for the J = 1 → 0 rotational transition line of CO, while galaxies at z ∼ 1 − 2 are

typically observed in CO line emission resulting from J = 2 → 1 or J = 3 → 2 transitions.

Hence, systematic trends in the emission line ratios could modify the slope of the ΣH2 −ΣSFR

relation (Narayanan et al. 2011a). A systematic variation of the brightness temperature with

surface density would have a similar effect (Narayanan et al. 2012). So far there is no clear

observational evidence that either of these assumptions is violated in steady-state, undis-

turbed star forming galaxies at z ∼ 1 − 2. Alternatively, a variation of the CO line ratios

or brightness temperature with redshift could lead to a systematic z dependence of the nor-

malization of the observed ΣH2 − ΣSFR relation. This can produce an artificial trend with

surface density if a galaxy sample is used in which ΣH2 (and ΣSFR) strongly correlates with

galaxy redshift. Finally, the ΣH2 − ΣSFR relation may actually get steeper at high column

densities. For instance, it has been suggested that star formation becomes more efficient

at high column densities because external pressure on molecular clouds shifts the balance
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between gravity and turbulent support (Krumholz & McKee 2005). Upcoming observations

with the Atacama Large Millimeter Array will hopefully enable us to distinguish between

our model and these alternatives (e.g., see Fu et al. 2012).

3.4. The scatter in the ΣH2 − ΣSFR relation

There are many effects and processes that could, in principle, contribute to the scat-

ter in the ΣH2 − ΣSFR relation. Clearly, scatter can arise from (1) uncertainties related to

the method of estimating SFRs, (2) uncertainties related to the estimation of H2 masses

and surface densities, (3) a possible non-linearity of the star formation process, and (4),

any systematic uncertainties in the observables that were not accounted for. We will focus

in this paper on the scatter sources (1) and (2). The potential role of (3) is discussed in

detail in Feldmann et al. (2011). We do not attempt to model sources that fall under cat-

egory (4), since they are not intrinsic but depend on the specifics of the observational survey.

SFR estimates : The stellar mass that was formed over some past time interval will, in

general, not coincide with the SFR that is expected based on the present H2 mass. In other

words, as shown in Feldmann et al. (2011), the use of a time-averaged SFR as an estimator

of the ensemble-average SFR introduces scatter. The following (not necessarily distinct)

mechanisms fall under this category:

• discreteness of star formation: star formation occurs in individual star formation

events, i.e., is clustered in time,

• stochasticity of star formation: star formation relations on small scales hold only in

an (ensemble) average sense.

• fluctuations in the H2 abundance: H2 densities and, thus, the ensemble average SFRs

may fluctuate on short time scales (Glover & Mac Low 2007), while the SFRs derived

from tracers are smoothed because of the inherent time averaging,

• evolutionary processes: the conversion efficiency from gas to stars may change over

the lifetime of molecular clouds (Murray 2011; cf. Feldmann & Gnedin 2011; see also

Schruba et al. 2010; Onodera et al. 2010),

• imperfect tracers: observational tracers of SFRs (e.g., Hα luminosities) may provide

only approximate estimates of time-averaged SFRs because the proper conversion fac-

tor is not known exactly (e.g., it depends on the precise star formation history).
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Observations indicate that most stars form in quantized units (embedded star clusters,

Lada & Lada 2003) and hence that star formation is a discretized process. While this

inevitably makes star formation a stochastic process (in the above sense), it does not mean

that all stochasticity in star formation arises from discreteness effects. For instance, the

SFR in a molecular cloud depends on more than just its molecular mass. Magnetic fields,

the density of cosmic rays, external torques, or the virialization state of the cloud will play

a role to some extent. Marginalizing over these additional control parameters will give rise

to an apparent stochasticity of star formation. In the formalism of §2.2, the gas depletion

time τdep becomes a function of these additional parameters and its replacement with some

appropriately averaged, constant depletion time leads to the appearance of stochasticity. For

instance, a star formation efficiency that evolves over the lifetime of molecular clouds can be

interpreted in this sense. Here, the age of the cloud is the additional control parameter that

determines τdep.

