
Fermilab FERMILAB-PUB-12-004-E

On Sampling fractions and electron shower shapes

Alexander Peryshkin1 and Rajendran Raja2, ∗

1AT&T Services, Inc., 225W Randolph Avenue, 30A, Chicago, Il 60606

2Fermi National Accelerator Laboratory,

P. O. Box 500, Batavia, IL 60510

(Dated: December 29, 2011)

Abstract

We study the usage of various definitions of sampling fractions in understanding electron shower

shapes in a sampling multilayer electromagnetic calorimeter. We show that the sampling fractions

obtained by the conventional definition (I) of (average observed energy in layer)/ (average deposited

energy in layer) will not give the best energy resolution for the calorimeter. The reason for this

is shown to be the presence of layer by layer correlations in an electromagnetic shower. The

best resolution is obtained by minimizing the deviation from the total input energy using a least

squares algorithm. The “ sampling fractions” obtained by this method (II) are shown to give the

best resolution for overall energy. We further show that the method (II) sampling fractions are

obtained by summing the columns of a non-local λ tensor that incorporates the correlations. We

establish that the sampling fractions (II) cannot be used to predict the layer by layer energies and

that one needs to employ the full λ tensor for this purpose. This effect is again a result of the

correlations.
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I. SAMPLING FRACTION DEFINITION METHOD I

We define the inverse sampling fraction μk
I in method I as the average deposited energy

Dk in layer k divided by the average live energy Lk in liquid argon in layer k , averaged

over a sample of electrons of fixed incident energy. The deposited energy includes energy in

Uranium plates, energy in dead material and the liquid argon gaps belonging to that layer.

μk
I ≡< Dk > / < Lk > (1)

where <> denotes average over events. Using this definition, we can calculate the total

deposited energy event by event and also the layer by layer deposited energy as a function

of the observed live energies.

Dtot =
∑

k

μk
IL

k (2)

and the layer by layer deposited energies are

Dk = μk
IL

k (3)

Table (I) shows the inverse sampling fractions μk
I for the 4 EM layers and the 1st layer of

a hadronic calorimeter (FH1) which acts as a leakage detector. The numbers are obtained

from a full plate simulation of the calorimeter using Geant 3.11 for 10 GeV/c and 100 GeV/c

electrons.

It can be seen that the inverse sampling fraction increases as the shower proceeds. In

particular, the ratio of the μI to the inverse sampling fraction determined using minimum

ionizing particles shows this effect in the second row of table (I)). This is due to mean

free path of the average particle in the shower becoming comparable to the Uranium plate

thickness, resulting in an increasing amount of tracks terminating in Uranium and not

making it into the argon. The effect is particularly noticeable in FH1 where the shower is in

the process of terminating. Using, μI , we calculate the Dtot and also individual Dk. Figure

(1) is the total energy Dtot calculated using this method. The overall energy resolution in

this method is roughly 40%/
√

(E). Figure (2) shows the difference between the calculated

2



Momentum EM1 EM2 EM3 EM4 FH1

μ1
I μ2

I μ3
I μ4

I μ5
I

10.0 12.2 12.3 16.1 19.3 139.6

μ1
I/MIP 1 μ2

I/MIP 2 μ3
I/MIP 3 μ4

I/MIP 4 μ5
I/MIP 5

10.0 0.39 1.08 1.43 1.56 8.1

μ1
I μ2

I μ3
I μ4

I μ5
I

100.0 10.4 11.2 15.0 18.4 59.9

μ1
I/MIP 1 μ2

I/MIP 2 μ3
I/MIP 3 μ4

I/MIP 4 μ5
I/MIP 5

100.0 0.34 0.98 1.34 1.49 3.47

MIP 31.05 11.4 11.23 12.34 17.24

TABLE I: Inverse sampling fractions method I for 10 Gev/c and 100 GeV/c electrons. Also shown

are the inverse sampling fractions estimated using Minimum Ionizing particles (MIP) and the ratio

of Method I/MIP

event by event quantities Dk using method I and the Monte Carlo measured Dk for the

various layers.

II. SAMPLING FRACTION DEFINITION METHOD II

In order to optimize the resolution, it is usual to minimize the sum of squares of the

difference between the calculated total energy and the input total energy event by event.

