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ABSTRACT

We present a new method for confirming transiting planets based on the combination of transit
timingn variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair
of bodies are in the same physical system. Orbital stability provides upper limits for the masses of
the transiting companions that are in the planetary regime. This paper describes a non-parametric
technique for quantifying the statistical significance of TTVs based on the correlation of two TTV
data sets. We apply this method to an analysis of the transit timing variations of two stars with
multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two
multiple planet systems based on their TTVs and the constraints imposed by dynamical stability. An
additional three candidates in these same systems are not confirmed as planets, but are likely to be
validated as real planets once further observations and analyses are possible. If all were confirmed,
these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate
that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets
and planets around faint stars for which Doppler follow-up is not practical with existing facilities.
Continued Kepler observations will dramatically improve the constraints on the planet masses and
orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations
were extended to eight years, then a similar analysis could likely confirm systems with multiple closely
spaced, small transiting planets in or near the habitable zone of solar-type stars.
Subject headings: planetary systems; stars: individual (KIC 3231341, 11512246; KOI 168, 1102;

Kepler-23, Kepler-24); planets and satellites: detection, dynamical evolution and
stability; techniques: miscellaneous
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1. INTRODUCTION

NASA’s Kepler spacecraft was launched on March 6,
2009, with the goal of characterizing the occurrence of
small exoplanets around solar-type stars. The nom-
inal Kepler mission was designed to search for small
planets transiting their host stars by observing targets
spread over 100 square degrees for three and a half
years (Borucki et al. 2010; Koch et al. 2010). Af-
ter an initial period (“quarter” 0; Q0) of collecting
engineering data that included observations of a sub-
set of the planet search stars, Kepler began collecting
science data for over 150,000 stars on May 13, 2009.
On February 1, 2011, the Kepler team released light
curves observed during the first ∼ 4.5 months of obser-
vations (Q0, Q1 and Q2; May 2, 2009-September 16,
2009) for all planet search targets via the Multi-Mission
Archive at the Space Telescope Science Institute (MAST;
http://archive.stsci.edu/kepler/). In this paper,
we analyze observations of 2 stars taken through the end
of Q6 (September 22, 2010) which will be made publicly
available from MAST at the time of publication.
Borucki et al. (2011; hereafter B11) reported the re-

sults of an initial search for transiting planets based on
an early and incomplete version of the Kepler pipeline.
B11 identified 1235 Kepler Objects of Interest (KOIs)
that were active planet candidates as of 1 February 2011
and had transit-like events observed in Q0-2. For each
of these, B11 Table 2 lists the putative orbital period,
transit epoch, transit duration, planet size, and other
properties. B11 Table 1 lists properties of the host star,
largely from pre-launch, ground-based photometry ob-
tained in order to construct the Kepler Input Catalog
(KIC; Brown et al. 2011). Additional candidates will
likely be identified due to improvements in the Kepler
pipeline and the availability of additional data.
Many KOIs were quickly recognized as likely astro-

physical false positives (e.g., blends with background
eclipsing binaries; EBs) and were reported in B11 Ta-
ble 4. For the remaining planet candidates, the Kepler
team reported a “vetting flag” in B11 to indicate which
KOIs are the strongest and weakest planet candidates.
B11 estimates the reliability to be: ≥98% for confirmed
planets (vetting flag=1), ∼ 80% for strong candidates
(vetting flag=2), and ∼ 60% for less strong candidates
(vetting flag=3) or candidates that have yet to be vetted
(vetting flag=4). Independent calculations suggest that
the reliability could be even greater (Morton & Johnson
2011).
Further follow-up observations and analysis are re-

quired to determine the completeness and false alarm
rates as a function of planet and host star properties.
Nevertheless, several papers have begun to analyze the
properties of the Kepler planet candidate sample. Both
B11 and Howard et al. (2011) assumed that most Kepler
planet candidates are real and analyzed the frequency of
planets as a function of planet size, orbital period and
host star type. Youdin (2011) performed a complemen-
tary analysis of the joint planet size-orbital period distri-
bution. Moorhead et al. (2011) analyzed the transit du-
ration distribution of Kepler planet candidates and the
implications for their eccentricity distribution. Of partic-
ular interest are 115 stars, each with multiple transiting
planet candidates (MTPCs). Latham et al. (2011) com-

pared the planet size and period distributions of these
planet candidates with those orbiting stars with only one
transiting planet candidate. Lissauer et al. (2011b) ana-
lyzed the architectures of such planetary systems. Ford
et al. (2011) searched for evidence of transit timing varia-
tions (TTVs) based on the transit times measured during
Q0-2. They found 65 TTV candidates and identified a
dozen MTPC systems which are likely to be confirmed
(or rejected)by TTVs measured over the full Kepler mis-
sion lifetime. Both Latham et al. (2011) and Lissauer
et al. (2011b) point out that the number of false pos-
itives in MTPC systems is expected to be much lower
than the number of false positives for single transiting
planet candidates. Combined with the already low rate
of false positives for Kepler planet candidates (B11; Mor-
ton & Johnson 2011), we expect very few false positives
among candidates in MTPC systems. Still, it is impor-
tant to test and confirm individual systems, in order to
establish the frequency of planetary systems with small
planets and identify any unexpected sources of false pos-
itives.
Already, seven Kepler planets have been confirmed by

TTVs (Kepler-9b&c, Holman et al. 2010; Kepler-11b-f,
Lissauer et al. 2011a) and three additionalKepler planets
in MTPC systems have been validated (Kepler-9d, Torres
et al. 2011; Kepler-10c, Fressin et al. 2011; Kepler-11g,
Lissauer et al. 2011). Previously, discovery papers pre-
sented a detailed analysis of all available data for each
confirmed Kepler planet, often including a wide array of
follow-up observations. Given Kepler’s astounding haul
of planet candidates, such detailed analyses will not be
practical for all planets.
In this paper, we present a new method to confirm

planets based on combining observations of TTVs with
the constraint of dynamical stability. We perform TTV
analyses of 2 MTPC systems that provide strong evi-
dence that at least two of the planet candidates around
each star are bound to the same host star (as opposed to
a blend of two stars each with one planet or two eclipsing
binaries diluted by the target star). Next, we test for dy-
namical stability of the nominal multiple planet system
model and consider the effect of varying the mass of the
planet candidates. We place upper limits on the masses
of planets which show significant TTVs. Finally, we per-
form a basic analysis of Kepler observations through Q6
and the available follow-up observations to check for any
warning signs of possible false positives. Given the ev-
idence for TTVs and the mass limits from dynamical
stability, we confirm 4 planets in 2 MTPC systems.
This paper is organized as follows. First, we provide

an overview of Kepler observations for the KOIs consid-
ered in §2. Second, we describe a new method for cal-
culating the significance of TTVs in MTPC systems in
§3.1-3.5. Readers primarily interested in the properties
of the planetary systems do not necessarily need to read
the details of the statistical methods presented in §3.2-
3.4. We describe our use of n-body simulations to obtain
upper limits on planet masses in §3.6. In §4, we describe
the results of our statistical and dynamical analyses. We
present available follow-up observations and additional
analysis of Kepler data in §5 and discuss each system in-
dividually in §6. Finally, we discuss the implications of
our results and prospects of the method for the future in
§7.

http://archive.stsci.edu/kepler/
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2. Kepler PHOTOMETRY & TRANSIT TIMES

We measured transit times based on the “corrected”
(or PDC) long cadence (LC), optimal aperture photom-
etry performed by the Kepler Science Operations Center
(SOC) pipeline version 6.2 (Jenkins et al. 2010). The de-
tails of the properties of PDC data and how we deal with
the most common complications are described in Ford et
al. (2011). For each system, we begin using the same
procedure to measure transit times in bulk. In short, for
each planet candidate we fold light curves at an initial
estimate of the orbital period. For each planet candidate,
we fit a transit model to the folded light curve, excluding
observations during the transits of other planet candi-
dates. We use the best-fit limb-darkened transit model
as a fixed template when fitting for each transit time.
For example, for a three planet system, we first remove
transits of KOIs .02 and .03 from the original light curve
to measure TTs for KOI .01. Then, we remove transits
of KOIs .01 and .03 from the light curve to measure TTs
for KOI .02. Finally, we remove transits of KOIs .02 and
.03 to measure TTs for KOI .01. In some cases, we iter-
ate the procedure. This consists of aligning the transits
based on the initial set of measured TTs to generate a
new transit template and remeasuring transit times using
the new template. The choice of which TTs to measure
and which to exclude due to data gaps or anomalies may
also change upon iteration. See Ford et al. (2011) for
details about the algorithm for measuring transit times.
We estimate the uncertainty in each transit time from
the covariance matrix.
For some planet candidates with shallow transits, each

transit is too shallow for individual transits to be clearly
detected, and a new algorithm by J. Carter was em-
ployed. This model attempts to fit only data within four
transit durations of the suspected mid-transit, and al-
lows for a linear baseline, to correct for astrophysical and
instrumental drifts on timescales much longer than the
transit duration. Global transit parameters are solved for
to create a template light curve, which is then scanned
over each individual transit. In that scanning process, χ2

is densely sampled as a function of the proposed transit
mid-time. Because of the low SNR, the shape of χ2 as
a function of the midtime can be very skewed and spiky,
rather than shaped as a parabola, in the vicinity of the
local minimum. Therefore, instead of the local curva-
ture for an error bar, the algorithm fits a parabola to
the sampled χ2 function, out to ∆χ2 = 7 away from
the minimum. This parabola thus has a width which is
more stable to noise properties than the local curvature
is, and we adopt its width as the error bar in each point.
We employed this method for KOIs 168.03, 1102.01 and
1102.02 that are described in detail in §6.
We report best-fit linear ephemerides based on transits

observed during Q0-6 in Table 1, along with the number
of transit times observed (nTT), the median timing un-
certainty (σTT ) and the median absolute deviation from
the linear ephemeris (MAD). Transit times measured are
reported in Table 2. By definition, positive TTs occur
later than predicted by the linear ephemeris.

