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We present an SU(12) unification model with three light chiral families, avoiding any external
flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher
dimensional Yukawa interactions involving Higgs bosons that contain SU(5) singlet fields with VEVs
about 50 times smaller than the SU(12) unification scale. The presented model has been analyzed
in detail and found to be in very good agreement with the observed quark and lepton masses and
mixings.
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I. INTRODUCTION

The elementary fermions in the Standard Model (SM)
appear in three families, which are a triplication accord-
ing to their gauge transformations in the unbroken elec-
troweak Lagrangian. The masses vary by several orders
of magnitude and are a mystery withhin the SM. A wide
range of models introduce a spontaneously broken flavor
symmetry, with the associated group being either contin-
uous or discrete [1, 2]. Different charges assigned to the
families account for the mass and mixing hierarchy by pro-
ducing different mass terms with an appropriate Higgs sec-
tor. This is especially necessary in SO(10) Grand Unified
Theories (GUTs), where the 16 spinor irreducible represen-
tation (irrep) is the only complex representation yielding
chiral fermions but no exotic fermions [3]. Early on, unifi-
cation groups based on higher rank orthogonal groups such
as SO(18) were explored [4, 5], but the number of exotic
fields introduced became prohibitive. Early studies of the
case of SU(N) family symmetry include models based on
SU(11) [6, 7] and SU(9) [8–10].

Grand Unified Theories based on the groups SU(N) with
N>5 can give rise to a different approach: while all families
transform in the same way under the SM gauge group it
is possible to assign them to different antisymmetric mul-
tiplets of SU(N) to obtain a non-trivial flavor structure.
Since in SU(5) a family can only be assigned to 10+5 (or
to the conjugated pair) [11], the unification group must be
larger, hence N>5. This idea has led to the supersym-
metric SU(7) [12] and the non-supersymmetric SU(8) mo-
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dels [13] proposed by Barr. In a previous publication [14]
two of the present authors (RF and TWK) and others have
constructed a hybrid of the latter two approaches, with a
partial assignment to different irreps of SU(9) and four dis-
crete symmetries in a non-supersymmetric model. Since
then we have developed a systematic scan of SU(N)’s that
loops over all possible fermion assignments to find viable
models with or without discrete symmetries, including the
hybrid case mentioned above. We present here an SU(12)
model found by this scan which is free of any imposed
external flavor symmetries. We have now also included
the assignment of right-handed neutrinos, which allows the
analysis of the full lepton sector as well, which is more am-
bitious than [12–14].

In Sec. II we outline the construction of the model by
effective higher dimensional operators, which produce the
mass and mixing hierarchy. Sec. III gives a brief survey
of the model scan procedure which enabled us to find the
SU(12) model presented here. Sec. IV is the major section
and presents the SU(12) model in detail: In Sec. IVA we
demonstrate how three chiral families arise from SU(12)
in our model. After listing the fermion assignments and
the Higgs sector in Sec. IVB we construct the Yukawa in-
teractions for the quark and lepton sector in Sec. IVC,
compute the resulting mass matrices, which involves the
seesaw mechanism for the neutrinos, and finally fit the
mass matrices to the measured values of the known masses
and mixings in Sec. IVD. The discussion of the results and
implications are presented in Sec. V. We summarize and
conclude in Sec. VI.
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II. FERMION MASS HIERARCHY FROM
HIGHER DIMENSIONAL OPERATORS

The Yukawa couplings in the Standard Model correctly
parametrize the observed masses and mixings of quarks
and leptons, yet the SM fails to explain why the cou-
pling strengths are spread over a range of five orders of
magnitude. Assuming an underlying naturalness of the
Yukawa couplings, one can understand their measured val-
ues in an effective field theory scenario as coefficients of
effective operators encoding short distance physics above
a scale Λ. In these effective theories only heavy fermions
obtain their masses from renormalizable, four-dimensional
Yukawa couplings, while the masses of the lighter fermions
are due to higher dimensional operators. In non-super-
symmetric models these operators may stem from loops in-
volving Higgs fields, while in supersymmetric models these
loops are suppressed by factors of MSUSY/MGUT. In the
latter case the masses of the lighter fermions must come
from tree-level diagrams at theMGUT scale, which we have
pursued in the construction of the model presented here.
However, we do not consider the phenomenology of the
supersymmetric partners of Standard Model particles by
simply assuming that supersymmetry is broken at a scale
high enough to be inaccessible to current collider exper-
iments, but low enough not to upset the suppression of
loops. Here we expect supersymmetry breaking in the
108–1010 GeV range, which would soften but not solve the
hierarchy problem.

To this end we introduce vectorlike heavy fermions with
masses M at the SU(12) unification scale and extend the
Higgs sector by introducing SU(12) Higgs bosons con-
taining SU(5) singlet vacuum expectation values (VEVs).
These allow one to construct Froggatt-Nielsen-type dia-
grams [15], i. e. tree-level diagrams with heavy fermions
as one or more mass insertions and Higgs bosons contain-
ing SU(5) singlet VEVs (see e. g. [16]), which are assumed
to be about 50 times lighter than the SU(12) unification
scale. In going to the electroweak scale or lower, these mass
insertions can be integrated out leaving effective Yukawa
couplings involving Higgs bosons with electroweak VEVs
and SU(5) singlet VEVs, suppressed by the masses of the
heavy fermions at the SU(12) unification scale, MSU(12).
After breaking the Higgs sector to SU(5) and subsequently
to GSM, the SU(5) singlet VEVs 〈1〉SU(5) and SU(12) uni-
fication scale MSU(12) appear in the ratio:

ε =
〈1〉SU(5)

MSU(12)
∼ 1

50
. (1)

Yukawa interactions of dimension 4 + n give rise to mass
matrix elements of the form:

hijε
nv uTiLu

c
jL, (2)

where hij are the Yukawa couplings and v = 174GeV
is the electroweak VEV. The dimensionless quantity ε
parametrizes the mass and mixing hierarchy in our model.