We minimize S2 defined as

S2 ≡
∑

events

(Dtot −
∑

k

μk
IIL

k)2 (4)

To minimize,

dS2

dμj
II

= −2
∑

events

(Dtot −
∑

k

μk
IIL

k)Lj = 0 (5)

Averaging over the number of events, this yields
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FIG. 1: Total energy of electron showers calculated using method I. The mean reconstructed energy

is 100.0 GeV and the rms is 4.095 GeV

< DtotLj >=
∑

k

μk
II < LkLj > (6)

with the matrix M jk ≡< LjLk > , we can solve for μII
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FIG. 2: Difference in energy (Monte Carlo -predicted ) layer by layer using method I. Layer 1

has mean,RMS of (0.59E-3 GeV and 0.407 GeV), layer 2 ( -0.11E-2 GeV and 0.56 GeV), layer 3

(-0.12E-2 GeV and 3.5 GeV) and layer 4 (-0.7E-3 GeV and 1.43 GeV)

μa
II =

∑

j

< DtotLj > (M−1)ja (7)

Table( II) shows the inverse “sampling fractions” μk
II for the 4 EM layers and the 1st

layer of the Hadronic calorimeter. The numbers are significantly different from that in table
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Momentum EM1 EM2 EM3 EM4 FH1

μ1
II μ2

II μ3
II μ4

II μ5
II

10.0 20.7 14.6 14.8 15.3 26.8

μ1
II μ2

II μ3
II μ4

II μ5
II

100.0 21.8 14.6 14.7 15.6 29.1

TABLE II: Inverse “sampling fractions” method II for 10 GeV/c and 100 GeV/c electrons

(I) especially in layers 1 and 5. The numbers are obtained from a full plate simulation of the

calorimeter using Geant 3.11 for 100 GeV/c electrons and invoking the above minimization

algorithm.

Figure (3) is the total energy Dtot calculated using μII .

The overall energy resolution in this method is better than method I by almost a factor

of 2 and is equal to 17%/
√

(E).

Since Dtot =
∑

k μk
IIL

k, the tendency is to assume that the deposited energy in the kth

layer is given by Dk = μk
IIL

k . It is the purpose of this paper to show that this assumption

is false.

Figure (4) shows the difference between the calculated event by event quantities Dk using

method II and the Monte Carlo measured Dk for the various layers. There is seen to be

a major discrepancy between the average values and the calculated values. We explain

mathematically the origin of this discrepancy in the following section.

III. DEPOSITED ENERGY LAYER BY LAYER USING LEAST SQUARES

TECHNIQUE. METHOD III

The flaw in the above argument is to assume that

Dk = μk
IIL

k (8)

This equation is not general enough. The most general linear equation one can write

connecting a vector Lk and another vector Dk is
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FIG. 3: Total energy of electron showers calculated using method II. The mean reconstructed

energy is 99.97 GeV and the rms is 1.752 GeV

Dk =
∑

j

ΛkjLj (9)

where the tensor Λkj is in general non-diagonal. In the special case where it is diagonal,

equation 8 results. In order to determine Λ, since Di are known from Monte Carlo ,we

minimize
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FIG. 4: Difference in calculated and measured layer by layers using method II. Layer 1 has

mean,RMS of (-2.47 GeV and 1.05 GeV), layer 2 ( -3.07 GeV and 0.95 GeV), layer 3 (1.3 GeV and

2.53 GeV) and layer 4 (3.24 GeV and 0.95 GeV)

T 2 =
∑

events

∑

i

(Di −
∑

j

ΛijLj)2 (10)
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yielding

dT 2

dΛab
= −2

∑

events

(Da −
∑

j

ΛajLj)Lb = 0 (11)

Averaging over events, yields

< DaLb >=
∑

j

Λaj < LjLb > (12)

This then yields Λ upon inversion

Λaj =
∑

b

< DaLb > (M−1)bj (13)

We now show that equation (12) implies equation (6). This is demonstrated by summing

equation 12 over the subscript a.

∑

a

< DaLb >=
∑

a

∑

j

Λaj < LjLb >=< DtotLb > (14)

But equation 6 implies that

< DtotLb >=
∑

j

μj
II < LjLb > (15)

This must imply that

μj
II ≡

∑

a

Λaj (16)

i.e. both Method II and method III find the same minimum with the identification made

in equation (16). Since the two minima are the same, it can now be seen that the energies

Dk are not obtained by μk
IIL

k but are in fact obtained by equation (9).(QED). The “inverse

sampling fractions ” μk
II cannot be used to compute layer by layer energies. In order to do

this one needs the full tensor Λ.