3. METHODS

3.1. Statistical Analysis

Visual inspection of TT data sets revealed KOIs
with multiple transiting planet candidates including two
planet candidates which appear to have TTVs that are
anticorrelated with each other. In this and two compan-
ion papers (Fabrycky et al. 2011; Steffen et al. 2011),
we develop complementary methods to establish the sta-
tistical significance of apparently correlated TTVs mea-
sured in systems of multiple transiting planet candidates.
Physically, transit timing variations (relative to a linear
ephemeris) can only be measured at the times of tran-
sit. Since transit times can only be measured at discrete
times and transits of two planets are rarely coincident
with each other, one can not calculate the standard cor-
relation coefficient, since that would require data sam-
pled either continuously or at common times. In this
section we develop tools to quantify the extent of the
correlations between TTV curves and the statistical sig-
nificance of the TTVs in MTPC systems.
Even if we restrict our attention to systems with only

two planet candidates, there is an astounding variety
of potential TTV signatures (e.g., Veras et al. 2011).
For some systems (e.g., in a 1:2 mean motion resonance
(MMR) with small libration amplitude), the TTV signa-
ture may be relatively simple (e.g., nearly sinusoidal) for
the timespans and timing precision of interest. In these
cases, one might be well served by fitting a parametric
model to the observations (e.g., polynomial, sinusoid).
However, for other systems (e.g., slightly offset from res-
onance, modest eccentricity, more than two planets), the
TTV signature can be quite complex. Often the shape
and amplitude of the TTVs changes from year to year
(or even longer timescales; e.g., Fig 2. of Ford & Hol-
man 2007). Given the diversity and potential complexity
of TTV signatures, it is necessary to consider a broad
range of functional forms and a large number of model
parameters. Normally, this would raise concerns about
exploring the high-dimensional parameter space and po-
tentially over-fitting data.
On a simplistic level, one could address this problem

by smoothing the TTV observations to obtain a contin-
uous “TTV curve” for each planet candidate and cal-
culate the standard correlation coefficient between the
two smoothed TTV curves. Of course, the results will
depend on the choice of smoothing algorithm. We over-
come the challenges of working with a discrete dataset
with potentially complex structure by the application of
Gaussian Processes (GPs). While one could think of the
GPs as a fancy smoothing algorithm, there are several at-
tractive features of GPs that make them well suited for
this application. In particular, GPs are infinite dimen-
sional objects, providing them with enormous flexibility
for modeling the data. At the same time, their mathe-
matical properties make it practical to marginalize over
the infinite dimensional parameter space to calculate, not
just the predictions of a GP for the TTV curve, but also
the full posterior predictive probability distribution for
the TTV curve at any finite number of times (see §3.3).
Thus, we are able to naturally account for the uncertain-
ties in the model TTV curve in a fully Bayesian manner.
Once we obtain a continuous function for the “TTV

curve” via our GP model, we calculate a Pearson corre-
lation coefficient between the GP models for each pair of
neighboring planets. To establish the statistical signif-
icance of the apparently correlated TTVs, we calculate
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the distribution of correlation coefficients calculated sim-
ilarly, but applied to synthetic data sets. Each synthetic
data set is a random permutation of the actual data. If
the correlation coefficient calculated from the actual data
is more extreme than the 99.9th percentile of the correla-
tion coefficients calculated from the simulated data, then
we conclude that TTVs are sufficiently statistically sig-
nificant to consider the planet pair confirmed.

3.2. Overview of Gaussian Processes

Readers who are not interested in the details of the
details of the statistical methods used to establish the
significance of TTVs in MTPC systems may choose to
skip §3.2-3.4. GPs have been extensively studied and ap-
plied in the statistics and machine learning communities
(Rasmussen & Williams 2006). GPs have also been ap-
plied in a variety of astronomical contexts (e.g., Rybicki
et al. 1992; Gibson et al. 2011). A GP defines a dis-
tribution over functions. “Process” refers to a method
for generating a time series of data. “Gaussian” refers
to the defining property of a GP that the joint distribu-
tion of any finite number of measurements (at discrete
times) has a multi-variate Gaussian distribution, even
when conditioned on any combination of observations.
While this assumption may seem to be restrictive, GPs
are extremely versatile. The assumption of Gaussianity
is essential for making it practical to perform computa-
tions on the infinite dimensional function space. In par-
ticular, for a GP that describes functions of time only
(f(t)), a particular GP (GP [m(t), k(t, t′)])is specified by
a mean value, m(t), and a covariance function, k(t, t′).
Once we adopt a form for the covariance function (i.e.,
for particular values for hyperparameters; see §3.3), it be-
comes practical to perform Bayesian inference and calcu-
late the posterior predictive probability distribution for
the values of f(t) at any number of times.
For our application, we can intuitively think of TTVs

as measurements of the value of a function (f(t)) that
is related to how much a planet is ahead (or behind)
schedule in its orbit. 24 Of course, Kepler can only make
measurements of this function at times of transit (or oc-
cultation) as viewed by Kepler. Using a Bayesian frame-
work, we can calculate the posterior probability distri-
bution for f(t∗) at hypothetical observation times (t∗i ),
conditioned on the actual measurements of f(t) (i.e.,
TTVs) and hyperparameters (θ) that specify the form
of the covariance function. We perform this procedure
for each planet candidate in a system. Then, we can cal-
culate the correlation coefficient of the GPs for a pair of
transiting planet candidates. We focus our attention on
neighboring pairs of transiting planet candidates, mean-
ing we do not search for significant correlations between
planets if there is an additional transiting planet candi-
date with an intermediate period. In order to establish
the statistical significance of the correlation coefficient,
we perform the same procedure on synthetic data sets,
generated by permuting the order of the TTVs (along
with their measurement uncertainties). We compare the
correlation coefficient for the actual TTVs to the distri-
bution of correlation coefficients for the synthetic data

24 An alternative interpretation would define a continuum of
hypothetical observers distributed along the orbital plane.

sets to determine a false alarm probability for the exis-
tence of TTVs.

3.3. Gaussian Process Model

We model the TTVs of each KOI as an indepen-
dent Gaussian Process (GP). Following Rasmussen &
Williams (2006), the prior probability distribution for
the values at times (t∗) of a GP with zero mean is

f∗ ≡ f(t∗) ∼ N (0,K (t∗, t∗)) , (1)

where K(t∗, t∗) is the correlation matrix. We assume
that each observed transit time, yi, is normally dis-
tributed about the true transit time (f(ti)) and that in-
dependent measurement errors have a variance of σ2

obs,i.
Then the joint distribution for the actual observations
and a set of hypothetical measurements is
[

y
f∗

]

∼ N
(

0,

[

K (t, t) + σobs
2 K (t, t∗)

K (t∗, t) K (t∗, t∗)

])

, (2)

where σ2
obs is a diagonal matrix with entries of σ2

obs,i.
We can calculate the posterior predictive distribution by
conditioning the joint prior distribution on the actual
observations, y. The standard results for the mean (f̄∗)
and covariance (cov(f∗)) of the posterior predictive dis-
tribution are

f̄∗=K(t∗, t)
[

K(t, t) + σ2
obs

]−1
y (3)

cov(f∗)=K(t∗, t∗)−K(t∗, t)
[

K(t, t) + σ2
obs

]−1
K(t, t∗).(4)

For our calculations, we adopt a Gaussian covariance
matrix

K(ti, tj ;σr, τ) = σ2
r exp

(

− (ti − tj)
2

2τ2

)

, (5)

where σr and τ are hyperparameters, describing the am-
plitude and timescale of correlations among data points.
This choice of a kernel function ensures that the Gaus-
sian process is a smooth function (i.e., continuously dif-
ferentiable) and allows there to be a single characteristic
timescale for TTVs. It can be shown that covariance
matrices of this form correspond to Bayesian linear re-
gression model with an infinite number of Gaussian basis
functions (Rasmussen & Williams 2006).
In modeling the TTVs as a GP, we are making use of

a posterior predictive distribution for all functions that
are consistent with the observations and the covariance
matrix specified by a set of hyperparameters θ. The
“trick” of GPs is that we can marginalize over all func-
tions analytically using matrix algebra. Fortunately, the
log marginal likelihood conditioned on the hyperparam-
eters can also be readily calculated via matrix algebra

log p(y|t, θ)=−1

2
yT
(

Kθ + σ2
obs

)−1
y (6)

−1

2
log
∣

∣Kθ + σ2
obs

∣

∣− n

2
log 2π, (7)

where Kθ is the correlation matrix K evaluated at the
observation times, t, using a set of hyperparameters
θ = {log σr, log τ} (Rasmussen & Williams 2006). We
set σ2

r = median(y2i ), which is equivalent to normalizing
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the TTV observations by their median absolute devia-
tion. We adopt a value of τ that maximizes the marginal
likelihood. We expect this to be a good approximation
for data sets of interest, since the likelihood is typically
sharply peaked for datasets with a significant structure in
the TTV curve. Technically, the marginal likelihood can
be bimodal, with one mode having small τ (correspond-
ing to functions that model the observations well) and
a second mode with large τ (corresponding to functions
that basically ignore the measure transit times, attribut-
ing them to measurement noise). In principle, one could
explicitly compare the marginal likelihood of each mode
or even use the weighted average of the GPs correspond-
ing to the two local maxima. In practice, we found that
this was not a problem for the data sets considered. Af-
ter verifying that the results were not sensitive to the
initial guess for τ , we adopted an initial guess for τ equal
to the shorter orbital period of the two planets or 90
days (for long period planets). We use the tnmin min-
imization package provided by Craig Markwardt25 that
is based on the Newton method for nonlinear minimiza-
tion. We find that this algorithm is robust for the data
sets considered.
We also experimented with Matérn class of covariance

functions, which can yield GPs that are less smooth than
the Gaussian covariance function. The Matérn class is
parameterized by both a scale τ and a new hyperpa-
rameter, ν. In the limit that ν → ∞, the Matérn class
approaches the Gaussian covariance function. For half-
integer values of ν, the Matérn covariance functions can
be written as a polynominal times an exponetial. In par-
ticular, we tested ν = 5/2,

K(ti, tj ;σr, τ, ν =
5

2
)=σ2

r

(

1 +

√
5∆ t

τ
+

5∆ t2

3τ2

)

(8)

× exp

(

−
√
5∆ t

τ

)

, (9)

where ∆ t = ti − tj (Rasmussen & Williams 2006).
While the choice of covariance function significantly af-
fects the smoothness of the predictive distribution, the
significance of the correlation between two TTV data sets
did not appear to be sensitive to the choice of a Gaus-
sian or Matén ν = 5/2 covariance function. Based on
our experience analyzing real and simulated data sets,
we found that choosing a Gaussian covariance function
and the method of estimating τ described above resulted
in a highly robust algorithm. This allowed us to auto-
mate our analysis, so that we could perform the Monte
Carlo simulations necessary to establish the false alarm
rates.