Our numerical models account for scatter caused by fluctuations in the H2 abundance,

the use of observational SFR tracers, the time discreteness of star formation, and any in-

cidental stochasticity, but do not include the potential contributions from any additional

control parameters.

H2 mass estimates : As mentioned above, uncertainties in the estimates of the H2 surface

densities contribute to scatter in the ΣH2 − ΣSFR relation. Hence, variations in the CO/H2

conversion factor are a potential source of scatter for observational studies that are based on

CO emission. As discussed in paper I, the X-factor can vary significantly, even for a fixed

dust-to-gas ratio and H2 column density, because ΣH2 depends on both the gas density and

the gas column density, while the CO emission depends primarily on the visual extinction

(Glover & Mac Low 2011).

Systematic variations of observables: We measure the scatter under the condition that

the dust-to-gas ratio and the interstellar radiation field are kept fixed (in the sense of §2.3).

This is an important point since the X-factor depends strongly on the former quantity

(but only weakly on the latter, see paper I). Hence, variations in the dust-to-gas ratio lead

to systematic modulations of conversion factor and, if unaccounted for, to scatter in the

ΣH2 − ΣSFR relation.

Often metallicity variations within a given galaxy are a strong function of galacto-centric

radius (Searle 1971) and can be large from one galaxy to another. Hence, such systematic

X-factor variation will appear as a galaxy-to-galaxy scatter (Schruba et al. 2011). Since the

amount of scatter that is created in this way depends on the particular selection function
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of the galaxy sample, we do not include galaxy-to-galaxy scatter in this analysis. Our pre-

dictions should therefore be compared with observations based on samples of galaxies with

approximately the same dust-to-gas ratio.

In Fig. 4a we plot the scatter of the ΣH2−ΣSFR relation as a function of spatial averaging

scale and separate the contributions that result from the use of time-averaging tracers of star

formation and uncertainties in XCO, respectively. The scatter is computed from all regions

with an (inferred) H2 column density between 10 and 100 M� pc−2, a CO velocity integrated

intensity equal to or larger than 0.2 K km s−1, and a minimum SFR surface density of 3×10−4

M� yr−1 kpc−2. These limits are chosen to roughly mimic typical values encountered in

observational studies and it is clear that the exact numerical predictions will depend to some

extent on these limits. In particular, the choice of the minimal ΣSFR is crucial, since the

scatter is measured in log ΣH2 − log ΣSFR space and, if not removed, regions with very low

star formation would contribute enormously to the scatter (even worse, regions with zero

star formation would make the scatter formally infinite).

Our numerical modeling predicts that X-factor variations induce a scatter of the order

of ∼ 0.1 − 0.2 dex. Fig. 4a shows that this scatter may be relevant on scales ∼ kpc and

above, but on smaller scales the total scatter is primarily due to the use of time averaged

SFRs, at least for our fiducial choice ∆tSF = 10 Myr. Again we stress that this analysis

assumes that variations in the dust-to-gas ratio and CO brightness temperature are small or

accounted for. Fig. 4a also shows that the scatter that results from the use of time-averaged

SFRs is a strong function of scale. It reaches ∼ 0.5 dex at ∼ 100 pc, but is only ∼ 0.1 dex

at kpc scales.

Furthermore, there is little difference between the use of FUV luminosity-based SFRs

and the use of the actual time-averaged SFR over the last 20 Myr. Hence, a varying FUV-to-

stellar mass conversion factor (see imperfect tracers above) contributes little to the scatter.

This rules out the suggestion by Leroy et al. (2012) that the variation of the FUV luminosity

over the lifetime of a single stellar population (SSP) dominates the scatter, at least on

scales of ∼ 100 pc and above. In fact, if the luminosity-weighted SFRs differ little from the

time-averaged SFRs, e.g., if SFRs are constant, then the luminosity evolution of the tracer

becomes completely irrelevant. This can be seen from the following simple analysis.

The total spectral luminosity from a Lagrangian volume element at time t is given as

Lν(t) =

∫ t

−∞
SFR(t′)φν(t − t′)dt′.