The power n of ε in each Yukawa interaction is the number
of mass insertions and SU(5) singlet VEVs and represents
an order of the effective operator higher than four. The
value is roughly the ratio of the bottom-quark mass to the
top-quark mass. The assumption in our model is that all
other mass and mixing ratios can be expressed in powers of
ε, while the Yukawa couplings hij are ofO(1) at the SU(12)
unification scale, with the dimension of the corresponding
effective Yukawa interaction chosen accordingly.

The top-quark Yukawa coupling in the Standard Model
is of order unity, suggesting that the renormalizable, di-
mension four interaction is the correct description. Since
all other quark masses are small compared to the top-quark
mass they must arise from higher dimensional Yukawa cou-
plings. The up-type quarks exhibit an especially strong
mass hierarchy compared to the down-type quarks. The
mixing angles of the CKM matrix are small, leading to
similar up- and down-type mass matrices, but with some-
what stronger hierarchies for the former. The neutrinos on
the other hand have comparable masses and large mixing
angles, leading to a light neutrino mass matrix with either
a mild or little hierarchy, while the charged leptons exhibit
a strong mass hierarchy.

III. MODEL SEARCH

The SU(12) model presented in this paper was found
by a computer program developed by one of us (RPF) to
scan models of the type described in Sec. II. The scan
essentially seeks models by brute force, i. e., constructing
all possible combinations of fermion assignments, Higgs
irreps, and massive fermions and probing them for their
phenomenological implications.

Due to the enormous number of combinations, the scan
is constructed in five enclosing loops for a specific SU(N)
group being searched: The first loop runs over anomaly-
free sets of irreps that yield three chiral families at the
SU(5) level. The fermions embedded in 10’s of SU(5) are
assigned to these sets of irreps first, which includes all up-
type quark fields. This is sufficient to compute the up-type
mass matrix, once the Higgs irreps and massive fermions
are defined. All subsets of three of the anomaly-free, three-
family sets of SU(N) irreps can be assigned to fermions of
SU(5) 10’s, which constitutes the second loop.

For each of these assignments, a third loop over all com-
binations of Higgs irreps and massive fermions taken from a
basic set, is performed that computes the orders of the up-
type mass matrix elements for each combination. Imposed
requirements for the ordering can already filter out bad
combinations of fermion assignments, Higgs and massive
fermions. A crucial requirement is that only the top-quark
mass term is of dimension 4, i. e. , of zeroth order in ε.

For each of these filtered combinations, there is an analo-
gous fourth loop over all assignments of fields embedded in
the SU(5) 5’s to irreps of the anomaly-free, three-family set
the outer loop is currently investigating. Since assignments
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for the 10’s and 5’s for all three families and definitions
of Higgs irreps as well as massive fermions is sufficient to
compute the orders of the up-type and down-type mass
matrix elements and thus the CKM matrix, a fit of the
prefactors of the up and down quark mass matrices and
thus the complete quark sector is possible.

Having singled out quark models with reasonable phe-
nomenology, a fifth loop adds assignments of right-handed
neutrinos. For each of these assignments the orders of
Dirac- and Majorana-neutrino mass matrix elements are
computed, as well as the corresponding light-neutrino mass
matrix via the type I seesaw mechanism. Together with the
charged-lepton mass matrix, which is the transpose of the
down-type mass matrix, the neutrino masses and mixings
can be calculated.

For a fit to neutrino data analogous to the quark sector,
only the mass differences squared are used, which allows
for either a normal or an inverted hierarchy. The overall
fit performed at this stage is a combined fit including the
quark mass matrices as well. The fit yields a χ2 value
for each model, which allows one to select suitable models
automatically. A second requirement imposed is that the
prefactors be of order one. A more precise description of
these steps and their results will be published in a follow-
up paper by the authors.

IV. MODEL PROPERTIES

As a result of both the computer scan and by comparing
many models by hand we have found a set of models of con-
siderable interest. Here we will choose one specific SU(12)
example to explore, which has many attractive features.
Out of the thousands of models we have studied there is
a large handful that fit the data quite well. Hence, our
SU(12) model is neither generic nor unique.

A. Three Families in SU(12)

As a prime example of our procedure, we begin with the
set of SU(12) irreps

6(495) + 4(792) + 4(220) + (66) + 4(12) (3)

which is anomaly free and consists of only totally antisym-
metric irreps, to avoid the occurrence of exotic fermions.
To see that this set contains precisely three chiral families
we consider the breaking of the SU(12) gauge symmetry to
SU(5), which can be accomplished by many different pat-
terns of which we discuss two in the following paragraphs.

The totally antisymmetric irreps of SU(12) decompose
to SU(5) as

12 → (5) + 7 (1)
66 → 7 (5) + (10) + 21 (1)
220→ 21 (5) + 7 (10) + (10) + 35 (1)
495→ 35 (5) + 21 (10) + 7 (10) + (5) + 35 (1)
792→ 35 (5) + 35 (10) + 21 (10) + 7 (5) + 22 (1)
924→ 21 (5) + 35 (10) + 35 (10) + 21 (5) + 14 (1)
792→ 7 (5) + 21 (10) + 35 (10) + 35 (5) + 22 (1)
495→ (5) + 7 (10) + 21 (10) + 35 (5) + 35 (1)
220→ (10) + 7 (10) + 21 (5) + 35 (1)
66 → (10) + 7 (5) + 21 (1)
12 → (5) + 7 (1)

(4)

For the irreps in (3) including their multiplicities we have

3(10 + 5) + 238(5 + 5) + 211(10 + 10) + 487(1) (5)

at the SU(5) level with three massless chiral families in
3(10 + 5). Vectorlike pairs of (5 + 5) and (10 + 10) as
well as SU(5) singlet fermions (1) acquire masses at the
SU(5) unification scale. Of the sterile neutrinos in the form
of SU(5) singlet fermions we assign three to the seesaw
mechanism. The three massless chiral families will acquire
mass via the Higgs mechanism at the electroweak scale.