3.4. Correlation Coefficient

Using the GP model for two planet candidates’ TTV
curves, we calculate the mean (fp(t

∗)) and variance
(σ2

p(t
∗)) of the predictive distribution for each planet,

indicated by the index p. For t∗, we adopt the observed
transit times for both planets combined into a single vec-
tor. We calculate a weighted correlation coefficient be-
tween the two GP models based on these two samples,

25 http://cow.physics.wisc.edu/$\sim$craigm/idl/idl.html

using weights

wi =
(

σ2
p(ti) + σ2

q (ti)
)−1

, (10)

where σ2
p and σ2

q refer to the variances of the posterior
predictive distribution of the Gaussian process (i.e., the
diagonal elements of cov(f∗) in Eqn. 3). After concate-
nating the weight vectors for the observations times of
the two planets, the weighted average mean and variance
of the predictive distributions are

〈fp〉 =
[

∑

i

wifp(ti)

]

/
∑

i

wi (11)

and
〈

σ2
p

〉

=

[

∑

i

wiσ
2
p(ti)

]

/
∑

i

wi. (12)

We calculate the covariance between the two GPs evalu-
ated at the actual observation time according to

covp,q =

[

∑

i

wi (fp(ti)− 〈fp〉) (fq(ti)− 〈fq〉)
]

/
∑

i

wi.

(13)
Thus, the correlation coefficient between the two GPs is
estimated by

C =
covp,q

√

(

covp,p +
〈

σ2
p

〉) (

covq,q +
〈

σ2
q

〉)

(14)

3.5. Establishing the Statistical Significance of TTVs

In order to establish the statistical significance of the
putative TTVs for a pair of planet candidates, we apply
the same methods described in §3.3 & 3.4 to an ensemble
of synthetic datasets. Each synthetic data set includes a
random permutation of the TTVs for each of the planet
candidates. The TTV and measurement uncertainty for
a given transit remain paired after permutation. We
subtract the best-fit linear ephemeris for each synthetic
dataset before generating a GP model and calculating
the weighted correlation coefficients (C′

i) for the ith syn-
thetic data set. It is important that we subtract the best-
fit linear ephemeris before generating the GP model, so
that any long-term trend in the TTVs is absorbed into
the best-fit orbital period. We consider Nperm = 104 per-
muted synthetic data sets. We estimate the false alarm
probability (FAPTTV,C) based on the fraction of syn-
thetic data sets for which |C′| is greater than |C| for
the actual pair of TTV curves. In cases where no syn-
thetic data sets yield a |C′| as large as |C| for the actual
observations, we report the FAPTTV,C ≤ 10−3.
In principle, the above process could result in identify-

ing either a positive or a negative correlation coefficient.
We expect that an isolated pair of interacting planets
will have a negative correlation coefficient, reflecting that
energy is exchanged between the orbits. While this is
strictly true for two planet systems, one could conceive
of a system with additional planets (e.g., a non-transiting
planet that is perturbing both of the planets observed to
transit) in which a pair of planets would have a positive
correlation coefficient. Therefore, we conservatively cal-
culate the FAP based on the distribution of the absolute

http://cow.physics.wisc.edu/$\sim $craigm/idl/idl.html
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value of the correlation coefficient, rather than only the
fraction of synthetic data sets with C more negative than
that measured for the actual observations.
Several arguments about multiplicity suggest that sys-

tems with MTCPs have a significantly lower false alarm
rate than the overall sample of Kepler planets (Lissauer
et al. 2011b). We conservatively adopt a threshold false
alarm probability for detecting TTVs of 10−3. Using
such a threshold, we expect that the probability of claim-
ing significant TTVs for a given pair of planets due to
Gaussian measurement noise is less than 10−3. Since B11
reported 115, 45, 8, 1 and 1 systems with two, three, four,
five and six candidate transiting planets, there is a total
of 238 pairs of neighboring planets which we could test
(as opposed to 323 total pairs, including non-neighboring
pairs). Thus, the expected number of statistical false
alarms from the current sample of multiple planet can-
didate systems remains less than one, even if we were
to consider every system with an FAP< 10−3 as con-
firmed. In practice, we only claim to confirm those pairs
for which the FAP was robust to outliers (and passed a
series of additional tests).
Our estimates of the false alarm probability assume

that each transit time measurement is independent and
uncorrelated with other measurements. While there is
correlated noise in the Kepler photometry, this does not
directly translate into correlations among measured tran-
sit times, since the transits are measured at widely sep-
arated times. One possible mechanism for generating
apparently anticorrelated TTs is measurement noise due
to nearly contemporaneous transits of multiple planets.
Therefore, our analysis excludes transits that are nearly
coincident with the transit of another known planet can-
didate. Physically, it is extremely difficult for an alter-
native astrophysical process to cause the large transit
timing variations observed in these systems. Aside from
the gravitational perturbations of the other transiting
planet, the most plausible mechanisms would be star
spots. However, generating TT variations on timescales
longer than a year would require an unusually long-lived
spot complex. Further, transit timing noise due to star
spots would have an essentially random phase, except in
rare cases where the planet orbital period were nearly
coincident with a near integer multiple of the stellar ro-
tation period (e.g., Desert et al. 2011a). Such a coin-
cidence for multiple planets in one system is even more
unlikely. Finally, the observed TTV amplitude is much
greater than what can be caused by starspots (Holman et
al. 2010). As neither of the stars considered in §6 show
large rotational modulation, any starspot induced tim-
ing variations are negligible relative to TT measurement
precision. Thus, starspots are not a viable explanation
of the measured TTVs for either of the stars considered
in §6. Indeed, if there were an autocorrelation of the TT
residuals (TT observations relative to the GP model), the
most likely cause would be actual timing variations due
to gravitational perturbations that are not accurately de-
scribed by our GP model. Since our GP model allows
for only a single timescale, an orbital configuration that
results in multiple TTV timescale would naturally lead
to an autocorrelation of the TT residuals. We are opti-
mistic that continuedKepler observations will allow us to
detect TTVs on multiple timescales, providing more pre-

cise constraints on the masses and orbits of the planets
in these systems (see Fabrycky et al. 2011).

3.6. Dynamical Analysis

To investigate the orbital stability of the system, we
construct a nominal model based on the measured orbital
periods with circular and coplanar orbits. In the nominal
model, we adopt planet masses based on the adopted
planet radii, and an empirical mass-radius relationship

(Mp/M⊕ = (Rp/R⊕)
2.06

; Lissauer et al. 2011ab). We
verify that the nominal model is stable for at least 107

years, including all transiting planet candidates in the
system.
Second, we place upper limits on the masses of the

systems with correlated TTVs by assuming that the real
system is not dynamically unstable on a short timescale.
For placing mass limits, we start from the nominal model,
but include only the pair of planets with significant
TTVs. (Including additional planet candidates would
typically make the system even less likely to be stable.)
We inflate the mass of each planet candidate by a com-
mon scale factor. We use the same scale factor for the
mass of both planets, since the relative sizes are well de-
termined from the transit light curves (with the possible
exception of grazing transits). A misestimated stellar ra-
dius would cause both planets’ sizes and hence nominal
masses by a similar factor. As a misestimated stellar
radius would not significantly change the planet-planet
size ratio, the nominal mass ratio for our n-body simula-
tions is insensitive to uncertainties in the stellar radius.
Another possibility is that both planets sizes could be
significantly underestimated if the light from the target
star were diluted by light from nearby stars. Again, this
could significantly affect the planet sizes, but not the
planet-planet size ratio or the planet-planet mass ratio
for our nominal model. A final possibility is that both
planets with correlated TTVs are transiting a star other
than the target star, which is diluted by the target star.
In this case, the planet radii would be larger than esti-
mated by B11, but the ratio of planet radii would still
be accurately estimated (assuming neither is grazing).
Importantly, in each of these cases dynamical stability
would still provide upper limits for the masses that show
the bodies to be planets, even if the planetary radii were
significantly larger than estimated.