Here, φν(t) is the spectral luminosity from a SSP of unit mass and age t. This can be
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Fig. 4.— Scatter in the ΣH2 − ΣSFR relation as function of spatial averaging (resolution)

scale for a galaxy with Milky-Way like ISM properties (DMW = 1, UMW = 1). In both panels

the scatter is measured over the range 10 M� pc−2 < ΣH2 < 100 M� pc−2. Regions with

ΣSFR < 3×10−4 M� yr−1 kpc−2 or ICO < 0.2 K km s−1 are excluded from the analysis. (Left)

The blue dot-dashed line shows the scatter that arises when ΣH2 is know exactly, but SFR

are inferred from FUV luminosities. The blue dotted lines marks the analogous result when

SFR are derived from the stellar masses formed within the last 20 Myr. Scatter in XCO at

fixed CO emission leads by itself to a scatter in the inferred ΣH2 −ΣSFR relation of the order

of 0.1-0.2 dex and is shown as the magenta hashed region. The lower and upper boundaries

of this region correspond to the cases of virial scaling of the CO line width vs constant line

width, respectively (see text). Fluctuations in XCO are not an important source of scatter

on sub-kpc scales (at fixed dust-to-gas ratio and interstellar radiation field), but become

increasingly relevant on scales of ∼ kpc and above. Finally, the black horizontally hashed

region shows the combined scatter that takes into account both the scatter in XCO and the

scatter associated with the estimations of SFRs. (Right) This panel shows how the scatter

depends on the SF tracer (FUV, Hα, or simple time averaged SFR) and on assumptions

about the stochasticity of the SF process (see legend). The critical parameter is the average

time ∆tSF between SF events at a given site within the galaxy (see text). Specifically, the

upper 4 lines show the scatter as derived from the various SF tracers for ∆tSF = 10 Myr

(our fiducial value), while the two lines just below correspond to ∆tSF = 1 Myr. The gray

hashed region shows the scatter for a run with ∆tSF = 0.1 Myr. This scatter results from

the mismatch in time scales between SFRs that are averaged over the lifetime of a particular

tracer (4 Myr - lower boundary; 20 Myr - upper boundary) and H2 masses that are observed

at a given instant. The figure shows that stochastic effects play a crucial role in determining

the overall scatter in the ΣH2 −ΣSFR relation. Furthermore, modulo XCO effects, the scatter

decreases with scale l roughly as a power law ∝ l−α, with α ≈ 0.5− 0.7, consistent with the

findings and interpretation given by Feldmann et al. (2011).
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rewritten as

Lν(t) = 〈SFR〉φν(t)Eν , (2)

where

Eν =

∫ ∞

0

φν(t
′)dt′, and

〈SFR〉φν (t) =
1

Eν

∫ ∞

0

SFR(t − t′)φν(t
′)dt′

are the total spectral energy emitted by an SSP of unit mass and the luminosity weighted

SFR, respectively. Hence, if time-averaged and luminosity weighted SFRs trace each other

closely, then the constant Eν is the perfect (i.e., scatter-free) conversion factor between tracer

luminosity and time-averaged SFR. The validity of this statement does not depend on the

form of φν .

We show in Fig. 4b that the scatter in the ΣH2 − ΣSFR relation depends on both the

star formation tracer and the time discreteness parameter ∆tSF. We find that Hα-based

SFR estimates lead to more scatter in the ΣH2 − ΣSFR relation than the use of FUV flux

as a tracer. Hence, the star formation tracer with the shorter lifetime (Hα) leads to larger

scatter. Similarly, when we estimate the SFR based on the actual stellar mass formed within

the past 4 Myr and the 20 Myr, we find that the use of a shorter averaging time leads to

more scatter in the ΣH2 − ΣSFR relation.

The averaging timescales of 4 and 20 Myr correspond roughly to the luminosity weighted

timescales of Hα and FUV emission (Leroy et al. 2012). It is therefore not entirely surprising

that the scatter predictions computed using these time-averaged SFRs are similar to the

predictions that use Hα and FUV based tracers. It demonstrates that Hα and FUV based

tracers can, to a good degree of approximation, be treated as a top-hat filter with a width of

∼ 4 Myr and ∼ 20 Myr, respectively. This correspondence will break, however, if the scales

are small enough and the lifetimes of the particular tracer short enough such that luminosity

weighted SFRs and time-averaged SFRs begin to differ substantially. For Hα based SFR

estimates this appears to happen on scales of < 400 pc, while for FUV based tracers the

effect is small even on spatial averaging scales of ∼ 100 pc.