We comment further here on the spontaneous symme-
try breaking from SU(12) to SU(5) and then on to the
standard model gauge group by discussing two of the sev-
eral possible patterns of symmetry breaking. Note that
since our model is supersymmetric above ∼ 1011 GeV,
one must investigate spontaneous symmetry breaking via
the superpotential. For this purpose there already ex-
ists an analysis of the spontaneous symmetry breaking
in SU(N) models due to VEVs for chiral superfields in
the adjoint and totally antisymmetric tensor irreps [17–
19]. It is straightforward to show that a single adjoint
can break SU(N)→SU(N−n)⊗SU(n)⊗U(1) and preserve
supersymmetry, except when n = N/2. Hence we can
break SU(12)→SU(5)⊗SU(7)⊗U(1) with a single 143H.
Adding four more adjoints we can break to SU(5)⊗U(1)

7

and keep supersymmetry unbroken. Finally another ad-
joint can break SU(5) to SU(3)C⊗SU(2)L⊗U(1)Y. One
can check that the addition of 143H adjoint scalars does
not upset the patterns of masses and mixings we have es-
tablished in our SU(12) model. The safest way to proceed
further is to keep all the U(1)’s unbroken until we reach the
SUSY breaking scale where a set of singlet VEVs coming
from the antisymmetric tensor irreps with charges under
the various U(1)’s then breaks all the U(1)’s except U(1)Y.
These low scale VEVs for components of the antisymmet-
ric tensor irreps will also not impact the masses and mix-
ings. Hence we are left with SU(3)C⊗SU(2)L⊗U(1)Y at
the SUSY breaking scale. This procedure is rather generic
and should work for most if not all of the models in the
scan.
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A second somewhat more appealing and economical, but
less generic, approach is to use a set of scalars coming di-
rectly from the antisymmetric chiral superfield irreps to
break SU(12) directly to SU(5) and then use a single ad-
joint to break SU(5) to SU(3)C⊗SU(2)L⊗U(1)Y. This can
be accomplished if the set of antisymmetric chiral super-
field VEVs has vanishing total Dynkin weight [17, 18]. At
least some of these VEVs would be expected to be in the
same SU(12) irreps as the quark and lepton families, but
this would not necessarily be so at the SU(5) level. Seques-
tering the families from the VEVs at the SU(5) level would
avoid some technical difficulties, but the new VEVs would
still leave the model in danger of disrupted masses and
mixings. This approach would necessarily require a full
analysis for each model in the scan. For the rest of this
work we follow the first more generic approach to avoid
these complications.

B. Fermion Assignments, Higgs and Massive
Fermions

A successful assignment of the three SU(5) chiral families
and singlet right-handed massive neutrinos to the SU(12)
irreps follows:

First Family (10)4951→ uL, u
c
L, dL, e

c
L

(5)661 → dcL, eL, ν1,L
(1)7921 →N c

1,L

Second Family (10)7922→ cL, c
c
L, sL, µ

c
L

(5)7922 → scL, µL, ν2,L
(1)2202 →N c

2,L

Third Family (10)2203→ tL, t
c
L, bL, τ

c
L

(5)7923 → bcL, τL, ν3,L
(1)123 →N c

3,L

(6)

with five unassigned 495’s, two unassigned 220’s and three
unassigned 12 irreps, as required by anomaly cancellation,
regarded as massive fields decoupled below the SU(5) GUT
scale as in (5).

The model uses two conjugated Higgs representations
containing the electroweak VEV, 5 and 5 at the SU(5)
level, which contain the SM Higgs doublet and its con-
jugate when SU(5) is broken via an adjoint Higgs. Two
additional conjugate Higgs pairs containing SU(5) singlet
VEVs and two massive fermion pairs are needed for the
higher dimensional Yukawa couplings. As explained above
and discussed in detail in Sec. IVA, a 143H of SU(12) and a
24H of SU(5) are needed for the symmetry breaking, where
the latter may be embedded in the 143H. Four more ad-
joints for complete SU(7) breaking are not displayed here.
To summarize, our scalar and massive fermion content is:

Higgs bosons Massive fermions
(5)924H, (5)924H, 220×220,
(1)66H, (1)66H, 792×792
(1)220H, (1)220H,
(24)143H

(7)

C. Yukawa Interactions

By construction, the only renormalizable, dimension
four Yukawa interaction is the top-quark mass term de-
noted as U33. At the SU(5) level the top-quark mass term
is 1031035H,arising from 22032203924H at the SU(12)
level, both containing singlets under their gauge groups,
with the corresponding Feynman diagram

U33:

�
(10)2203 (10)2203

(5)924H

(8)

which displays both the SU(5), in parentheses, followed
by the SU(12) multiplets. After spontaneous symmetry
breaking including the electroweak symmetry, the top-
quark mass term becomes: hu

33v t
T
L t
c
L.