Table (III) gives the Λ tensor determined by the Least Squares Minimization . The sum

of the columns of this tensor gives the same values as μII as demanded by the mathematics.

Figure (5) shows the difference in the deposited cell by cell energies Dk computed using

equation (9) and the Monte Carlo measured energies Dk. It can be seen that these predictions

are far better than method II and have smaller errors than method I.

9



EM1 EM2 EM3 EM4 FH1

EM1 13.2 −0.6 −0.02 −0.003 1.1

EM2 9.0 9.1 −0.03 −0.06 1.3

EM3 −4.8 7.6 13.9 −1.0 2.1

EM4 2.1 −1.8 1.0 15.7 −0.8

EM5 2.3 0.3 −0.1 0.9 25.4

SUM 21.8 14.6 14.7 15.6 29.1

TABLE III: The Λ tensor from method III for 100 GeV/c electrons

IV. CONCLUSION

Table (IV) summarizes the numerical results for 100 Gev/c and 10 GeV/c electrons.

To conclude, we have demonstrated that the least squares “inverse sampling fractions”

cannot be used to compute cell by cell energies in the presence of correlations. This has

implications when trying to compare Monte Carlo shower profiles with test beam data. In

the former, both the deposited energy and the live energy is available. In the latter only the

live energies are known. This paper shows that if an attempt is made to compare deposited

energies between test beam data and Monte Carlo, one must use the full Λ tensor to infer

the deposited energies. Otherwise an error is made in the shower profile which is as large as

100% in layer 1 for 100 GeV/c electrons.

Method I uses no information from shower correlations and produces a result which has

a factor of 2 higher error than methods II and III for total energies. This must imply

that additional information is obtained in using cell by cell correlations. It is perhaps

worth pushing this question of correlations to its absolute limit and ask what the maximum

attainable EM energy resolution is in a multilayer sampling calorimeter, if we had digitized

information for all argon gaps independently.
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FIG. 5: Difference in calculated and measured layer by layers using method III. Layer 1 has

mean,RMS of (0.13E-2 GeV and 0.375 GeV), layer 2 ( 0.18E-2 GeV and 0.42 GeV), layer 3 (0.19E-

1 GeV and 1.38 GeV) and layer 4 (0.93E-2 GeV and 0.85 GeV)
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Method < Dtot > σ(Dtot) Deviation & Sigma deviation

EM1 EM2 EM3 EM4 FH1

I 9.78 0.813 5.1E − 3 2.5E − 2 3.0E − 2 1.4E − 2 −2.7E − 2

0.191 0.2200 0.533 0.240 0.259

II 10.01 0.588 0.4885 0.3794 −0.4418 −0.2255 −0.1898

0.3375 0.2581 0.4809 0.2067 0.0931

< Lk > 5.719E − 2 0.156 0.376 6.01E − 2 0.201E − 2

< Dk > 0.699 1.90 6.02 1.15 0.233

%error using methodII 70.0 20.0 −7.3 −19.6 −81.5

III 10.01 0.588 −0.0004 −0.0014 0.0014 0.0034 0.0018

0.1899 0.1792 0.3951 0.1883 0.0506

I 100.0 4.095 −0.6E − 3 1.1E − 3 1.2E − 3 0.7E − 3 1.3E − 3

0.407 0.663 2.548 1.431 0.827

II 99.97 1.752 2.474 3.071 −1.302 −3.247 −1.144

1.049 0.952 2.532 0.952 0.406

< Lk > 0.225 0.905 4.26 1.15 3.77E − 2

< Dk > 2.33 10.14 64.05 21.2 2.24

%error using methodII 106. 30.3 −2.0 −15.3 −51.1

III 99.96 1.753 −1.3E − 3 −1.8E − 3 −2.0E − 2 −9.3E − 3 2.0E − 3

0.375 0.423 1.380 0.851 0.300

TABLE IV: Comparison summary of three methods for 10 Gev/c and 100 Gev/c electrons. Devi-

ations here are defined as the predicted value - Monte Carlo value
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