Fig. 4b also shows that the scatter depends on the average time between star formation

events ∆tSF. As expected a shorter ∆tSF means that individual star formation events involve

less stellar mass but occur at a higher rate, which reduces the scatter. The sharp drop in

the scatter when ∆tSF is reduced to 1 Myr proves that much of the scatter in our fiducial

∆tSF = 10 Myr model arises from a single source, the discreteness of star formation. Hence,

observational estimates of the scatter can be used to put tight constraints on the value of

∆tSF. In addition, a systematic observational study of the scatter in the ΣH2 −ΣSFR relation
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as function of ISM environment would allow to determine whether (and how) ∆tSF depends

on ISM properties.

In order to assess how much of the total scatter is caused by time variations in the

H2 abundance (and not related to time discreteness of star formation), we also show the

scatter for a run with ∆tSF = 0.1 Myr. This timescale is close to the smallest dynamical

time step in our simulation and, hence, effectively eliminates any discreteness (beyond that

dictated by the simulation time step) in the star formation model. We then measure the

scatter in the true ΣH2 −ΣSFR relation using time-averaged SFRs (using 4 Myr and 20 Myr

as averaging times). In this way we isolate the scatter that is caused by the observational

actuality that SFRs are time-averaged quantities, but H2 masses are observed at a particular

instant. The scatter that results in this way is relatively small, see Fig. 4b. On super-kpc

scales it is dominated by the scatter that is caused by XCO fluctuations and on sub-kpc scales

by the scatter due to the discreteness of star formation. However, we point out that time

variations in the H2 abundance couple in a non-linear way to the Poisson noise of individual

star formation events (see appendix). Hence, they contribute to the scatter caused by the

discreteness of star formation and, hence, cannot be neglected.

In Feldmann et al. (2011) we found that noise inserted by hand on small scales leads to

scatter in the ΣH2 −ΣSFR relation that decreases roughly as power law ∝ l−α, where α ≈ 0.5,

with increasing spatial averaging scale l. Fig. 4b shows that the scatter due to the stochastic

nature of star formation follows this scaling approximately. In particular, it is clearly less

steep than a α = 1 scaling which would be the naive expectation if the gas were arranged

in disk of uniform density. As discussed in Feldmann et al. (2011) the scaling deviates from

α = 1 because the density distribution of the ISM, determined by turbulence, is far from

being uniform.

How does the scatter that is predicted for our fiducial choice ∆tSF = 10 Myr compare

with observations? Such a comparison is not straightforward since observational estimates

of the scatter depend on choices in the methodology. For instance, the treatment of diffuse

emission does not only affect the inferred slope of the ΣH2 − ΣSFR relation, but also the

scatter. Furthermore, the measured scatter depends on the surface density range of the fit.

With these caveats in mind we will now compare our predictions to observational studies

that give quantitive estimates of the scatter at a given scale.

Rahman et al. (2011) infer a scatter of about 0.3-0.4 dex for SFRs based on Hα lumi-

nosities on ∼ 0.5 kpc scales. The scatter is lower (∼ 0.1 − 0.3 dex) when they use tracers

with longer lifetimes (FUV + 24µm). Our model predicts a scatter of ∼ 0.4 dex for Hα

based SFRs and a scatter of ∼ 0.2 dex if FUV luminosities are used to trace star formation

on ∼ 0.5 kpc scales. This quantitative agreement is a further justification of the choice
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∆tSF = 10 Myr.

Verley et al. (2010) investigate how the scatter increases with increasing spatial resolu-

tion. Their Fig. 4 shows a scatter of ∼ 0.4 dex on 360 pc scales, ∼ 0.35 dex on 720 pc scales,

and ∼ 0.3 dex on 1.4 kpc scales. This is a somewhat shallower scaling than our predictions

(∼ 0.4 dex on 500 pc scales, ∼ 0.25 dex on kpc scales and 0.1-0.15 dex on super-kpc scales),

see Fig. 4b. However, their scatter is computed by an iterative clipping method that would

tend to underestimate the scatter if the scatter is large, i.e., on smaller scales.

