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ABSTRACT
Cooling functions of cosmic gas are a crucial ingredient for any study of gas dynamics and thermodynamics

in the interstellar and intergalactic medium. As such, they have been studied extensively in the past under the
assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation
field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most
general case, these modifications cannot be described in simple terms, and would require a detailed calculation
with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example).
We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident
radiation field, the cooling and heating functions can be approximated as depending only on (1) the photo-
dissociation rate of molecular hydrogen, (2) the hydrogen photo-ionization rate, and (3) the photo-ionization
rate of O VIII; more complex and more accurate approximations also exist. Such dependence is easy to tabulate
and implement in cosmological or galactic-scale simulations, thus economically accounting for an important
but rarely-included factor in the evolution of cosmic gas. We also show a few examples where the radiation
environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host
halo without any mechanical or non-radiative thermal feedback.
Subject headings: methods: numerical

1. INTRODUCTION

The ability of cosmic gas to radiate its internal energy (i.e.
radiative cooling) and to absorb energy from the incident radi-
ation field (radiative heating) is a primary distinction between
the gas and dark matter; radiative heating and cooling pro-
cesses are important in almost every study of gas dynamics
or thermodynamics in the interstellar and intergalactic media.
Because of this importance, cooling processes in the gas have
been investigated in numerous prior studies, appear as central
chapters in multiple textbooks, and are computed by several
publicly available codes.

However, while the physics of radiative cooling and heating
is well understood, the actual application of cooling and heat-
ing functions for studies of interstellar and intergalactic gas is
surprisingly incomplete. The classic “standard cooling func-
tion” (e.g. Cox & Tucker 1969; Raymond et al. 1976; Shull
& van Steenberg 1982; Gaetz & Salpeter 1983; Boehringer &
Hensler 1989; Sutherland & Dopita 1993; Landi & Landini
1999; Benjamin et al. 2001; Santoro & Shull 2006; Gnat &
Sternberg 2007; Smith et al. 2008) has indeed been computed
and tabulated quite precisely. However, the “standard cool-
ing function” is computed under the assumption of pure colli-
sional ionization equilibrium (CIE), which is not always valid
in the interstellar medium and is never valid in the intergalac-
tic medium (c.f. Wiersma et al. 2009). In many astrophysical
applications the incident radiation field introduces significant,
often dominant, modifications to the “standard cooling func-
tion”. On top of that, in some environments the assumption
of the photoionization equilibrium may not be sufficiently ac-
curate (Sutherland & Dopita 1993; Santoro & Shull 2006).

Such dependence can be illustrated by comparing the pure
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FIG. 1.— Example of the importance of the incident radiation field on the
cooling functions: blue dashed and solid lines show the “standard cooling
function” for the metal-free and solar-metallicity gas respectively. Corre-
sponding red lines show the same cooling functions for the fully ionized gas.

CIE cooling function with the cooling function in fully ion-
ized gas, as shown in Figure 1 for both metal-free and solar-
metallicity4 gas. In the fully-ionized limit, where the only
cooling process in bremsstrahlung, the cooling function over
a wide range of temperatures differs from a pure CIE case by
more than two orders of magnitude!

Thus, the cooling function for photo-ionized gas depends
not only on the gas temperature, number density, and metallic-
ity, but also on the incident radiation field. There is, of course,
nothing new in that statement. The crucial role of the radia-
tion environment has always been understood by practition-
ers in the field. The challenge, however, is in economically
accounting for this dependence in full 3D numerical simula-
tions, where the cooling and heating functions are evaluated
billions or even trillions of times during a single simulation.

4 Throughout this paper, “solar metallicity” refers to the metallicity of the
gas in the solar neighborhood, Z ≈ 0.02, not the actual metallicity of the Sun.
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If we allow for the worst case scenario – the radiation field Jν

is allowed to vary arbitrarily – we can introduce sharp edges
and features in the radiation spectrum that are specially de-
signed to ionize particular levels of particular elements. This
allows the cooling function to be “sculpted” in an essentially
arbitrary way.