4. RESULTS & CONFIRMATION OF Kepler PLANETS

4.1. TTV Analysis & Evidence for Multi-body Systems

Basic information about transit parameters, stellar
and planetary properties was presented in B11. A few
key parameters are reproduced or updated in Tables 1
& 3. In Table 4 we report the correlation coefficient
(C) for several pairs of neighboring transiting planets,
along with the false alarm probability (FAPTTV,C) for
the TTVs based on our correlation analysis and Monte
Carlo simulations (see §3.5). The table also includes the
ratio of transit durations normalized by orbital period
to the one third power (ξ), the 5th or 95th percentile
of the distribution of ξ expected for a pair of planets
around the target host star, the ratios of the root mean
square (RMS) and mean absolution deviation (MAD)
of the TTs from the best-fit linear ephemeris for the
two planets. In the final column, κ gives the ratio of
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the measured MAD of TTVs for the two planets to the
ratio of the predicted TTVs for the same two planets,
based on our nominal n-body models. A subset of these
systems (Kepler-23=KOI 168, Kepler-24=KOI 1102)
will be discussed individually in §6. For these systems,
we show the measured transit times and the GP model
for a subset of these systems to be discussed in more
detail in Figures 1- 2. To help illustrate how we calculate
C0.001 and FAPTTV,C, we show the histogram of C′

values from synthetic data in Fig. 1 (bottom right panel)
for Kepler-23 b&c. The methods developed in this
paper find significant and apparently correlated TTVs
in several additional pairs of Kepler planet candidates
that are to be discussed in Cochran et al. (2011), J.-M.
Desert et al. (2011), Fabrycky et al. (2011), Lissauer et
al. (2011c), D. Ragozzine et al. (2012, in preparation)
and Steffen et al. (2011).

4.2. Dynamical Stability Analysis & Planet Mass Limits

The detection of significant and anti-correlated TTVs
provides strong evidence that the bodies responsible for
the transits are in the same physical system. In principle,
one might wonder whether the “transits” could actually
be eclipses of stellar mass bodies. In order to account
for the TTVs, the bodies still need to be in the same
physical system. Given the similar orbital periods, any
stellar companions would interact very strongly, raising
serious doubts about the long-term dynamical stability
of the system.
We report the maximum planet mass for which our

n-body integrations did not result in at least one body
being ejected from the system or colliding with the other
body or the central star (Table 1; Fig. 3). For each of
the planets presented in §6, the maximum mass is less
than 13MJup, excluding a triple star system as a pos-
sible false positive. The observed TTVs suggest even
lower maximum masses, but a complete TTV analysis
will require a longer time series of observations. There
are considerable uncertainties in the stellar masses, but
the available observations preclude us from having un-
derestimated the stellar mass by more than a factor of
two or more, which would be necessary for the maxi-
mum stable mass to approach 13MJup. Even ∼ 13MJup

is roughly half of the recently proposed criteria for ex-
oplanets (∼ 25MJup; Schneider et al. 2011). Therefore,
regardless of the choice of definition, the masses are con-
strained to be in the planetary regime.
The combination of TTVs and dynamical stability pro-

vides strong evidence that the transits are due to planets
orbiting a common star. Thus, we promote these planet
candidates to confirmed planets. KOI 168.03 and 168.01
become Kepler-23b and c, respectively. KOI 1102.02 and
1102.01 become Kepler-24b and c, respectively. In §4.3,
we show that the probability of the planetary system or-
biting a host star other than the original target star is
very small for both of the cases considered in detail.
KOIs 168.02, 1102.03 and 1102.04 remain strong planet

candidates. Given the low rate of false positives among
the Kepler multi-planet candidates, it is quite unlikely
that these KOIs are caused by a blend with a back-
ground object. The most likely form of a “false positive”
would be another planetary system transiting a second
physically associated and similar mass star in the Kepler

aperture. Thus, we anticipate that further follow-up ob-
servations (such as high-resolution images) and analysis
(such as BLENDER) could allow the remaining planet
candidates to be validated as planets. Alternatively, con-
tinued Kepler TT observations may allow for dynamical
confirmation of some of these candidates.

4.3. Identification of Host Star

While the correlated TTVs and dynamical stability
provide evidence for a planetary system, it is not yet
obvious that the system must orbit the original target
star. Here we consider the three alternate potential sce-
narios that could result in similar appearances: 1) both
planets orbit a background star, 2) both planets orbit
a significantly cooler star that is physically associated
with the target star, and 3) both planets orbit one of
two physically associated stars of similar mass.
The probability of the first case (planetary system

around an unassociated star) can be quantified by con-
sidering the range of spectral type and magnitude differ-
ences (measured relative to the target star) which could
result in a transit of the hypothetical background star
mimicking the observed transit. Since dynamical sta-
bility precludes stellar masses and an object’s radius is
insensitive to its mass in the Jupiter to brown dwarf-
mass regime, there is a maximum size for the transit-
ing body and the background star must be sufficiently
bright that it could result in the observed transit depth
(after accounting for dilution by the target star). The
maximum difference in magnitude is ∆Kp,max= 5.3 mag
for Kepler-23 and ∆ Kp,max= 2.7 mag for Kepler-24.
The potential locations for a background star are con-
strained by the observational limits on the centroid mo-
tion, i.e., the difference in the location of the flux centroid
during transit and out of transit. We adopt maximum
angular separation equal to the 3 − σ confusion radius,
0.3” for Kepler-23c and 0.9” for Kepler-24c. Using a Be-
sançon galactic model with magnitude and position for
each target star, we estimate the frequncy of background
blends that could match the observed transit depth to be
∼ 5× 10−4 for Kepler-23 and ∼ 2× 10−3 for Kepler-24.
We have not included any constraints on the observed
transit duration or shape. As Kepler continues to ob-
serve these systems, we expect that TTVs will eventually
provide significant constraints on the orbital eccentrici-
ties. Incorporating such a constraint would be expected
to rule out small host stars that would require an apoc-
entric transit to match the observed duration. Even if
we were to assume that large planets are as common
as small planets, then these planetary systems are more
than ∼ 104 and ∼ 5× 102 times more likely to orbit the
target star than an unassociated background star. This
excludes the vast majority of background blends, includ-
ing those involving the reddest host stars.
Next, we consider the possibility that the target star

might have an undetected stellar companion that could
host the planetary system. We can exclude blends that
would result in a color ∆(r − K) ≥ 0.1 magnitude
larger than expected based on a simple set of isochrones
(Marigo et al. 2008). Combining photometry from KIC
and 2MASS, this typically rules out companions in the
∼ 0.6−0.8M⊙ range. We will consider nearly equal mass
binaries later in this section. If the planets were to or-
bit a physically associated star other than the target,
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Fig. 1.— Gaussian Process models for transit times of Kepler-23’s planet candidates. Points with error bars show deviations of measured
transit times from a linear ephemeris for Kepler-23c (KOI 168.01; upper left), Kepler-23b (KOI 168.03, upper right) and KOI 168.02 (lower
left). The solid curve shows the mean of the GP models as a function of time, after conditioning on the observed transit times. The dotted
lines show the 68.3% credible interval of the GP models. Each GP model is only affected by the TTs of one planet candidate, and yet there
is a strong anti-correlation (C1,3 = −0.863) between the GP models for Kepler-23 b&c. In the bottom right, we show the histogram of the
correlation coefficients for synthetic datasets generated by permuting the order of transit times for each of Kepler-23 b&c, demonstrating
that the observed TTVs are highly significant (FAP< 10−3). Thus, the two bodies are in the same physical system and are not the result of
two EBs or planets around two separate stars that happen to fall within the same Kepler aperture. The requirement of dynamical stability
provides an upper limit on the masses (∼ 0.8 & 2.7MJup), allowing us to conclude that both are planets.

then the host star would be less massive than the tar-
get star and the corresponding upper mass limits for the
planets would be further reduced, since the dynamical
stability constraint is most closely related to the planet-
star mass ratios. For Kepler-24 the constraints based
on the transit depth and dynamical stability overlap, so
there are no viable blend scenarios where the planetary
system orbits a physically bound and significantly lower-
mass secondary star. For Kepler-23, we compute the fre-
quency of plausible blend scenarios using the observed
frequency of stellar binaries (Raghavn et al. 2010) and
the observed distribution of orbital periods and primary-
secondary mass ratios (Duquennoy & Mayor 1991). We
conservatively assume that large planets are as common
as small planets and do not impose constraints based on
the transit duration or shape. We find a blend frequency
of 0.11, indicating that the Kepler-23 system is at least
9× more likely to be hosted by the primary target than
by a physically bound and significantly lower-mass sec-
ondary star.
Finally, we consider the potential for the target to be

a binary star with two similar mass stars. In many cases
spectroscopic follow-up observations would have detected
a second set of spectra lines. However, we can not totally
exclude a long period binary with two stars that happen
to have the same radial velocity at the present epoch.

Since the two stars would have similar properties, the
planet properties are largely unaffected, aside from the
∼ 50% dilution causing the planet radii to increase by ∼
40%. As we are not overly concerned about which of two
similar stars hosts the planet, this scenario essentially
amounts to unseen dilution, a regular concern among
faint transiting planets.

5. FOLLOW-UP OBSERVATIONS & ADDITIONAL
ANALYSIS

Some of the planet candidates investigated in this pa-
per were not vetted in time for the results to be included
in B11. Therefore, we report the results of two tests that
were instrumental in identifying many of the candidates
that received a vetting flag of 3 or were labeled as likely
false positives in B11.
We also present complementary observations obtained

by the Kepler Follow-Up Observation Program (FOP).
These results demonstrate that there are not any “red
flags” that might indicate a more complicated system
that would require a more detailed analysis. Here we
give a brief overview of the additional analysis.