All other mass terms in the full theory involve at
least one mass insertion of a heavy-fermion pair and one
Higgs with an SU(5) VEV. The corresponding tree-level
diagrams are constructed by placing the fermion multi-
plets at both ends and assembling one Higgs containing
the electroweak VEV and, depending on the dimension,
one or more Higgs with an SU(5) singlet VEV and one
or more massive fermions in (massive-)fermion-massive-
fermion-Higgs vertices that individually form SU(12) as
well as SU(5) singlets. The whole mass term thus contains
an SU(12) and SU(5) singlet automatically. As an instruc-
tive example we give the bottom-quark mass term diagram
(D33), which will be of dimension 5 after integrating out
the massive fermions:

D33:

�
(10)2203 (5)7923(5)220 (5)220

(5)924H (1)66H

(9)

We list all leading order diagrams for the quark and
charged lepton matrix elements in Table I using a short-
hand notation for the Feynman diagrams, which abbrevi-
ates (9) to

(10)2203.(5)924H.(5)220×(5)220.(1)66H.(5)7923.
(10)

After integrating out massive fermions the bottom-quark
mass term becomes

(10)2203(5)924H(1)66H(5)7923, (11)

and after spontaneous symmetry breaking including the
electroweak one: hd

33εv b
T
L b

c
L. Note that only one diagram

for each matrix element appears at leading order, which is
not self-evident in our model setup.
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Up-Type Quark Mass-Term Diagrams
Dim 4: U33: (10)2203.(5)924H.(10)2203

Dim 5: U23: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(10)2203

U32: (10)2203.(5)924H.(10)220×(10)220.(1)66H.(10)7922

Dim 6: U13: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(10)2203

U31: (10)2203.(5)924H.(10)220×(10)220.(1)66H.(10)792×(10)792.(1)220H.(10)4951

U22: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(10)220×(10)220.(1)66H.(10)7922

Dim 7: U12: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(10)220×(10)220.(1)66H.(10)7922

U21: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(10)220×(10)220.(1)66H.(10)792×(10)792.(1)220H.(10)4951

Dim 8: U11: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(10)220×(10)220
.(1)66H.(10)792×(10)792.(1)220H.(10)4951

Down-Type Quark Mass-Term Diagrams
Dim 5: D32: (10)2203.(5)924H.(5)220×(5)220.(1)66H.(5)7922

D33: (10)2203.(5)924H.(5)220×(5)220.(1)66H.(5)7923

Dim 6: D31: (10)2203.(5)924H.(5)220×(5)220.(1)66H.(5)792×(5)792.(1)220H.(5)661

D22: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)7922

D23: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)7923

Dim 7: D12: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)7922

D21: (10)7922.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)792×(5)792.(1)220H.(5)661

D13: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220.(1)66H.(5)7923

Dim 8: D11: (10)4951.(1)220H.(10)792×(10)792.(1)66H.(10)220×(10)220.(5)924H.(5)220×(5)220
.(1)66H.(5)792×(5)792.(1)220H.(5)661

Table I. Leading order up- and down-type quark diagrams for each matrix element abbreviated as discussed in Sec. IVC.

We have defined the mass contributions in Table I with
the left-handed fields to the left and the left-handed con-
jugate fields to the right. As can be seen from Eq. (6) the
left- and right-handed components of the charged leptons
are flipped assignments compared to the down-type quark
components, due to the breaking of the underlying SU(5)
to the SM gauge group. The corresponding diagrams for
the charged leptons are then just the transpose of those
listed for the down quarks, since no 143H contributions
appear in the diagrams.

1. Quark Masses and Mixings

Each mass term in Table I is accompanied by a coupling
constant, which is assumed to be of order one at the SU(12)
unification scale, as naturalness predicts. In Sec. IVD we
will perform a fit to data for masses and mixings, where
these coupling constants constitute the fit parameters. The
coupling constants, also called “prefactors”, are denoted by
hu
ij and hd

ij for the up- and down-type quark mass terms,
h`ij for the charged-lepton mass terms and hmn

ij and hdn
ij

for the Majorana- and Dirac-neutrino mass terms, with
i, j = 1, 2, 3.

The number of Higgs bosons with SU(5) singlet VEVs
for each mass term tells us the exponent of the parameter ε
occurring after SU(5) symmetry breaking to the SM gauge
group. We can thus derive the up-type, down-type and
charged-lepton mass matrices with the coefficients of the

effective mass operators involving the prefactors hu
ij , hd

ij

and h`ij , respectively.
As explained above, due to the SU(5) breaking to the SM

gauge group, the charged-lepton mass matrix will be the
transpose of the down-type quark mass matrix, which also
holds true for its prefactors, h`ij = hd

ji. This is true to the
extent that no adjoint Higgs bosons with VEVs pointing
in the B−L direction are present which would modify this
transpose structure [20]. As such, the Yukawa coupling
matrices are then given by

MU =

hu
11ε

4 hu
12ε

3 hu
13ε

2

hu
12ε

3 hu
22ε

2 hu
23ε

hu
13ε

2 hu
23ε hu

33

v ,
MD =

hd
11ε

4 hd
12ε

3 hd
13ε

3

hd
21ε

3 hd
22ε

2 hd
23ε

2

hd
31ε

2 hd
32ε hd

33ε

v ,
ML =

h`11ε4 h`12ε
3 h`13ε

2

h`21ε
3 h`22ε

2 h`23ε
h`31ε

3 h`32ε
2 h`33ε

v = MT
D .