One possible way to account for the effect of the inci-
dent radiation field is to fix the radiation spectrum and am-
plitude. For example, in studies of intergalactic medium it
is often (but not always) sufficient to account for the cosmic
background radiation. Since the cosmic background radia-
tion evolves with redshift, the cooling and heating functions
become redshift-dependent, but such 1-dimensional depen-
dence is easy to pre-compute and tabulate for use in simu-
lations (Benson et al. 2002; Kravtsov 2003; Wiersma et al.
2009; Vasiliev 2011). Unfortunately, these cooling and heat-
ing rates are then often used for modeling gas dynamics in
galactic halos or even ISM – environments where the cosmic
background radiation is a sub-dominant component of the in-
cident radiation field.

Therefore, it is desirable to find a way to account for a gen-
eral shape of the incident radiation field without the need to
recompute the cooling and heating functions every time they
are needed. In this paper, we show that it is possible to come
up with an approximate solution for this problem using a suf-
ficiently general model for the radiation field spectrum.

2. APPROXIMATING THE COOLING AND HEATING FUNCTIONS

The radiative term in the internal energy equation - the rate
of change of the gas internal energy due to radiative gains and
losses - can be represented as

dU
dt

∣∣∣∣
rad

= n2
b [Γ(T, ...) −Λ(T, ...)] , (1)

where U is the gas thermal energy and nb = nH + 4nHe + .. is
the total baryon number density. We explicitly factored out n2

b
in both the cooling (Λ) and the heating (Γ) functions so that
these are density-independent in the CIE limit.

In the most general case the cooling and heating functions
depends on an extremely large set of arguments: gas temper-
atute T , baryon number density nb (in addition to n2

b depe-
dence explicitly accounted for in Equation (1)), the fractional
abundance Xi j for the species i (inclouding atomic and ionic
species, various molecules, and cosmic dust) at level j, the
distribution of the column density for the species i at level j
at different velocity values with respect to the systemic veloc-
ity dNi j(v)/dv, the specific intensity of the radiation field as a
function of frequency Jν , and the heating rate by cosmic rays
ζCR,

F(T, ...) = F(T,nb,Xi j,
dNi j(v)

dv
,Jν , ζCR), (2)

where hereafter F denotes either Γ or Λ,

F(...)≡
[

Γ(...)
Λ(...) .

Obviously, such a complex dependence cannot be described
in simple terms, and would require a detailed calculation
with a large set of chemical species using a radiative trans-
fer code - for example, the well-known code Cloudy (Ferland
et al. 1998). That would make it impractical as a method for
computing the cooling and heating function in realistic three-
dimensional numerical simulations.

We, therefore, adopt several major simplifications. First, we
restrict our focus to a purely optically thin case (all Ni j = 0).
That immediately implies that we have to explicitly exclude
cooling and heating due to molecules and dust - these pro-
cesses crucially depend on radiative transfer and computing
them in the optically thin case does not make much physi-
cal sense (molecular clouds are shielded). We also exclude
cosmic rays, since cosmic ray heating is mostly important in
molecular gas, which we exclude anyway.

With these restrictions, Equation (2) becomes

F(T, ...) = F(T,nb,Xi j,Jν).

Even that is way too complex, as the cooling and heating func-
tions depend on hudreds of individual level populations for
atomic and ionized species.

At low enough densities and faint enough incident radiation
fields, most of reactions that result in cooling and heating in
gas are interactions of an atom/ion with either a photon or an
electron. Hence, in this limit cooling and heating functions
(Eq. 1) can be substantially simplified:

F(T,nb,Z,Jν)≈ F (T,Z,
Jν

nb
)
∣∣∣∣
nb,Jν→0

,

For example, this is case for the “standard cooling function”,
which is density independent in our convention of Equation
(1).

Unfortunately, this approximation is only valid for imprac-
tically low values of the radiation field; it is invalid, for ex-
ample, in typical ISM conditions in the Milky Way. Not only
do various 3-body processes become important at high densi-
ties, but a realistic radiation environment will cause some of
the excited states of various atoms and ions to become pop-
ulated. Collisional de-excitation of excited levels breaks the
density-independence of the cooling and heating functions.