5.0.1. Odd-Even Test

One of the common reasons for a KOI to have been
identified as a likely false positive or to have received a
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Fig. 2.— Gaussian Process models for transit times of Kepler-24’s planet candidates. Points with error bars show deviations of measured
transit times from a linear ephemeris for Kepler-24c (KOI 1102.01, upper left) and Kepler-24b (KOI 1102.02, upper right). The solid curve
shows the mean of the GP models as a function of time, after conditioning on the observed transit times. The dotted lines show the
68.3% credible interval of the GP models. Each GP model is only affected by the TTs of one planet candidate, and yet there is a strong
anti-correlation (C1,2 = −0.905) between the GP models for Kepler-24 b&c. At the bottom, we show the histogram of the correlation
coefficients for synthetic datasets generated by permuting the order of transit times for each of Kepler-24 b&c, demonstrating that the
observed TTVs are highly significant (FAP< 10−3). Thus, the two bodies are in the same physical system and are not the result of two EBs
or planets around two separate stars that happen to fall within the same Kepler aperture. The requirement of dynamical stability provides
an upper limit on the masses (∼ 1.6 & 1.6 MJup), allowing us to conclude that both are planets. While there is significant uncertainty in
the stellar mass, both masses would remain in the planetary regime, even if the stellar mass had been underestimated by a factor of two.

vetting flag of 3 in B11 is a measurement of significant
difference in the transit depth of odd and even numbered
“transits”. This can occur if the apparent transit is due
to an EB, where the odd and even “transits” differ in
which star is eclipsing and which is being eclipsed. (Typ-
ically, the EB must also be diluted and/or grazing in or-
der for the depth to be consistent with a planet.) The
Kepler pipeline provides an odd-even depth test statis-
tic that can be used to identify KOIs potentially due
to an EB (Steffen et al. 2010). Inspecting the odd-even
test statistic is also advised to check that the inferred
orbital period is not half the true orbital period. Such
a misidentification can arise for low signal-to-noise can-
didates, such as KOI 730 (see Lissauer et al. 2011; D.
Fabrycky et al. 2012, in preparation). We have verified
that the odd-even test statistic is less than 3 for each

of the planets with significantly correlated TTVs that is
discussed in §6, as well as the other planet candidates in
these systems. In the course of our analysis, we noted
that the originally reported period for KOI 168.02 was
an artifact at one third the period of the updated period
for KOI 168.02.

5.0.2. Centroid Motion

Another of the common reasons for a KOI to receive a
vetting flag of 3 in B11 was a measurement of significant
difference in the location of the centroid of the target
star during transit and out-of-transit. Centroid motion
can be due to to a background EB that is blended with
the target star. On the other hand, small but statisti-
cally significant centroid motion does not necessarily im-
ply that the KOI is not a planet. For example, local scene
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Fig. 3.— Timescale until dynamical instability as a function of planet mass. For each system, we perform a series of n-body integrations
including the pair of planets for which we detect significant TTVs with our correlation analysis. We vary the masses of the planets, subject
to the nominal planet-planet mass ratio based on the transit depths. We assume initially circular, coplanar orbits and the nominal stellar
masses in Table 3. Points with an upward arrow indicate n-body integrations which did not go unstable for 107 years. In all cases, the
maximum masses that do not go unstable within 107 years are clearly in the planetary regime. Thus, all of the transiting planet candidates
for which we observe correlated TTVs can not due to an eclipsing binary star that is blended with the target star.



Confirmation of Two Multiple Planet Systems 11

crowding can induce an apparent shift in the photomet-
ric centroid, as well as introduce biases in pointspread
function (PSF)-fitted estimates of the location of the
transiting object via difference images. Removing these
spurious sources of centroid motion requires extensive
analysis as described in Bryson et al. (2012, in prepa-
ration). Here, we limit ourselves to planet candidates
where the above biases are negligible, so the apparent
centroid motion is within the 3-sigma statistical error
due to pixel-level noise for most of the quarters of data
analyzed. None of the planet candidates with correlated
TTVs that are discussed in §6 have statistically signifi-
cant centroid motion.

5.0.3. Transit Durations

For targets with multiple transiting planet candidates,
the ratio of transit durations can be used as a diagnostic
to reject blend scenarios (Holman et al. 2010; Batalha et
al. 2011; Lissauer et al. 2011; R. Morehead et al. 2012,
in preparation). Therefore, we perform a light curve fit-
ting based on Q0-6 data primarily to measure transit
durations. We construct folded light curves based on
the measured transit times (see Table 2). Otherwise, we
follow the fitting procedure of Moorhead et al. (2011).
Note that the durations reported in Table 1 are based
on when the center of the planet is coincident with the
limb of the star and that this differs from the durations
reported in B11 that were based on the time interval
between first and fourth points of contact. The former
definition of duration is less sensitive to the uncertainties
in the planet size, impact parameter and limb darkening
(Colón & Ford 2009; Moorhead et al. 2011). Note that
the planet candidates discussed in this paper have faint
host stars, so there is often a large uncertainty in the im-
pact parameters. In most cases where the impact param-
eter is not well-constrained, we adopt a central transit,
similar to both B11 and Moorhead et al. (2011).
We report the normalized transit duration ratio (ξ ≡

(Tdur,in/Tdur,out)(Pout/Pin)
1/3) for each pair of neigh-

boring planets in Table 4. We also calculate ξ5 and ξ95,
the 5th and 95th percentile of ξ values obtained from
Monte Carlo simulations of an ensemble of systems with
two planets with the measured orbital periods and a dis-
tribution of impact parameters and eccentricities. Sim-
ulations are discarded if both planets do not transit or
if transits of one planet would not have been detected
(due to grazing transits that would result in a reduced
signal-to-noise ratio). In Table 4, we report ξ5/95 which
is simply ξ5 for pairs with ξ < 1 and ξ95 for pairs with
ξ > 1. Typically, the distribution of ξ is not far from
symmetric, so ξ0.95 ∼ 1/ξ0.05. For a few pairs where the
two planets have substantially different radii, the simu-
lated distribution of ξ is asymmetric due to the minimum
signal-to-noise criterion. In all cases, the measured ξ is
consistent with a pair of planets transiting a common
host star.

5.0.4. Spectra of Host Stars

The Kepler FOP has obtained high-resolution spectra
of KOI host stars from the 10m Keck I Observatory, the
3m Shane Telescope at Lick Observatory, 2.7m Harlan J.
Smith Telescope at McDonald Observatory, or the 1.5m
Tillinghast Reflector at Fred Lawrence Whipple Obser-
vatory (FLWO). The choice of observatory and exposure

time were tailored to produce the desired signal to noise.
For some faint stars, an initial low-SNR reconnaissance
spectra was used for initial vetting, before obtaining a
second higher SNR spectrum that was used for analy-
sis. For Kepler-23, stellar parameters are based on spec-
tra from McDonald Observatory and the Nordic Optical
Telescope. Spectra were analyzed by computing the cor-
relation function between the observed spectrum and a
library of theoretical spectra using the tools described in
L. Buchave et al. (2012, in preparation). This method
provides measurements of effective temperature (Teff),
metallicity ([M/H]) and surface gravity (log(g)), as well
as a means of recognizing binary companions that would
produce a second set of spectral lines. In the case of
Kepler-24, we adopt the stellar atmospheric parameters
from the KIC and reported in Borucki et al. (2011), since
a high quality spectrum is not yet available.
We report the adopted stellar atmospheric parameters

in Table 3. We also update the stellar mass and radius
based on Bayesian comparison to Yonsei-Yale isochrones
(Yi et al. 2001).

5.0.5. Imaging of Host Stars

The Kepler mission follow-up observing program in-
cludes speckle observations obtained at the WIYN 3.5-m
telescope located on Kitt Peak. Speckle observations of
Kepler-23 were used to provide high spatial resolution
views of the target star to look for previously unrecog-
nized close companions that might contaminate the Ke-
pler light curve. The speckle observations make use of
the Differential Speckle Survey Instrument (DSSI), a re-
cently upgraded speckle camera described in Horch et
al. (2010) and Howell et al. (2011). The DSSI provides
simultaneous observations in two filters by employing a
dichroic beam splitter and two identical EMCCDs as the
imagers. The details of how we obtain, reduce, and ana-
lyze the speckle results and specifics about how they are
used eliminate false positives and aid in transit detection
are described in Torres et al. (2010), Horch et al. (2010),
and Howell et al. (2011). The latter paper also presents
the speckle imaging results for the 2010 observing season.
Classical imaging systems provide complementary ob-

servations with a wider field of view. In particular, the
Lick Observatory 1m Nickel Telescope took an I-band
image of Kepler-23 with a pixel scale of 0.368”/pixel and
seeing of ∼1.5”. For Kepler-24, the 2m Faulkes Telescope
North (FTN) provides SDSS-r’ band images with a pixel
scale of 0.304 ”/pixel in the default 2 x 2 pixel binning
mode, and a typical seeing of ∼ 1.2”. For each target a
stacked image is generated by combining several images
taken during the night, or on separate nights, when the
target is at different positions on the sky. This is done in
order to achieve increased sensitivity for faint stars with-
out saturating the bright stars, and to average out the
diffraction pattern of the spider vanes supporting the sec-
ondary mirror (Since FTN has an alt-azimuth mount the
diffraction pattern is different at different sky positions,
relative to the positions of the stars).

6. PROPERTIES OF CONFIRMED PLANETARY SYSTEMS

Properties of the host stars from the Kepler Input Cat-
alog (KIC; Brown et al. 2011) and planet candidates from
Kepler light curve analysis are presented in Borucki et al.
2011. Table 3 summarizes the key host star parameters,
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Fig. 4.— Upper Left: An I-band image of Kepler-23 from the Lick Observatory 1m Nickel Telescope with 1.2’ on a side. Upper right:
A speckle image of Kepler-23 with DSSI at WIYN centered on 880nm with 2.8” on a side. Lower left: A J-band image of Kepler-24 from
UKIRT, 1’ on each side (North is up, East is left). Lower right: A r’-band image of Kepler-24 from FTN with the target (red), KIC objects
(green, with KIC ID), and other stars detected in the field (purple) circled. Each circle has a 1” radius.

either from the KIC or the Kepler FOP (when available).
The key properties of the planets confirmed in this pa-
per, as well as additional planet candidates with inter-
esting TTVs, are summarized in Table 1. In this section,
we discuss two planetary systems that we confirm based
on correlated TTVs and dynamical stability. Other sys-
tems with significant and strongly correlated TTVs are
the subject of separate upcoming papers (Cochran et al.
2011; J.-M. Desert et al. 2011b, in preparation; D. Fab-
rycky et al. 2012; J. Lissauer et al. 2012; D. Ragozzine
et al. 2012, in preparation; Steffen et al. 2012).