(12)

It is clear from the above that the up-quark matrix is
symmetric, while the down-quark and charged-lepton mass
matrices are doubly lopsided: the terms with hd

23 and h`32
are suppressed by one extra power of ε compared with the
hd
32 and h`23 terms, respectively. For MD, for example,

this implies that a larger right-handed rotation than left-
handed rotation is needed to bring the down quark matrix
into diagonal form, while the opposite is true for ML [3,
20, 21].
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Dirac-Neutrino Mass-Term Diagrams
Dim 4: DN23: (5)7922.(5)924H.(1)123

DN33: (5)7923.(5)924H.(1)123

Dim 5: DN13: (5)661.(1)220H.(5)792×(5)792.(5)924H.(1)123

DN22: (5)7922.(1)66H.(5)220×(5)220.(5)924H.(1)2202

DN32: (5)7923.(1)66H.(5)220×(5)220.(5)924H.(1)2202

Dim 6: DN12: (5)661.(1)220H.(5)792×(5)792.(1)66H.(5)220×(5)220.(5)924H.(1)2202

DN21: (5)7922.(1)66H.(5)220×(5)220.(5)924H.(1)220×(1)220.(1)66H.(1)7921

DN31: (5)7923.(1)66H.(5)220×(5)220.(5)924H.(1)220×(1)220.(1)66H.(1)7921

Dim 7: DN11: (5)661.(1)220H.(5)792×(5)792.(1)66H.(5)220×(5)220.(5)924H.(1)220×(1)220.(1)66H.(1)7921

Majorana-Neutrino Mass-Term Diagrams
Dim 4: MN11: (1)7921.(1)66H.(1)7921

MN33: (1)123.(1)66H.(1)123

Dim 5: MN12: (1)7921.(1)66H.(1)792×(1)792.(1)66H.(1)2202

MN21: (1)2202.(1)66H.(1)792×(1)792.(1)66H.(1)7921

Dim 6: MN13: (1)7921.(1)66H.(1)792×(1)792.(1)66H.(1)220×(1)220.(1)66H.(1)123

MN31: (1)123.(1)66H.(1)220×(1)220.(1)66H.(1)792×(1)792.(1)66H.(1)7921

MN22: (1)2202.(1)66H.(1)792×(1)792.(1)66H.(1)792×(1)792.(1)66H.(1)2202

Dim 7: MN23: (1)2202.(1)66H.(1)792×(1)792.(1)66H.(1)792×(1)792.(1)66H.(1)220×(1)220.(1)66H.(1)123

MN32: (1)123.(1)66H.(1)220×(1)220.(1)66H.(1)792×(1)792.(1)66H.(1)792×(1)792.(1)66H.(1)2202

Table II. Leading order Dirac- and Majorana-neutrino diagrams for each matrix element abbreviated as discussed in Sec. IVC.

2. Neutrino Masses and Mixings

The assignment of heavy right-handed neutrinos to
SU(12) multiplets containing an SU(5) singlet allows us to
explore light-neutrino masses and mixings via the seesaw
mechanism. To this end we have computed the resulting
Dirac- and the Majorana-neutrino mass terms, which are of
the form (hdn

ij ε
nv)ν̄iLN

c
jL and (hmn

ij ε
nΛR)N cT

iLN
c
jL, respec-

tively. The Majorana-neutrino mass terms are constructed
from only SU(12) Higgs irreps containing SU(5) singlet
VEVs. At the SU(5) level, a dimension four Majorana-
neutrino mass term has the form 1i1j1H, while a higher
dimensional mass term involves more SU(5) singlet Higgs.
Thus the right-handed scale ΛR coincides with the SU(5)
singlet VEV 〈1〉SU(5). The Dirac-neutrino mass term cou-
ples the left-handed neutrino in the 5 at the SU(5) level
with the left-handed conjugate neutrino in the SU(5) sin-
glet (see (6)). A four-dimensional Dirac-neutrino mass
term thus has the form 5i1j5H, while a higher dimensional
Dirac mass term involves one or more SU(5) Higgs sin-
glets. The Dirac- and Majorana-neutrino mass diagrams
arising from the given fermion assignments and set of Higgs

bosons and massive fermions are listed in Table II. As for
the quark and charged lepton mass matrices, only one di-
agram for each matrix element appears at leading order.

The corresponding mass matrices are:

MDN =

hdn
11ε

3 hdn
12ε

2 hdn
13ε

hdn
21ε

2 hdn
22ε hdn

23

hdn
31ε

2 hdn
32ε hdn

33

v ,
MMN =

 hmn
11 hmn

12 ε hmn
13 ε

2

hmn
12 ε hmn

22 ε
2 hmn

23 ε
3

hmn
13 ε

2 hmn
23 ε

3 hmn
33

ΛR.

(13)

Observe that not only are MD and ML doubly lopsided,
but MDN is as well. The symmetric light-neutrino mass
matrix is obtained via the Type I Seesaw mechanism:

Mν = −MDNM
−1
MNM

T
DN. (14)

In accordance with the construction of the up- and down-
type quark mass matrices, we use only the leading term
in ε for each matrix element of the light-neutrino mass
matrix, yielding

Mν ≈
v2

ΛR
×



ε2

(
hdn
12

2
hmn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13

2

hmn
33

)
ε

(
hdn
12h

dn
22h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13h

dn
23

hmn
33

)
ε

(
hdn
12h

dn
32h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13h

dn
33

hmn
33

)
ε

(
hdn
12h

dn
22h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13h

dn
23

hmn
33

)
hdn
22

2
hmn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
23

2

hmn
33

hdn
22h

dn
32h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
23h

dn
33

hmn
33

ε

(
hdn
12h

dn
32h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
13h

dn
33

hmn
33

)
hdn
22h

dn
32h

mn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
23h

dn
33

hmn
33

hdn
32

2
hmn
11

hmn
12

2−hmn
11 h

mn
22

−h
dn
33

2

hmn
33


(15)
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which does not involve the prefactors hdn
11 , hdn

21 , hdn
31 , hmn

13

and hmn
23 . These prefactors remain undetermined by the fit

described in Sec. IVD, reducing the number of fit param-
eters as opposed to using the full expression, and thereby
improving the fit convergence somewhat.