Of course, when some of the radiation emitted by the gas
is trapped, radiative transfer effects become important, and
cooling and heating functions become dependent not only on
the gas density, but also on the overall spatial distribution of
the emitting gas. In other words, the whole concept of cooling
and heating functions becomes invalid.

We enforce this by restricting Cloudy calculations to a sin-
gle zone and setting the zone size to a vanishingly small value.
The collisional de-excitation and 3-body reactions still induce
an explicit density dependence in the cooling and heating
functions, but this dependence is not strong (linear at most)
if we parameterize the functions as

F(T,nb,Z,Jν) = F(T,Z,
Jν

nb
,nb). (3)

3. MODELING THE INCIDENT RADIATION FIELD

As we mentioned above, it is not possible to account para-
metrically for an arbitrary radiation field spectrum. However,
in a vast majority of astrophysical application the incident ra-
diation field is dominated by radiation from stars, AGN or a
combination thereof. Thus, we model the incident radiation
field as

Jν = J0e−τν

[
1

1 + fQ
sν +

fQ

1 + fQ
x−α

]
, (4)

where x is the photon energy in Rydbergs (x ≡ hν/(1 Ry)),
and sν is a fit to the stellar spectrum from Starburst99 (Lei-
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therer et al. 1999),

sν =
1

5.5





5.5, x < 1
x−1.8, 1 < x < 2.5
0.4x−1.8, 2.5 < x < 4
2×10−3x3/

(
exp(x/1.4) − 1

)
, 4 < x

(this fit is shown in Fig. 4 of Ricotti et al. (2002)). Equation
(4) also includes the possibility that the incident radiation field
is attenuated by gas with the opacity

τν =
τ0

σH I,0
[0.76σH I(ν) + 0.06σHe I(ν)] ,

where σ j(ν) and σ j,0 are photoionization cross-sections and
their values at respective ionization thresholds for j = HI and
HeI, and τ0 is a parameter.

Overall, the radiation field model from Equation (4)
contains 4 parameters: the amplitude J0, the AGN-like
power-law contribution slope α and amplitude fQ, and the
shielding optical depth τ0. The last 3 parameters are di-
mensionless; we choose to measure J0 in units of the
typical radiation field in the Milky Way galaxy, JMW =
106 photons cm−2 s−1 ster−1 eV−1 (Draine 1978; Mathis et al.
1983).

For each set of parameters, we use the widely known pho-
toionization code Cloudy (Ferland et al. 1998) to compute the
cooling and heating function for a range of gas temperatures
at fixed gas density and metallicity. Examples of such com-
putations are shown in Figure 2. For all 3 cases the radiation
field is the same at 1 Ry, but differs in spectral shape at other
frequencies (a stellar spectrum, a power-law spectrum, and a
power-law spectrum shielded by a τ0 = 100 cloud).

In order to extensively explore the cooling and heating
functions for our radiation field model, we sampled the full
parameter space (metallicity, density, and the radiation field)
on the following grid of values:

Z/Z¯ = 0,0.1,0.3,1,3

lg(nb/ cm−3) = −6,−5, ...,6

lg(J0 cm−3/nb/JMW) = −3,−2.5,−2, ...,7
α = 1,1.5,2,2.5,3 (5)

lg( fq) = −3,−2.5,−2, ...,1
lg(τ0) = −1,−0.5,0, ...,3

This parameter range is wide enough to include both extremes
shown in Fig. 1: the case where the radiation field is com-
pletely negligible and the case where the gas is fully photoion-
ized.

For each of the 5× 13× 21× 5× 9× 9 ≈ 550,000 sets of
parameters from this grid, we run Cloudy to compute the cool-
ing and heating functions for 81 values of the temperature be-
tween 10 K and 109 K in steps of 0.1 dex (almost 45 million
Cloudy runs altogether). Using this large database, we now
consider the various dependencies of the cooling and heating
functions one by one.