6.1. KOI 168

Kepler-23 (KOI 168, KID 11512246, Kp=13.4) hosts
three small planet candidates (168.03, 168.01, 168.02)
with orbital periods of 7.10, 10.7 and 15.3 days and radii
of ∼ 3.2, 1.9 and 2.2 R⊕, respectively (B11; N. Batalha
et al. 2012, in preparation). In the course of this anal-
ysis, we recognized that the originally reported period
for KOI 168.02 was an artifact with one third the true
period. Initial vetting of KOI 168.01 (planet c, 10.7d)
resulted in a vetting flag of 2 and an estimated EB prob-
ability of ∼ 3.2× 10−5 (B11), indicating that this candi-
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date is very unlikely to be due to a background eclipsing
binary. KOI 168.02 and 168.03 (b) were not vetted in
time for B11. Based on the analysis described in §5,
we find no evidence pointing towards a false positive for
any of the three planet candidates. An analysis of pos-
sible centroid motion resulted in 3σ radii of confusion of
Rc,23c ∼ 0.3” and Rc,23b ∼ 5”. While the radius of con-
fusion for Kepler-23b is relatively large, the mean offset
of the centroid during transit is only ∼ 0.1σ, consistent
with measurement uncertainties. Due to the faint stars
and relatively low SNR of the transits, the constraint
for Kepler-23b is relatively weak when compared to Ke-
pler planet candidates transiting brighter stars. Never-
theless, the centroid measurements are still powerful re-
sults. Since the typical optimal aperture for photometry
of Kepler-23 is 9 pixels in area (i.e., equivalent to a circu-
lar aperture with radius of ∼ 6.7”), excluding locations
for a potential background EB to within 5” eliminates
80% of the optimal aperture phase space for blends with
background objects. The analysis in §4.3 shows that the
probability of a background eclipsing binary causing one
of Kepler-23 b or c is less than∼ 10−4 and the probability
of the planets being around a lower mass and physically
bound star is less than ∼ 11%.
An I-band image was taken with the Lick Observa-

tory 1m Nickel Telescope on July 10, 2010. There were
no companions visible from ∼2-5” away from the target
star down to 19th magnitude (see Fig. 4). On Jun 11 and
12, 2011, the FOP obtained speckle images of Kepler-23
in a band centered on 880nm with width 55nm using
DSSI at WIYN. Seven and five integrations, each con-
sisting of 1,000 40-ms exposures were coadded. These
observations reveal no secondary sources with a 4-σ lim-
iting delta magnitude of 2.94 at 0.2”, increasing to 3.5
at 1” and 3.57 at 1.8”. As no new nearby stars were
identified in either set of observations, we adopt ∼ 2.5%
contamination of the Kepler aperture used by the Ke-
pler pipeline based on prelaunch photometry, the optimal
aperture used for photometry and the PSF.
The Kepler FOP obtained two medium-resolution

reconisance spectra of Kepler-23 from McDonald
Observatory (HJD=2455153.643746) and FIES
(2455054.576815). The spectra result in stellar
atmospheric parameters of Teff = 5760 ± 124K,
log(g) = 4.0 ± 0.14 and [M/H]=−0.09 ± 0.14 (L.
Buchave et al. 2012, in preparation), consistent with
the stellar properties in the KIC. We compare to the
Yonei-Yale isochrones and derive values for the stellar
mass (1.11+0.09

−0.12M⊙) and radius (1.52+0.24
−0.30R⊙) that are

slightly smaller than those from the KIC. We estimate a
luminosity of ∼ 2.3L⊙ and an age of ∼ 4− 8Gyr.
For Kepler-23b, the SNR of each transit is only ∼ 1.7,

resulting in significant timing uncertainties (σTT = 47
minutes). All three planet candidates are clearly iden-
tified after folding the light curve at the best-fit orbital
period (Fig. 5). Ford et al. (2011) noted that Kepler-23c
was a TTV candidate based on an offset in the transit
epoch between the best-fit linear ephemerides based on
Q0-2 and Q0-5. TTVs for Kepler-23b were not recog-
nized based on Q0-2 observations alone.
The correlation coefficient between the GP models for

TTs of Kepler-23 b&c is C = −0.86, well beyond the
distribution of correlation coefficients calculated based
on synthetic data sets with scrambled transit times (see

Fig. 1). The false alarm probability for such an extreme
correlation coefficient is < 10−3. The correlation coeffi-
cient between the GP models for TTs of Kepler-23c and
KOI 168.02 is -0.23 with a FAP∼ 12%. This is well above
our threshold for claiming a planet detection. We do not
yet detect statistically significant TTVs for 168.02, as ex-
pected due to the smaller predicted TTV signal for KOI
168.02 and the sizable timing uncertainties. In combina-
tion with the analysis of Kepler light curves and FOP ob-
servations described above, the strongly anti-correlated
TTVs of Kepler-23 b & c provide a dynamical confirma-
tion that the two objects orbit the same star.
Kepler-23 b&c have short orbital periods and lie close

to a 3:2 resonance: P23b/P23c = 1.511. Therefore, we
expect a relatively short TTV timescale:

PTTV = 1/(3/10.7421d− 2/7.1073d) = 470d. (15)

The observed timescale (∼ 455d) and phase of TTVs for
Kepler-23 b&c are consistent with expectations based on
n-body integrations using nominal planet mass estimates
and circular, coplanar orbits (see Fig. 6). The amplitude
of the observed TTVs is ∼ 5 times larger than the nomi-
nal model. Such differences are not unexpected, as even
modest eccentricities can significantly increase the TTV
amplitude (e.g., Veras et al. 2011). The prediction of the
nominal model for the ratio of the TTV amplitudes of the
two confirmed planets is significantly more robust than
the predictions of individual amplitudes. Indeed, the ob-
served MAD TTV from a linear ephemeris is within 5%
of that predicted by the nominal model. Our GP mod-
els for the TTs of Kepler-23 b&c are non-parametric,
so there is nothing in our model that would cause the
GPs to match the ratio of TTV amplitudes, the TTV
period, or the phase of TTV variations. The fact that
our general non-parametric model naturally reproduces
these features provides an even more compelling case for
the confirmation of these planets via TTVs.
While the currently available data is insufficient for

robust determinations of the planet masses, we fit two
n-body models to the TTV observations. If we assume
initially circular and coplanar orbits, then the best-fit
masses are ∼ 22 ± 6 and 12 ± 2M⊕. If we assume ec-
centric coplanar orbits, then the best-fit masses are ∼ 15
and 5M⊕, corresponding to orbital solutions with low
eccentricities. Significantly smaller or larger masses are
possible, but these require large eccentricities. Either
model represents a significant improvement in the qual-
ity of the fit relative to a non-interacting model. Despite
the sizable uncertainties in the estimates for the planet
masses, the requirement of dynamical stability provides
firm upper limits (2.7 & 0.8 MJup) on the planet masses
(Fig. 3).

6.2. Kepler-24 (KOI 1102)

Kepler-24 (KOI 1102, KID 3231341, Kp=14.9) hosts
four planet candidates (04, 02, 01 and 03) with orbital
periods of 4.2, 8.1, 12.3, 19.0 days and radii of 1.7, 2.4,
2.8, 1.7 R⊕, respectively (see Fig. 7; B11; N. Batalha et
al. 2012 in preparation). KOI 1102.02 (b) and 1102.01 (c)
were identified, but not vetted in time for B11. Based on
the analysis described in §5, we find no evidence pointing
towards a false positive for any of KOI 1102.01-1102.04.
The centroids during transit for Kepler-24b & c differ
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Fig. 5.— Kepler Light curve for Kepler-23. Panel a shows the raw calibrated Kepler photometry (PA) and panel b shows the photometry
after detrending. The transit times of each planet are indicated by dots at the bottom of each panel. The bottom, middle and top rows of
dots (yellow, red, blue) are for Kepler-23 b, c and KOI 168.02. The lower three panels show the superimposed light curve for each transit,
after shifting by the measured mid-time, for Kepler-23b, c and KOI 168.02.
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Fig. 6.— Comparison of measured transit times (left) and transit times predicted by the nominal model (right) for a system containing
only Kepler-23b (top) and c (bottom). The model assumes circular and coplanar orbits and nominal masses, as described in §3.6 and Table
3. The red curves on the left show the best-fit sinusoidal model with a period constrained to be that predicted by measured orbital periods
(see Fabrycky et al. 2011 for details). The red error with no point at the far left shows the best-fit amplitude.
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from those out-of-transit by ∼1.4 and 2.8σ, consistent
with measurement uncertainties, particularly when con-
sidering the actual distribution of the apparent centroid
motion during transit is highly non-Gaussian for other
well-studied cases (Batalha et al. 2010). The ∼ 3σ radii
of confusion are 1.2” and 0.9”, for Kepler-24 b & c,
respectively. Based on a preliminary analysis of data
through Q8, the centroid offsets for 1102.04 and 1102.03
are less than 3σ. Again, the limited centroid motion
enables us to exclude the locations for potential back-
ground EBs to a small fraction of the optimal aperture
phase space for blends with background objects. The
analysis in §4.3 shows that the probability of a back-
ground eclipsing binary causing one of KOI 1102.01 (c)
or 1102.02 (b) is less than ∼ 2× 10−3. The only accept-
able blend scenario involves a pair of similar mass and
physically bound stars.
A UKIRT J-band image (Fig. 4, left) reveals a faint

companion that is not in the KIC ∼ 2.5” to the SE, with
brightness intermediate to the outlying faint stars KIC
3231329 (Kp= 19.0) and KIC 3231353 (Kp= 20.0). An
FTN image also reveals the nearby star, ∼ 5 magnitudes
fainter than the target in the r’-band (Fig. 4, right). We
estimate that it is∼ 4−5 magnitudes fainter than Kepler-
24 in the Kepler band. As most of its light falls in the
Kepler image and star is not in the KIC, it results in ∼
1−3% dilution in addition to the∼ 8% dilution estimated
by the pipeline for a total of 8.6%.
The Kepler FOP has not yet obtained a spectrum

of Kepler-24. We estimate the stellar properties based
on multi-band photometry from the Kepler Input Cat-
alog: Teff = 5800 ± 200, log(g) = 4.34 ± 0.3 and
[M/H]=−0.24± 0.40. We estimate uncertainties based
on a comparison of KIC and spectroscopic parame-
ters for other Kepler targets (Brown et al. 2011). We
derive values for the stellar mass (1.03+0.11