The light-neutrino mass matrix exhibits a much milder
hierarchy compared to the up-type and down-type mass
matrices, as can be seen from the pattern of powers of ε.
A mild or flat hierarchy of Mν is conducive to obtaining
large mixing angles and similar light neutrino masses. Fur-
thermore, one observes that the light neutrino mass matrix
obtained via the seesaw mechanism involves the doubly
lopsided Dirac neutrino mass matrix twice. The lopsided
feature of MDN is such as to require a large left-handed
rotation to bring Mν into diagonal form.

D. Phenomenology

The phenomenological implications of the model pre-
sented here are encoded in the mass matrices. Normally
the up-type, down-type, charged-lepton and light-neutrino
masses are the eigenvalues of the corresponding mass ma-
trices MU, MD, ML and Mν , but since not all of these ma-
trices are hermitian we diagonalize MM† instead. Thus,
with left-handed rotations we obtain real and positive
eigenvalues as squares of the corresponding masses, accord-
ing to

diag(m2
u,m

2
c ,m

2
t ) = U†UMUM

†
UUU,

diag(m2
d,m

2
s,m

2
b) = U†DMDM

†
DUD,

diag(m2
e,m

2
µ,m

2
τ ) = U†LMLM

†
LUL,

diag(m2
ν1 ,m

2
ν2 ,m

2
ν3) = U†νMνM

†
νUν .

(16)

The Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM
is calculated from the unitary transformations UU and UD
that diagonalize the up-type and down-type mass matrices
respectively:

VCKM = U†UUD, (17)

encoding the mismatch of the flavor and mass eigenbases
of the up-type and down-type quarks. The Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix VPMNS is obtained
analogously from UL and Uν that diagonalize the charged-
lepton mass matrixML and the light-neutrino mass matrix
Mν :

VPMNS = U†LUν . (18)

From the doubly lopsided natures of the three matrices,
MD, ML, and MDN, discussed earlier, we anticipate that
for the mixing of the left-handed fields described by VCKM
and VPMNS, small mixing angles will appear in the former
and large mixing angles in the latter.

1. Fit Setup

The results still depend on the prefactors hu
ij , hd

ij = h`ji,
hdn
ij and hmn

ij . All four independent sets of prefactors are
of O(1) at the SU(12) unification scale in our Froggatt-
Nielsen scenario. To test the model, the prefactors should
be fit with data for the masses and mixing matrices. The
best fit should give reasonable theoretical predictions, and
a χ2 value serves as goodness-of-fit measure. Obviously
the data and prediction should be fit at a common scale,
e.g., the top-quark mass scale. Hence, the running of the
prefactors has to be calculated, and their values from the
fit run to the SU(12) unification scale should turn out to
be of O(1).

For the fit we consider only real prefactors of the CKM
and PMNS matrix elements, to avoid too many fit param-
eters for a good convergence of the fit. We have adhered
to the Particle Data Group (PDG) sign convention for the
CKM matrix [22] but used the tri-bimaximal mixing sign
convention for the PMNS lepton mixing matrix [23]. As
common scale for the fit, we choose for the top-quark scale
mt(mt) ' 166GeV and use extrapolated masses for the
quarks and charged lepton masses from [24], where they
have been calculated using three-loop QCD and one-loop
QED beta functions.

We use the measured values of the CKM matrix ele-
ments, with PDG sign convention, without extrapolating
to the top-quark mass scale. The renormalization group
flow of the CKM matrix is governed by the Yukawa cou-
plings, which are small except for the top-quark. Thus
the effect is negligible, especially for the matrix elements
of the first two families, and small for the third family in
the Standard Model [25], which also holds true for the low
scale of the SU(12) model presented here. As data for the
fit of the neutrino sector, we use the mass squared differ-
ences of the light neutrinos and the neutrino mixing angles
obtained by a global analysis of oscillation data [26]. The
PMNS matrix entering the fit as data is computed from
the neutrino mixing angles using the PDG parametriza-
tion of the PMNS matrix [22] but with the tri-bimaximal
mixing sign convention [23]. Note that the 13 element of
the PMNS matrix is non-zero, as opposed to that for tri-
bimaximal mixing, but in accord with the evidence for a
non-zero θ13 [26]. A negative sign for the 13 element gives
us better fit convergence and theoretical predictions than
a positive one, which coincides with the preference for the
CP phase of cos δ=−1 in [26].

With respect to the SU(12) unification scale of
O(1016)GeV, the scale of neutrino measurements is near
the top-quark scale (∼1MeV for reactor and solar neutri-
nos and ∼1GeV for accelerator and atmospheric neutri-
nos). We assume here that the running between the two
neutrino scales is small compared to the uncertainties in
neutrino measurements.
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Up-type masses Down-Type masses CKM Matrix
mu = 2.2MeV
mc = 600MeV
mt = 166GeV

md = 3.8MeV
ms = 75MeV
mb = 2.78GeV

 0.974 0.225 0.003
−0.225 0.973 0.041
0.009 −0.040 0.999


Ch. Lepton masses Neutrino Mass Diff. PMNS Matrix Mixing Angles Phase
me = 0.501MeV
mµ = 104MeV
mτ = 1.75GeV

|∆21|= 7.6×10−5 eV2

|∆31|= 2.4×10−3 eV2

|∆32|= 2.4×10−3 eV2

 0.824 0.547 −0.145
−0.500 0.582 −0.641
−0.267 0.601 0.754

 sin2 θ12 = 0.306
sin2 θ23 = 0.420
sin2 θ13 = 0.021

δ = π

Table III. Phenomenological data entering the fit with masses at the top-quark scale.