3.1. Metallicity Dependence
In a further simplification, we expand both cooling and

heating functions into Taylor series in metallicity up to the
quadratic term,

F ≈ F0 +
Z

Z¯
F1 +

(
Z

Z¯

)2

F2, (6)

where all functions Γi and Λi depend only on T , Jν/nb, and
nb.

We achieve this decomposition in practice by fitting a sec-
ond degree polynomial to the five Z values that we sample in
Table (5). This, and all of our subsequent approximations, we
extensively test below in §4. Here we note simply that the
error introduced by dropping cubic and higher power terms
is by far the smallest of the errors introduced by our approx-
imations – in the rms sense, the second order expansion of
the Taylor series is accurate to better than 3% – as long as
we restrict Z to less than 3 solar metallicities. The quadratic
approximation rapidly loses accuracy as the metallicity in-
creases. At metallicities above 5Z¯, approximation (6) even
results in negative cooling functions in a few instances.

Six functions Γi and Λi (i = 0,1,2) can be used directly,
but since cooling and heating functions are not necessarily
monotonic functions of Z, some ofF1 andF2 (again,F stands
for either Γ or Λ) can be negative. Since interpolation in log-
log space is usually more accurate than direct interpolation,
positive functions are much more suitable for tabulation and
interpolation. Hence, we replace 6 functions Fi with 6 new
functions F̃i as

F̃0 =F0,

F̃1 =F0 +F1 +F2,

F̃2 =F0 + 2F1 + 4F2,

where symbol F̃ also means either the cooling or the heating
function. Functions F̃i are none other than the cooling and
heating functions at Z = i×Z¯ and hence are always positive.
The transformation between Fi and F̃i is linear and can be
trivially inverted.

In the following, we always operate on functions F̃i and
convert them back to Fi (i.e. Γi and Λi) as the very last step.

3.2. Radiation Field Dependence
So far we still have not resolved the main challenge – the

fact that the 6 functions F̃i that we need to describe depend
on the whole incident radiation field Jν ,

F̃i = F̃i(T,
Jν

nb
,nb).

The primary contribution of this paper is that we further ap-
proximate this dependence by replacing the full radiation field
with a finite set of photoionization rates.

Specifically, let us define a normalized rate Q j as

Q j ≡ Pj

nb
,

where Pj is a photoionization rate for some atom or ion. We
now seek an approximation of the form

F̃i(T,
Jν

nb
,nb)≈ F̃i(T,Q j,nb) (7)

for i = 0,1,2 and some set of Q j.
It makes sense that the rates we choose to represent the

radiation field should sample the wide range of frequencies.
For example, since CII is an important coolant in the low-
temperature regime, one of the rates should sample the ra-
diation field below the hydrogen ionization threshold. We
choose the photo-dissociation rate of molecular hydrogen in
the Lyman-Werner band as such a rate, simply because that
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FIG. 2.— Incident radiation fields (top panels) and gas cooling (blue lines) and heating (red lines) functions (bottom panels) for three different radiation field
models: [J0,α, fQ,τ0] = [100JMW,3,10−3,0.1] (left), [100JMW,2,10,0.1] (middle), and [100JMW,2,10,100] (right), all for nH = 1 cm−3. As in Fig. 1, solid and
dashed lines are for Z = 0 and Z = Z¯ respectively. It is clear that the cooling and heating functions are strongly dependent on the incident radiation field.

rate is also useful for several other processes that can be mod-
eled in the numerical code (for example, the destruction of
molecular hydrogen). It also makes sense to use the hydro-
gen ionization rate since hydrogen is an important coolant at
T & 10,000 K for all but the highest radiation fields. Finally,
one of the selected rates should be sensitive to high energy
photons.

We present two specific choices for Q j in §3.4.