−0.14M⊙), ra-

dius (1.07+0.16
−0.23R⊙), luminosity ∼ 1.16+0.36

−0.60 L⊙ and age
≤ 7.7Gyr by comparing to the Yonei-Yale isochrones.
We caution that there are significant uncertainties asso-
ciated with the stellar models and derived properties.
Kepler-24 is sufficiently faint that transit times for

Kepler-24c and Kepler-24b have sizable uncertainties
(σTT = 30, 25 min). Ford et al. (2011) did not find sig-
nificant evidence for TTVs in either of the planet can-
didates, but noted that Kepler-24b was likely to have
significant TTVs (∼ 26 min), based on numerical inte-
grations of two planet systems with nominal masses and
circular orbits.
The correlation coefficient between the GP models for

TTs of Kepler-24b & c is C = −0.905, well beyond the
distribution of correlation coefficients calculated based
on synthetic data sets with scrambled transit times (see
Fig. 2). The false alarm probability for such an extreme
correlation coefficient is < 10−3. In combination with
the analysis of Kepler light curves described above, this
provides a dynamical confirmation that the two objects
orbit the same star.
Kepler-24b & c have short orbital periods and lie near a

3:2 resonance: P24c/P24b = 1.514. Therefore, we expect
a relatively short TTV timescale:

Pttv = 1/(2/8.1451d− 3/12.3336d) = 421d. (16)

The observed timescale (∼ 400d) and phase of TTVs

for Kepler-24 b & c are consistent with the expectations
based on n-body integrations using nominal planet mass
estimates and circular, coplanar orbits (see Fig. 8). Our
GP models for the TTs of Kepler-24 b & c are non-
parametric, so there is nothing in our model that would
cause the GPs to match the period and phase of the TTV
variations. The fact that our general non-parametric
model naturally reproduces these features provides an
even more compelling case for the confirmation of these
planets via TTVs.
The best-fit amplitudes of the observed TTVs are ∼ 7

and 9 times larger than the nominal model for Kepler-24b
& c, respectively. Such differences are not unexpected, as
even modest eccentricities can significantly increase the
TTV amplitude (e.g., Veras et al. 2011). Like Kepler-23,
the prediction of the nominal model for the ratio of the
TTV amplitudes of the two confirmed planets is within
25% of the observed ratio (1.25). Still, there could be
significant differences between the true masses and the
nominal masses, e.g., if there are significant eccentrici-
ties and/or perturbations from other planets in the sys-
tem. Assuming that KOI 1102.03 is indeed a planet in
the same system, then Kepler-24c would be near a 3:2
MMR with both Kepler-24b (inside) and KOI 1102.03
(outside), leading to complex dynamical interactions.
While the currently available data is insufficient for

robust determinations of the planet masses, we fit two
n-body models to the TTV observations. If we assume
initially circular and coplanar orbits, then the best-fit
masses are ∼ 17 ± 4 and 5 ± 3M⊕. If we assume
eccentric coplanar orbits, then the best-fit masses are
∼ 102 ± 21 and 56 ± 16M⊕, corresponding to orbital
solutions with eccentricities of ∼ 0.2− 0.4. Either model
represents a significant improvement in the quality of the
fit relative to a non-interacting model. While the best-fit
eccentric model represents a significant improvement in
the goodness-of-fit relative to the best-fit circular model,
such large eccentricities may complicate long-term stabil-
ity, particularly if all four of the planet candidates were
confirmed. Despite the sizable uncertainties in the esti-
mates for the planet masses, the requirement of dynam-
ical stability provides a firm upper limit on the planet
masses (1.6 & 1.6MJup; Fig. 3).
We do not detect a statistically significant correla-

tion coefficient between TTVs of either KOI 1102.03 or
1102.04 and any of the other planet candidates. The
scatter of the TTVs for 1102.04 is consistent with the
measurement uncertainties. One can understand the lack
of a TTV detection for KOI 1102.04 analytically, since
the amplitude of a TTV signal scales with the orbital
period, KOI 1102.04 has an orbital period roughly half
that of Kepler-24b, and the TTV signal for Kepler-24b
is near the limit of detectability. Further, the transit of
KOI 1102.04 is shallower than Kepler-24b, so the TTVs
are less precise. If KOI 1102.04 is a planet in the same
system, then the current innermost period ratio would
be P24b/P1102.04 = 1.92, ∼ 5% less than 2, whereas it
is more common for systems near a 1:2 MMR to have a
period ratio ∼ 5% greater than 2 (Lissauer et al. 2011b).
This could be related to the presence of four planet can-
didates with orbital period ratios near a 2:4:6:9 resonant
chain. The current period ratios for the outer two pairs
(P24c/P24b = 1.514 and P1102.03/P24c = 1.54) are slightly
greater than 1.5, so none of the neighboring pairs are nec-
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essarily “in resonance”. Such deviations from an exact
period commensurability appear to be common among
Kepler planet candidates (Lissauer et al. 2011).
There may be early hints of excess scatter in the TTVs

of 1102.03, but this is not statistically significant based
on the current data set. If KOI 1102.03 is a planet in
the same system, then Kepler-24c would feel significant
perturbations from both Kepler-24b (on the inside) and
1102.03 (on the outside). This may help explain why the
observed TTVs for Kepler-24b are significantly greater
than those predicted by the nominal two-planet model
that includes only planets b & c. We hope that this paper
will motivate more detailed analysis of the TTVs and
orbital dynamics of this fascinating planetary system.



18 Ford et al.

Fig. 7.— Kepler Light curve for Kepler-24. Panel a shows the raw calibrated Kepler photometry (PA) and panel b shows the photometry
after detrending. The transit times of each planet are indicated by dots at the bottom of each panel. From from top to bottom, the rows of
dots (yellow, red, blue, green) are for KOI 1102.04, Kepler-24b, Kepler-24c and KOI 1102.03. The lower four panels show the superimposed
light curve for each transit, after shifting by the measured mid-time for each of the four KOIs.
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Fig. 8.— Comparison of measured transit times (left) and transit times predicted by the nominal model (right) for a system containing
only Kepler-24b (top) and Kepler-24c (bottom). Details are described in the caption to Fig. 6.
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7. DISCUSSION

In this paper and two companion papers (Fabrycky et
al. 2011, Steffen et al. 2011), we have described a new
approach to confirming transiting planets. For systems
with MTPCs, correlated TTVs provide strong evidence
that both transiting objects are in the same system. Dy-
namical stability provides an upper limit on the masses of
the transiting bodies. For closely-spaced pairs, the mass
upper limit is often in the planetary regime, allowing
planets to be confirmed by the combination of correlated
TTVs and the constraint of dynamical stability.
We have described a non-parametric method for quan-

tifying the significance of TTVs among MTPC systems.
Our approach uses a GP model to allow for a rigorous,
yet computationally tractable, Bayesian analysis of each
planet candidate’s TTV curve. Provided there is a suf-
ficient number of transit observations, our correlation-
based analysis is more sensitive and robust than test-
ing for TTVs of each planet individually (e.g., Ford et
al. 2011). N-body simulations show that TTVs of two
interacting planets are correlated, regardless of the ex-
act mechanims responsible for the TTVs (e.g., resonant
interaction, indirect effect on the star, secular preces-
sion). Thus, our algorithm is designed to be most sen-
sitive for detecting TTVs when applied to systems with
correlated TTVs. Another advantage of this method is
that it makes minimal assumptions about the potential
TTV signatures. This approach is complementary to
other methods of quantifying the significance of TTVs
in MTPC systems (Fabrycky et al. 2011; Steffen et al.
2011). Since the method of Steffen et al. (2011) assumes
sinusoidal TTV signals, it is expected to be more sen-
sitive to systems with sinusoidal TTVs, but less sensi-
tive to systems with more complex TTV signatures. The
method of Fabrycky et al. (2011) assumes that the TTVs
can be approximated as sinusoidal and that the dominant
TTV timescale can be predicted based on the period of
a known, transiting planet. Since this method performs
a minimal number of statistical tests, it is expected to
have an even greater sensitivity for many systems. Of
course, it could overlook systems where the TTV signal
is more complex or dominated by the perturbations of
a non-transiting planet. Therefore, it will be useful to
apply all three methods for detecting TTVs to the Ke-
pler MTPC systems. We anticipate that the algorithm
described here may be particularly useful for confirming
closely-spaced systems or systems with more than two
planets contributing to the TTV signature.
We have applied our method to 10 MTPC systems to

calculate the correlation coefficient between TTV curves
for neighboring transiting planet candidates. Eight of
these systems have at least one pair of neighboring plan-
ets with correlated TTVs for which the TTVs are signif-
icant at better than the 10−3 level (see Table 4). This
demonstrates that the planet candidates are in the same
physical system. Given their close proximity, the require-
ment of dynamical stability provides limits on the max-
imum masses that are firmly in the planetary regime.
This combination of correlated TTVs plus dynamical sta-
bility provides dynamical confirmation of planet candi-
dates originally identified photometrically by the Kepler
mission.
While correlated TTVs clearly demonstrate that the

planets orbit the same star, it is not guaranteed that
the host star is the target. Based on follow-up imag-
ing and limits on the extent of centroid motion during
transit, blends with background objects are extremely
unlikely. However, it is possible that both planets or-
bit a physically associated star that is too close to the
primary target star to be identified by imaging, but far
enough away that it does not destabilize the system. If
the host star were significantly less massive and less lumi-
nous than the primary target star, then the planets would
have smaller masses, but be much larger in size, since
the transit depths would be highly diluted by the pri-
mary target star. While this is not a viable scenario for
Kepler-24, we estimate there is a ≤ 11% chance that the
Kepler-23 planetary system orbits a significantly lower
mass star that is physically bound to the primary target
star. Alternatively, if the secondary is nearly the same
mass and luminosity as the primary target star, then the
stellar properties would be quite similar, but the planet
sizes could be larger by a factor of ∼