Up-type masses Down-Type masses CKM Matrix
mu = 2.1MeV
mc = 600MeV
mt = 166GeV

md = 2.7MeV
ms = 90.7MeV
mb = 2.32GeV

 0.974 0.227 0.003
−0.227 0.973 0.042
0.007 −0.042 0.999


Ch. Lepton masses Neutrino Mass Diff. PMNS Matrix Mixing Angles Phase
me = 2.7MeV
mµ = 90.7MeV
mτ = 2.32GeV

|∆21|= 7.5×10−5 eV2

|∆31|= 2.5×10−3 eV2

|∆32|= 2.4×10−3 eV2

 0.824 0.548 −0.145
−0.500 0.582 −0.641
−0.267 0.601 0.754

 sin2 θ12 = 0.306
sin2 θ23 = 0.420
sin2 θ13 = 0.021

δ = π

Heavy Neutrinos Light Neutrinos
M1 = 1.67×1012 GeV
M2 = 6.85×1013 GeV
M3 = 5.30×1014 GeV

m1 = 0.0meV
m2 = 8.65meV
m3 = 49.7meV

Table IV. Theoretical mass and mixing results obtained from the fitting procedure.

The quark and charged-lepton masses and light-neutrino
mass differences, as well as the CKM and PMNS matrix
elements we use as data in the fit are listed in Table III.
The fit uses 6 quark masses, 3 charged-lepton masses, 3
light-neutrino mass squared differences, and 9 CKM and
9 PMNS matrix elements as observations, for a total of
ndata = 30.

The fit parameters are the prefactors of the four mass
matrices and the right-handed scale ΛR, i.e. nparams =
nprefactors + 1. Since the up-type mass matrix as well as
the Majorana-neutrino mass matrix are symmetric, they
involve only 6 independent fit parameters each, while
the down-type mass matrix and the Dirac-neutrino mass
matrix each contribute 9 parameters. As explained in
Sec. IVC2, only the leading order in ε of the light-neutrino
mass matrix is used in the fit, which does not involve 3
prefactors of the Dirac-neutrino and 2 of the Majorana-
neutrino mass matrix; thus 5 neutrino related prefactors
remain undetermined, yielding a total of nprefactors = 25
prefactors used in the fit.

It is clear that the ratio of the SU(5) singlet VEV to
the SU(12) unification scale used as the basic parameter,
ε=〈1〉SU(5)/MSU(12)∼1/50, in our model should be deter-
mined by the fit as well. However, we observe a bad con-
vergence of the fit, when we allow it to vary. Thus, we
were forced to fix its value and found ε=1/6.52=0.0237
to be an appropriate value in accord with [24]. The
resulting number of degrees of freedom is then ndof =
ndata−nprefactors−1 = 4.

2. Fit Results

The mass matrices with the results for the prefactors
inserted are listed below:

MU =

−1.1ε4 7.1ε3 5.6ε2

7.1ε3 −6.2ε2 −0.10ε
5.6ε2 −0.10ε −0.95

v,
MD =

−6.3ε4 8.0ε3 −1.9ε3

−4.5ε3 0.38ε2 −1.3ε2

0.88ε2 −0.23ε −0.51ε

v,
MDN =

hdn
11ε

3 0.21ε2 −2.7ε
hdn
21ε

2 −0.28ε −0.15
hdn
31ε

2 2.1ε 0.086

v,
MMN =

−0.72 −1.5ε hmn
13 ε

2

−1.5ε 0.95ε2 hmn
23 ε

3

hmn
13 ε

2 hmn
23 ε

3 0.093

ΛR,

Mν =

−81.ε2 −4.3ε 2.4ε
−4.3ε −0.25 0.28
2.4ε 0.28 −1.1

 v2

ΛR
,

(19)

with the right-handed scale determined to be
ΛR=7.4×1014 GeV and ∆32 fit with m3 ∼ 50 meV.
As explained in Sec. IVC2, ΛR coincides with the
SU(5) singlet VEV, 〈1〉SU(5), which allows us to deter-
mine the SU(12) unification scale from the fit to be
MSU(12)=ΛR/ε=3.1×1016 GeV.

The corresponding theoretical predictions for the masses
and mixings are listed in Table IV. The predictions are
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nearly in perfect agreement with the phenomenological
data entering the fit, which is due to the fact that almost
as many fit parameters as data points are used. This is re-
flected in the abnormally small χ2/ndof and large P-value:
With χ2=0.239 and ndof=4 we obtain χ2/ndof=0.060 and
a P-value of prob(0.239, 4)=0.993. Only the lepton and
down-quark masses deviate significantly from their mea-
sured value, since our SU(12) model forces them to be
equal which keeps the χ2 from dropping even further.

It is evident conclusions that can be drawn from the fit
results for our SU(12) model are somewhat limited, for
only a slightly different phenomenology could be accom-
modated by an according shift of the prefactors. The pref-
actors obtained from the fit can be considered to be of O(1)
as required by naturalness, aside from the 11 element of
Mν . However, according to the phenomenological input
discussed above, their values apply at the top-quark scale.
For a complete analysis one has to run them to the SU(12)
unification scale, where their compliance with the natural-
ness paradigm is supposed to be probed. This calculation
as well as a fully fledged fit, including uncertainties, cor-
relations, complex prefactors and the running of the CKM
matrix and of the neutrino data to the top-quark scale goes
beyond the scope of this paper.

Given the above caveats, we note that a normal mass hi-
erarchy for the light neutrinos is obtained with one mass-
less neutrino. Allowing for the sizable reactor neutrino
angle confirmed by the fit and the fully allowed ranges of
the Dirac and Majorana phases not present in our analysis,
the effective mass prediction for neutrino-less double beta
decay lies in the range 1.5 - 3.7 meV.

V. DISCUSSION

Most flavor symmetry models studied to date involve
discrete flavor groups. A typical model in this class based
on the standard model gauge group or on a more general
SU(N) family gauge group has an additional discrete fla-
vor symmetry G with the matter spectrum living in irreps
of G. However, such models have several disadvantages
compared to models that have no additional discrete sym-
metry.