3.3. Density Dependence
Finally, we need to address the remaining density depen-

dence in Equation (7). The trick of using Q j makes this de-
pendence relatively weak, although highly non-trivial. We
adopt two strategies to deal with it. The first one is the sim-
plest possible approach – we tabulate F̃i at the 13 density
values we tested in Table (5) and linearly interpolate in log-
log space. The guaranteed positiveness of F̃i becomes crucial
when working in logarithmic space.

In the second approach we fit the density dependence of F̃i
with the following fitting formula:

F̃i(T,Q j,nb)≈ a2 + abnβ
b + b2n2β

b

1 + cnγ
b + c2n2γ

b

+ dnb, (8)

where all fitting parameters (a,b,c,d,β,γ) depend on i, T ,
and all Q j. The last term with non-negative d describes the

3-body reactions (hence an extra nb power on top of the two
already factored out in Equation 1), while the first term de-
scribes the effect of collisional de-excitation. Its particular
functional form is not motivated by any physical considera-
tions, but we find empirically that it works well. In addition,
this functional form guarantees that all F̃i remain positive for
any vale of nb, even outside of our tested range.

Using the “density-interpolated” approach uses more mem-
ory (13 density values) but is faster; the “density-fitted” ap-
proach of Equation (8) is more economical (just 6 fit param-
eters) but requires evaluating the complex formula for every
function evaluation and hence is several times slower. As we
show below in §4, they are essentially identical in their numer-
ical precision. Thus, the two approaches offer an optimization
choice between speed and memory in a numerical implemen-
tation.

3.4. Notes on the Specific Implementations
In this paper we consider two primary implementations. In

the first implementation we take three values QLW, QH I, and
QO VIII, combine them into 3 parameters

r1 = QLW,

r2 = QH I/QLW,

r3 = QO VIII/QLW, (9)
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and call this implementation the “LHO table”. In this imple-
mentation the particular choice of the third rate is not very
important; any hydrogenic sequence rate for elements from
oxygen to aluminum (F IX, Ne X, ..., Al XIII) gives an almost
equivalent approximation.

In the second, “LHOSI table” approximation, we use 5 sep-
arate rates combined into 4 parameters:

r1 = QLW,

r2 = QH I/QLW,

r3 = QO VIII/QLW,

r4 = Q0.1
S XVIQ

0.9
Fe XXVI/QO VIII. (10)

This approximation is expected to be more accurate that the
3-rate LHO one, but it is more complex. We have manually
explored a substantial set of possible choices for Q j, but have
not conducted a fully exhaustive search, as it would require
complex automation of the search process.

We implement each of the two approximations (7) by con-
structing a grid of parameter values and computing the av-
erage cooling and heating functions for all incident radiation
fields that give the same set of parameter values r j.

For the LHO table, we use a logarithmically-spaced ta-
ble for −12.5 ≤ lg(r1) ≤ −3, −6.5 ≤ lg(r2) ≤ 0, and −9.5 ≤
lg(r3) ≤ −3.5 with the logarithmic step of 0.5 dex. We found
that using a finer step in the table does not lead to any in-
crease of accuracy. Such a table for a single value of the gas
density includes 20×14×13 = 3640 entries. A full table that
uses 13 density values for the “density-interpolated” imple-
mentation takes 88 MB of memory. A slower, “density-fitted”
implementation takes only 40 MB of memory.

Our implementation of the LHOSI table uses the same spac-
ing and parameter ranges for r1, r2, and r3 (which are the
same as in the LHO table); for the last parameter it adopts
a range of −3.5 ≤ lg(r4) ≤ −2. The resulting table contains
20× 14× 13× 4 = 14,560 entries. A full table that uses 13
density values for the “density-interpolated” implementation
takes 350 MB of memory. A slower, “density-fitted” imple-
mentation takes about 160 MB of memory.

4. TESTING THE COMPLETE APPROXIMATION

Since we use our sample of Cloudy runs to create the ac-
tual tables with the cooling and heating functions, we need a
different data set to test the accuracy of our approximations.
For this purpose we select 100,000 points from within our pa-
rameter space (5), sampling uniformly on a logarithmic scale
(for the metallicity, we randomly choose a value between -3
and 0.5 in lg(Z)). For each test point, we run Cloudy for our
81 values of the temperature to compute cooling and heating
functions. This “testing” data set is completely independent
of the data set used to create the tables.