Schruba et al. (2010) compare the gas depletion times τCO and τH2 in apertures centered

on peaks of CO and Hα emission, respectively. Unfortunately, they do not report the scatter

in the ΣH2 − ΣSFR relation. However, we can compare the change of log10(τCO − τH2), a

crude estimator of the scatter, with changing spatial averaging scale using their Fig. 3. This

results in a scaling similar to the predictions given in our Fig. 4.

To summarize, our model predicts that for galaxies with Milky-Way like ISM conditions

most of the scatter in the ΣH2−ΣSFR relation is a consequence of the time discreteness of star

formation. Systematic variations in the SFR tracer conversion factors are only relevant for

tracers with short lifetimes (e.g., Hα) and when observations are done on sufficiently small

scales (< 400 pc). Variations of the H2/CO conversion factor can dominate the scatter on

kpc scales and above, but are unimportant on much smaller scales. Finally, fluctuations in

the H2 abundance play a supporting role, enhancing the scatter caused by the discreteness

of the star formation process.

4. Discussion

How does the star formation model presented in this paper relate to alternative inter-

pretations of the scatter in the ΣH2 − ΣSFR relation?

A commonly made suggestion is that the relation “breaks down” on small scales (Mo-

mose et al. 2010; Onodera et al. 2010; Schruba et al. 2010) because molecular clouds pass

through evolutionary phases in which they transform from CO-bright, but star-less, clouds

to star forming regions with little surrounding molecular gas. One of the difficulties with a

picture in which most of the molecular gas in a galaxy goes through a well defined sequence

of stages is the following. It does not explain why the H2 depletion time of molecular clouds

with embedded young stellar objects is only a few 100 Myr (Lada et al. 2010), while the

depletion time on galactic scales is an order of magnitude larger (Bigiel et al. 2011). In fact,

this observation, originally used as evidence to support long lifetimes of molecular clouds

(Zuckerman & Evans 1974), implies that the majority of the molecular gas in the galaxy
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has to be in a non-star forming state (Elmegreen 2000), possibly in either non-star forming

clouds that will be dispersed before star formation has a chance to begin, or in unbound

molecular associations.

The way our model addresses this problem is that the observed gas depletion time of

a molecular and star forming region is smaller than the average depletion τdep by a factor

∼ ∆t∗/∆tSF (see appendix). Observations of individual molecular clouds often derive SFRs

based on counts of young stellar objects (∆t∗ = 1 − 2 Myr) or by using tracers of ionizing

radiation from massive stars (∆t∗ ∼ few Myr), e.g., Hα emission or free-free radio emission.

Consequently, ∆t∗ < ∆tSF = 10 Myr and the observed gas depletion time in star forming

regions is shorter than τdep. This is balanced by the large (formally infinite) depletion time

in molecular regions that are not currently star forming.

It has also been suggested that the scatter in the ΣH2 −ΣSFR relation is caused by vari-

ations in the ratio between molecular gas and dense (� 104 cm−3) molecular gas (Lada et al.

2012). Our model does not explicitly follow dense gas, but such variations could be included

as an additional stochastic component in the star formation model, see §3.4. However, the

tight correlation between dense gas and star formation in many different environments (Lada

et al. 2012; Papadopoulos et al. 2012) is suggestive of an alternative way. In the context

of our model the only thing required is to re-interpret the word “individual star formation

event” as “individual dense gas formation event” and to assume that, once gas becomes very

dense, star formation is inevitable and will proceed on the ∼ free-fall time of the respective

dense gas clump. This modification of our model does not specify the physical mechanism for

the sudden increase in gas density, but several plausible options exist, e.g., cloud collisions

(Tasker & Tan 2009).

This re-interpretation of our star formation model accounts, by construction, for the

observed tight correlation between dense gas and star formation rate. Furthermore, the

ratio between dense (i.e., star forming) molecular gas and all molecular gas in a given region

will vary depending on how many “dense gas formation events” have occurred in the region.

In this model both the scatter in the ΣH2 − ΣSFR relation and the scatter in the mass

ratio between dense and not-so-dense gas on small scales are a consequence of the discrete

formation of dense gas clumps out of molecular gas.