First disadvantage to having a discrete symmetry is that
if it is a global symmetry, it will be broken by gravity [27–
29], and the breaking will not in general be in the pattern
one wishes to arrange for the family symmetry.

Second, it is difficult to explain the origin of a discrete
symmetry in a more fundamental theory. It could arise
from breaking a gauge symmetry and avoid the problems
with gravity, but this is difficult to arrange. In that case it
would be necessary for G to be anomaly-free [30]. Another
disadvantage of including a discrete symmetry is that when
it breaks, cosmic domain walls are produced. The walls
need to be removed, and they can be inflated away in some
models, but not all. In particular, if there is a discrete

symmetry breaking after inflation, then the cosmology of
the model will be untenable.

If we go to larger N to avoid G as in the present work,
then there is no domain wall problem. There is usually still
a magnetic monopole problem that needs to be solved by
inflation. However, this can be done at the GUT scale, and
it does not re-emerge at a lower scale. (The SM⊗G and
SU(N)⊗G models also have similar magnetic monopole
problems.) So we conclude that the cosmology of the dis-
crete symmetry free models is typically more attractive.
Their one disadvantage is that the initial gauge group is
usually larger, but not below the GUT scale.

We see a balance between the two types of models. In-
cluding a discrete symmetry to arrange a desired behavior
for masses and mixings in SM⊗G and SU(N)⊗G models
can be offset by increasing N in pure gauge SU(N) models
to avoid the inclusion of G. Since no domain wall prob-
lem or problem with gravity arises if G can be avoided, we
conclude that pure gauge family symmetric models like the
SU(12) model presented here, have several advantages over
flavor-symmetric models that contain discrete symmetries.

In our studies of models of different SU(N)’s we find
that with increasing N it is possible to obtain models with
more and more desired features implemented. Those fea-
tures show not only compliance with phenomenology but
additional esthetic properties such as simplicity. Neverthe-
less, selecting a specific assignment of fermions and Higgs
scalars out of millions of possible assignments, because of
its ability to reproduce phenomenology, is yet another ap-
plication of the anthropic principle and is reminiscent of
the string theory landscape.

VI. SUMMARY AND CONCLUSION

We have developed a systematic computer scan for
SU(N) family and flavor unification models that repro-
duce the observed fermion mass and mixing hierarchy with
higher-dimensional effective Yukawa couplings involving an
extended Higgs sector. These models are of the supersym-
metric type since the higher-dimensional Yukawa couplings
stem from Froggatt-Nielson-type diagrams involving mas-
sive fermion insertions. The three families of fermions,
the massive fermions and the Higgs scalars are assigned to
various SU(N) representations and may also involve the
assignment of discrete symmetry charges. A basic param-
eter in this setup is the ratio of the scale of imposed SU(5)
singlet VEVs to the SU(N) unification scale, denoted as ε,
with a value of roughly the ratio of the bottom-quark to
the top-quark mass, i.e. ∼1/50.

In this paper we have presented an example of an SU(12)
model obtained by our computer scan, which does not in-
volve any discrete flavor symmetry. This particular model
belongs to a subset of economic SU(12) models having only
two pairs of Higgs bosons with SU(5) singlet VEVs be-
sides the conjugate Higgs field with the pair of electroweak
VEVs, and two massive fermion pairs at the SU(12) level.
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However, we need several additional SU(12) irreps for
anomaly cancellation, and owing to the large SU(12) gauge
group we predict a host of fermions which become massive
after symmetry breakdown to SU(5). Only three SU(5)
sets of 10 + 5 fermions remain massless down to the elec-
troweak scale, while three SU(5) left-handed neutrino con-
jugate singlets take part in the seesaw mechanism.

The model presented has only one diagram at leading
order in ε for each matrix element of the five up, down,
charged lepton, Dirac- and Majorana-neutrino mass ma-
trices. The down-type, lepton and Dirac-neutrino mass
matrices are found to be doubly lopsided. The mass ma-
trices involve undetermined Yukawa couplings, called “pref-
actors,” which are supposed to be of O(1) at the SU(12)
unification scale. Being able to compute all quark and lep-
ton masses and mixings from their dependence on these
prefactors, we performed a simple fit to experimental data
to test their naturalness and the compliance of the model
with phenomenology. We have presented here a fit result
with prefactors that can be considered of O(1) and a near
to perfect agreement of theoretical prediction with phe-
nomenological data. In addition our analysis of the neu-
trino sector involving the type-I seesaw mechanism allows
us to determine the light-neutrino masses and thus their
hierarchy, as well as the heavy-neutrino masses and the
full PMNS matrix. We find a normal hierarchy with one
light-neutrino mass being zero.

Still the predictive power of our simple analysis is lim-
ited: We used the top-quark scale as common scale for the
fit. Thus the determined values of the prefactors apply
at this scale and should be run to the SU(12) unification
scale to test their naturalness in a rigorous analysis. We

also have not included any CP phases in the mass matri-
ces. Furthermore, the nearly perfect agreement of theoreti-
cal prediction with phenomenological data is due to a large
number of fit parameters, which are mostly prefactors. Be-
sides being of O(1), there is no a-priory estimate of their
value as initial value. Since differences in numerators and
denominators of mixing-matrix elements are involved, the
uniqueness of the χ2 minimum must be doubted. In a fully
fledged analysis pull distributions generated by toy Monte
Carlos clarify this aspect of the fit quality. A rigorous
analysis would also include uncertainties of experimental
data as well as estimations of the theoretical uncertain-
ties. Nevertheless, we believe the alternative approach to
unification of families and flavors explored here warrants
further study despite the limitations of our analysis cited
above.
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