We show in Figure 3 the error distribution for two imple-
mentations (LHO and LHOSI) described above. Two features
of Fig. 3 are important to note. First, the median errors for
both cooling and heating functions are modest, less than 10%.
This is very good news indeed, as it shows that the whole di-
versity of cooling and heating functions can be parametrized
economically, albeit approximately. Second, unfortunately, is
that the error distribution is not Gaussian, but rather exhibits
a long tail toward large, or “catastrophic”, errors. For exam-
ple, in 1% of all cases that we tested, the errors in the LHO
approximation reach a factor of 2. The LHOSI approximation
is better, but still exhibits catastrophic errors.

FIG. 3.— Error in approximating the cooling (blue lines) and heating (red
lines) functions with several photoionization rates. Solid lines trace the me-
dian error (50% of cases have the error below the solid line), dashed lines
trace the 90% error, and dotted line trace the 99% error (only 1% of all cases
have an error above the dotted line). The top panel shows the LHO table and
the bottom shows the LHOSI table. The existence of “catastrophic” errors (a
small number of cases with large errors) is apparent from this figure.

FIG. 4.— Cumulative error distributions for all values of gas temperatures
for the heating (red lines) and cooling (blue lines) functions for 3 approxima-
tions: density-fitted LHO (dotted lines), density-interpolated LHO (dashed
lines), and density-interpolated LHOSI (solid lines).

In both cases, the lines for the “density-interpolated” and
“density-fitted” variants of both tables are virtually indistin-
guishable from each other because the errors are completely
dominated by the inaccuracy of our main ansatz (7). This is
also illustrated in Figure 4, where we show the cumulative
error distribution for all temperature values for the density-
interpolated LHOSI table and both the density-interpolated
and density-fitted variants of the LHO table. For one case in a
million, the LHO table reaches an error factor of 10. For the
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LHOSI table that error is a factor of 4 for the heating function
and only a factor of 2 for the cooling function.

Of course, the specific shape of the distributions shown in
Fig. 4 is only applicable to our adopted uniform sampling. For
a specific numerical simulation, the probability of errors of a
particular magnitude will depend on the simulation details and
cannot be predicted a priori.

5. CONCLUSIONS

Our main result is that one can approximately represent the
most general cooling and heating functions for gas in ioniza-
tion equilibrium as

{Γ,Λ} (T,nb,Z,Jν)≈
2∑

i=0

(
Z

Z¯

)i

{Γ,Λ}i (T,r j,nb) (11)

with r1 = PLW/nb, r2 = PH I/PLW, and r3 = PO VIII/PLW (the LHO
approximation), or more accurately with the more complex
LHOSI approximation (10). These approximations are rather
accurate on average, but suffer from “catastrophic” errors – in
10−6 of all cases the approximate cooling or heating function
may deviate from the exact calculation by up to a factor of 4
for the LHOSI approximation and a factor of 10 for the LHO
approximation. Thus, these approximations are not suitable

for all applications.
Equation (11) does capture the qualitative dependence of

the cooling and heating functions on the incident radiation
field. To illustrate this, we show in the appendix three exam-
ples where the cooling and heating functions are significantly
modified by the incident radiation field. The last example –
the quasar irradiating its own galactic halo (§A.3) – not only
shows an alteration to the cooling/heating functions, but actu-
ally presents a novel feedback mechanism: the central black
hole suppresses the gas accretion from the halo without any
additional mechanical or thermal feedback.

We are grateful to Andrey Kravtsov for enlightening discus-
sions and constructive criticism. This work was supported in
part by the DOE at Fermilab, by the NSF grant AST-0908063,
and by the NASA grant NNX-09AJ54G. The calculations
used in this work have been performed on the Joint Fermilab -
KICP Supercomputing Cluster, supported by grants from Fer-
milab, Kavli Institute for Cosmological Physics, and the Uni-
versity of Chicago. We acknowledge the use of code Cloudy
(Ferland et al. 1998) as the primary research tool of this study.
This work made extensive use of the NASA Astrophysics
Data System and arXiv.org preprint server.