Further potential contributors to the scatter include the incomplete sampling of the

IMF and the drifting of stars out of their parent molecular clouds. These scatter sources are

unlikely to be relevant given the relatively large spatial scales (� 100 pc) and SFR surface

densities (> 10−3 M� yr−1 kpc−2) in our study (see Onodera et al. 2010).

We conclude that in the context of our star formation model there is no “break down”
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of the ΣH2 − ΣSFR scaling relation. Instead, the proper interpretation is that the discrete

and stochastic nature of star formation becomes evident as observations probe smaller and

smaller scales.

5. Summary and Conclusions

In this paper we studied the slope and the scatter of the ΣH2 − ΣSFR relation using

cosmological galaxy formation simulations coupled with models for star formation, H2 chem-

istry, and CO emission. Our focus is especially on the role of the CO/H2 conversion factor.

We found that X-factor variations with surface density can result in significant biases of the

measured slope. In particular, at high spatial resolution (few 100 pc or better) and suffi-

ciently low surface densities (ΣH2 < 20 M� pc−2) the slope inferred from CO observations

is shallower than the actual slope. In contrast, the inferred slope becomes steeper than

the true slope if galaxies with high H2 surface densities (above 100 M� pc−2) are included

in the sample, providing an possible explanation for the slightly super-linear slope of the

ΣH2 −ΣSFR relation seen at high gas surface densities (e.g., Genzel et al. 2010). Yet, we also

showed that measurements at � 500 pc resolution over a surface density range often studied

in samples of nearby galaxies, 10 M� pc−2 < ΣH2 < 100 M� pc−2, are essentially unbiased.

Variations in the X-factor contribute to the scatter in the ΣH2 − ΣSFR relation (of the

order of ∼ 0.1 − 0.2 dex), dominating over many other scatter sources when the spatial

resolution of the survey is ∼ kpc or larger. This even holds if there are no significant

spatial variations of the dust-to-gas ratio or the interstellar radiation field. Such variations

are expected in a heterogeneous sample of galaxies, leading to additional galaxy-to-galaxy

scatter with an amount that depends on the properties of the particular galaxy sample (e.g.,

Schruba et al. 2011). On sub-kpc scales, however, spatial variations in the CO/H2 conversion

factor contribute little to the overall scatter (assuming a fixed dust-to-gas ratio). On such

scales much of the scatter is a consequence of the fact that the measured, time-averaged

SFRs differ from the SFRs that are expected based on the present amount of H2.

We demonstrated that the scatter in the ΣH2 − ΣSFR relation (on scales of ∼ 100 pc

and larger) is primarily a consequence of the discreteness of the star formation process. The

luminosity evolution of SFR tracers can become relevant for tracer with short lifetimes, e.g.,

Hα, on small scales (less then a few 100 pc). For FUV-based SFRs, however, the scatter

does not differ significantly from the scatter based on a hypothetical tracer with a plain 20

Myr lifetime. The differences in the timescales between SFR tracers (at least a few Myr, up

to 100 Myr) and that of H2 masses (essentially instantaneous measurements) does lead to

some scatter, but it is typically dominated by scatter that results from X-factor variations
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(on super-kpc scales) and by scatter due to the discreteness of star formation (on sub-kpc

scales).

The predictions made in the paper suggest a number of observational tests that could

be used to constrain the presented numerical models. Fortunately, most of the more obvious

tests, e.g., looking for a change in slope of the ΣH2 − ΣSFR relation at very low and very

high surface densities (Fig 2b, Fig 3), should be feasible with future ALMA observation. A

clear test of the predictions of the Poisson star formation model should be possible with a

systematic, observational study of how the scatter in the ΣH2 − ΣSFR relation scales with

spatial scale and how it depends on the lifetimes of star formation tracers. Such a study

would allow to constrain the discreteness of star formation and, more generally, would be

a crucial guide for the development of the theoretical underpinnings of star formation in a

galactic context.
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A. APPENDIX

In this appendix we give a more formal definition of the Poisson star formation model

introduced in §2.2 and describe its implementation in the ART code. The model assumes

that the number of individual star formation events N∆t in a given time interval ∆t is a

Poisson random variable with a mean and variance λ = ∆t
∆tSF

. Here, ∆tSF is the average time

interval between two star formation events. The continuum, non-stochastic limit corresponds

to ∆tSF → 0.