√
2, due to the ex-

tra dilution. The probability for such scenarios is small,
but not completely negligible (e.g., a few percent for KOI
738; Fabrycky et al. 2011). In any case, the correlated
TTVs and the mass limits from dynamical stability still
demonstrate that there are at least two planets in the
same system, despite the uncertainty in stellar parame-
ters.
This paper presents 2 planetary systems (Kepler-23 &

Kepler-24) containing 4 confirmed planets. Both pairs
(Kepler-23b(03) & c(01); Kepler-24b(02) & c(01) ) of
confirmed planets are near the 3:2 MMR. Each of these
systems contains additional transiting planet candidates
which have yet to be confirmed. If confirmed, these sys-
tems would contain closely-spaced near-resonant chains
of transiting planets (4:6:9 for Kepler-23 and 2:4:6:9
for Kepler-24). Resonant chains can form via migration
through a protoplanetary disk (e.g., Cresswell & Nelson
2006, 2008), but forming chains of near-resonant plan-
ets may be more challenging. More detailed modeling of
the TTV curve will become a powerful tool for learning
about these systems and planet formation and migration
(Ragozzine & Holman 2010), particularly once multiple
cycles of TTVs have been measured by Kepler.
At the moment, the time span of observations is not yet

sufficient to enable precise mass measurements of planets
in these systems due to degeneracies with the other or-
bital properties. Nevertheless, we can already recognize
one of the timescales of the observed TTVs for each sys-
tem. For each of the confirmed planets, this timescale is
consistent with the predictions of a nominal model, using
coplanar, circular orbits and planet masses crudely esti-
mated from their radii and the host star properties. Ad-
ditionally, the phases of the TTV curves for Kepler-23b
& c and Kepler-24b&c are consistent with the predictions
of the nominal model.
The observed TTV amplitudes (measured in terms of

the mean absolute deviation from a linear ephemeris)
are larger (factors of ∼ 5.3 for Kepler-23, and ∼5-46 for
Kepler-24) than the predictions of our nominal models.
Again, this is not unexpected due to the extreme sensitiv-
ity of TTVs to masses and eccentricities. The ratio of the
TTV amplitudes for each pair of planets with correlated
TTVs is a more robust prediction, as several sources of
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uncertainty affect both planet masses similarly (i.e., stel-
lar mass, amount of dilution of Kepler light curve). In-
deed, we find excellent agreement (∼ 1 − 2%) between
the ratio of observed TTV amplitudes and with the cor-
responding prediction of the nominal model for Kepler-
23b & c. For Kepler-24, this ratio is ∼ 0.1, perhaps due
to significant eccentricities or perturbations from KOI
1102.03.
We caution that the uncertainty in the masses and sizes

of the host stars directly translates into uncertainties in
the planet masses and sizes. As the time span of Ke-
pler TTV observations increases, more detailed dynam-
ical analyses will become possible. Additional follow-up
observations and analysis will become increasingly im-
portant to aid in the interpretation of the detailed dy-
namical information contained in the TTV curves for
these systems.
Alternative techniques for studying TTVs of MTPC

systems also confirm the TTVs of Kepler-23 and Kepler-
24 with a false alarm probability of < 10−3 (Fabrycky et
al. 2011; Steffen et al. 2011). The GP method here is no-
table for its minimal set of assumptions, making it most
sensitive for large data sets, even if the observed TTV sig-
nature is complex and differs from that expected. Thus,
the GP method could prove particularly valuable for an-
alyzing TTVs of planets that are significantly perturbed
by a non-transiting planet and/or multiple planets.
The planets confirmed here and in companion papers

(Fabrycky et al. 2011; Steffen et al. 2011) are not meant
to represent an exhaustive search of the Kepler planet
candidates presented in B11. With continued Kepler
observations, this and other complementary techniques
(e.g., Fabrycky et al. 2011; Lissauer et al. 2011bc; Stef-
fen et al. 2011) are poised to confirm many more MTPC
systems. In particular, there are several other MTPC
systems near the 3:2 MMR, 2:1 MMR or other period
commensurabilities that are predicted to have observable
TTV signatures (Ford et al. 2011; Lissauer et al. 2011).
For many of these KOIs additional analysis and/or ob-
servations will be required before their planets can be
confirmed.
Due to larger stellar activity than originally antici-

pated (Gilliland et al. 2011), for Kepler to measure the

frequency of Earth-size planets in the habitable zone of
solar-type stars an extended mission is required. For-
tunately, the spacecraft carries consumables that could
support an extended mission which would improve sen-
sitivity for detecting small planets. An extended mis-
sion would also dramatically improve the constraints on
planet masses and orbits based on TTVs for systems such
as those presented here. Indeed, of the four planets con-
firmed here, only one was recognized as a TTV candidate
in Ford et al. (2011). As the time span of observations in-
creases, we anticipate that TTVs will become detectable
for even more systems. An extended mission could also
substantially increase the number of transits observed for
planets at longer orbital periods. This would be particu-
larly valuable for confirming small planets in or near the
habitable zone.
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TABLE 1
Key Properties of Planets and Planet Candidates

KOI Epocha P TDur Rp
b ab nTTc σTT RMS MADd Mp,max

e

(d) (d) (hr) (R⊕ ) (AU) (d) (d) (d) (MJup)

168.03=Kepler-23 b 71.3022 7.1073 4.77 1.9 0.075 65 0.0328 0.0565 0.0268 0.8
168.01=Kepler-23 c 66.2926 10.7421 6.13 3.2 0.099 44 0.0091 0.0133 0.0090 2.7
168.02 80.5655 15.275 5.73 2.2 0.125 32 0.0443 0.0286 0.0109 · · ·
1102.04 70.0712 4.2443 2.43 1.7 0.052 103 0.0417 0.0427 0.0261 · · ·
1102.02=Kepler-24 b 73.5689 8.1453 4.02 2.4 0.080 58 0.0171 0.0307 0.0139 1.6
1102.01=Kepler-24 c 70.5860 12.3335 3.71 2.8 0.106 37 0.0166 0.0239 0.0190 1.6
1102.03 77.7512 18.9981 3.09 1.7 0.141 23 0.0184 0.0267 0.0159 · · ·

a BJD-2454900
b Updated to reflect stellar properties and dilution from Table 3
c Number of transit times measured in Q0-6
d Median absolute deviation from linear ephemeris measured during Q0-6
e Based on assumption of dynamical stability and stellar mass from Table 3

TABLE 2
Transit Times for Kepler Transiting Planet Candidates during Q0-6

KOI n tn TTVn σn

BJD-2454900 (d) (d)

168.01 = Kepler-23c 66.292554 + n× 10.742052
168.01 0 66.2749 -0.0177 0.0089
168.01 1 77.0227 -0.0119 0.0088
168.01 2 87.7845 0.0078 0.0088
168.01 4 109.2436 -0.0171 0.0092
168.01 5 119.9877 -0.0152 0.0084

Note. — Table 2 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance
regarding its form and content.

TABLE 3
Table of Key Properties of Host Stars

Kepler KOI KIC-ID Kp Contam. Teff [M/H] log(g) M⋆ R⋆ Sourcesa

(K) (cgs) (M⊙) (R⊙)

23 168 11512246 13.438 0.025 5760(124) −0.09(14) 4.00(14) 1.11+0.09
−0.12 1.52+0.24

−0.30 M,N,B11

24 1102 3231341 14.925 0.086 5800(200) -0.24(0.40) 4.34(30) 1.03+0.11
−0.14 1.07+0.16

−0.23 B11

a Sources for stellar properties. Spectroscopic stellar parameters are from: B11=Borucki et al. (2011), M=McDonald Observatory, N=Nordic
Optical Telescope. Stellar masses and radii based on comparison to Yonei-Yale models (Demarque et al. 2004). Quoted uncertainties do not include
systematic uncertainties due to stellar models.

TABLE 4
Table of Statistics for Pairs of Neighboring Planets Candidates

KOIin KOIout Pout/Pin
Rp,in

Rp,out
C FAPTTV,C ξ ξ5/95

RMSin

RMSout

MADin

MADout
κ

168.03 168.01 1.511 0.54 -0.863 < 10−3 0.89 0.57 4.27 2.35 1.02
244.02 244.01 2.039 0.58 -0.774 < 10−3 1.57 2.62 1.74 2.69 0.54
250.01 250.02 1.404 1.01 -0.825 < 10−3 1.53 2.55 1.22 0.96 1.56
738.01 738.02 1.286 1.15 -0.692 0.0010 0.90 0.45 0.57 0.66 1.17
806.03 806.02 2.068 0.26 -0.841 < 10−3 0.86 0.74 13.42 27.81 0.54
841.01 841.02 2.043 0.81 -0.803 < 10−3 0.88 0.42 1.02 2.34 0.59
870.01 870.02 1.520 1.05 -0.223 0.2972 0.89 0.46 0.49 0.56 1.09
935.01 935.02 2.044 1.14 -0.237 0.3140 0.99 0.40 0.80 1.56 1.01
952.01 952.02 1.483 0.98 -0.728 < 10−3 1.12 2.38 0.67 0.43 0.79

1102.02 1102.01 1.514 1.14 -0.905 < 10−3 1.11 2.91 1.28 0.73 1.25