APPENDIX

SOME EXAMPLES OF COOLING AND HEATING FUNCTIONS IN ISM AND IGM

In this section we present a few examples where the incident radiation field significantly affects the cooling and heating rates
in the gas. These examples are not real physical models, but are simple demonstrations that the dependence that we explore in
this paper actually matters.

The examples presented here are not exhaustive, of course; one can imagine many other similar situations. Their purpose is
to illustrate the numerous possible feedback effects in interstellar and intergalactic environments that arise when we take into
account the effects gas metallicity and incident radiation field on the cooling and heating rates. These effects can be studied, even
if only semi-quantitatively, with the approximations presented in this paper.

Galactic Halo Near a Quasar

FIG. 5.— Left: Cooling (blue lines) and heating (red lines) functions for a Z = Z¯, nb = 340× n̄b galactic halo at the specified distances from a quasar with an
ionizing luminosity 1013L¯. The black solid line shows the pure CIE “standard cooling function”. Right: Cooling (blue lines) and heating (red lines) functions
for a Z = Z¯, nb = 1 cm−3 HII region around an O star. The black solid line shows the pure CIE “standard cooling function”.

In the left panel of Figure 5 we show cooling and heating functions for a typical galactic halo at z = 0 (nb = 340× n̄b =
8.5× 10−5 cm−3) surrounding a bright quasar with an ionizing luminosity of 1013L¯ (roughly corresponding to a 109M¯ black
hole). We assume solar metallicity, a quasar spectrum of Jν ∝ ν−2, and the Haardt & Madau (2001) background.

Some interesting consequences may arise from the radiation-field-dependence of the cooling and heating functions. For ex-
ample, gas in the halo within 1 Mpc of this quasar will not be able to cool and condense into the disk if its virial temperature is
below about 105 K.
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HII Region Around an O Star
In the right panel of Figure 5, we show the cooling and heating functions for a solar metallicity cloud with density nb = 1 cm−3

surrounding an O star with bolometric luminosity L = 30,000L¯. For the stellar spectrum, we assume a black-body with T =
30,000 K. The distances we consider are well within the star’s Strömgren radius (∼ 30 pc), so we may safely assume that the
radial dependence of the starlight is 1/r2 (no depletion due to recombinations). If, instead of a single star, we consider a cluster
of N O stars, our result will still hold if we simply rescale the distance axis by N1/2.

Close enough to the star, the equilibrium temperature of the HII region can be substantially higher than the canonical 104 K.

Quasar Irradiating its own Halo

FIG. 6.— Cooling (blue lines) and heating (red lines) curves for a halo with a z = 3 isothermal density profile surrounding a quasar with 1013L¯ in ionizing
radiation. In the left panel, the metallicity is fixed at 0.5Z¯, in which case the cooling and heating functions become distance-independent. In the right panel, the
metallicity has a mild outward gradient, Z ∝ r−1/2. The black solid curves show the pure CIE “standard cooling function”.

In Figure 6 we show cooling and heating functions in a gaseous halo at z = 3 (virial density nb = 200× n̄b = 3.2× 10−3 cm−3)
irradiated by a ∼ 109M¯ central black hole (1013L¯ in ionizing radiation). The density profile of the cloud is taken as

nb = 3.2×10−3 cm−3
(

100 kpc
r

)2

and the metallicity is taken either to be constant 0.5Z¯ (leading to distance-independent heating and cooling functions) or to have
a mild outward gradient,

Z = 0.5Z¯

(
1 kpc

r

)1/2

.

In both cases, the quasar is capable of maintaining the heating rate in excess of the cooling rate for T . 105 K. It is therefore
possible to prevent cooling in the halo – and hence, accretion of fresh gas onto the galactic disk and the black hole – without any
need for a mechanical or non-radiative thermal feedback mechanism.
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