The ensemble average SFR density in a given region is proportional to the H2 density,

i.e.,

〈ρ̇∗〉(t) =
ρH2

τdep
, (A1)

where the gas depletion time τdep is assumed to be a constant. The ensemble average SFR
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in a given fixed volume l3SF is simply S = 〈ρ̇∗〉l3SF. We denote the time average of S over

some interval ∆t as S∆t.

The actual SFR, S∆t, that occurred in the volume l3SF during the time interval ∆t is a

random variable and defined as

S∆t = N∆t
∆tSF

∆t
S∆t, (A2)

which ensures that the ensemble average of S∆t equals S∆t. This equations shows that the

stellar mass formed during an individual star formation event is simply given by S∆t∆tSF,

i.e., it scales linearly with the average SFR.

The time interval ∆t may be some small, arbitrarily chosen time step. We are typically

interested in measuring the mean and variance of the SFR (or of its logarithm) over some

physical time interval ∆t∗ � ∆t, e.g., over the lifetimes of star formation tracers such as

Hα or FUV emission. The actual SFR over ∆t∗ is given by

S∆t∗ =
∆t

∆t∗

∑
i

S∆t,i =
∆tSF

∆t∗

∑
i

N∆t,i S∆t,i, (A3)

with indices i running over the ∆t∗/∆t time intervals of length ∆t.

It is worthwhile to have a closer look at (A3). First, the expression on the right hand

side implies that S∆t∗ does not depend on the time step ∆t provided ∆t is sufficiently short

compared with the typical time over which S fluctuates. Moments of S∆t∗ and log10 S∆t∗

depend on the timescales ∆tSF and ∆t∗ only via the ratio ∆t∗/∆tSF. The equation also

allows us to estimate the H2 depletion time ρH2 l3SF/S∆t∗ that an observer would measure

in a star forming region (N∆t∗ =
∑

i N∆t,i ≥ 1). If we assume that the H2 density in the

region remains constant during ∆t∗, then the depletion time that the observer would infer

is τdep(∆t∗/∆tSF)/N∆t∗ , which is smaller than τdep if ∆t∗ < ∆tSF.

Equation (A3) further shows that S∆t∗ depends in a non-linear way on both the time

evolution of the H2 mass in a given region and the number of individual star formation

events. Hence, we expect that the scatter in the ΣH2 − ΣSFR relation that arises from the

discreteness of star formation depends in a non-linear way on both the time variations in the

H2 mass and on Poisson shot noise in the number of individual star formation events. To be

quantitative let us approximate the scatter in the ΣH2 − ΣSFR relation with σlog10 S∆t∗ , the

standard deviation of the logarithm of S∆t∗ > 0. Let us further assume that S∆t,i fluctuates

over time ∆t∗ as a log-normal random variable, i.e., S∆t,i ∝ eσX , where X is a Gaussian

random variable with mean 0 and variance 1. The choice ∆t∗ = 20 Myr, ∆tSF = 10 Myr and

σ = 1.4 results in σlog10 S∆t∗ ≈ 0.60. With the same set of parameters but ∆tSF → 0 we find
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σlog10 S∆t∗ ≈ 0.07. If we assume σ = 0, i.e., S∆t,i constant, we obtain σlog10 S∆t∗ ≈ 0.24. Hence,

the variance of log10 S∆t∗ is not simply the sum of the variances caused by Poisson noise and

H2 fluctuations, respectively, but is determined to a large extent by their covariance. Using

this simple test setup we also find that the scaling of σlog10 S∆t∗ with ∆t∗/∆tSF depends on

the value of σ, although, for sufficiently large ∆t∗/∆tSF, the scatter decreases with increasing

∆t∗/∆tSF.

Our simulations adopt the Poisson star formation model in the following way. Every

∆t = 105 yr the code computes the ensemble average SFR S in each resolution element

(lSF ∼ 100 pc, see Table 1) based on the present H2 mass. Then, a random realization of

N∆t is drawn from a Poisson distribution with the mean ∆t/∆tSF and, if N∆t > 0, the code

creates a stellar particle of mass N∆t S∆tSF.
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