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Abstract. The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that 

exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) 

is responsible for ensuring the safe, correct and efficient operation of the experiment, and has 

contributed to the recording of high quality physics data. The DCS is programmed to 

automatically react to the LHC operational mode. CMS sub-detectors’ bias voltages are set 

depending on the machine mode and particle beam conditions. An operator provided with a 

small set of screens supervises the system status summarized from the approximately 6M 

monitored parameters. Using the experience of nearly two years of operation with beam the 

DCS automation software has been enhanced to increase the system efficiency by minimizing 

the time required by sub-detectors to prepare for physics data taking. From the infrastructure 

point of view the DCS will be subject to extensive modifications in 2012. The current rack 

mounted control PCs will be replaced by a redundant pair of DELL Blade systems. These 

blade servers are a high-density modular solution that incorporates servers and networking into 

a single chassis that provides shared power, cooling and management. This infrastructure 

modification associated with the migration to blade servers will challenge the DCS software 

and hardware factorization capabilities. The on-going studies for this migration together with 

the latest modifications are discussed in the paper. 
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1.  Introduction 

The CMS detector is a general purpose detector designed to access a broad range of physics topics 

over the full range of luminosities provided at the LHC.  

The CMS layout corresponds to a layered cylindrical detector structure. Each detector system is 

usually composed of a cylindrical barrel with the axis along the particle beam direction and two end 

caps enclosing those barrels. In order to measure precisely the momentum of particles, a large 

solenoidal magnetic field is used. To create such a field, a superconducting solenoid sits in the middle 

of CMS. This solenoid is designed to produce a     field [1]. Due to the large return magnetic field, a 

long 1.5 meter iron return yoke is used. Four muon stations are integrated between the layers of the 

return yoke resulting is a compact muon system [2] with full geometric coverage. Inside the magnetic 

solenoid there is an inner tracker [3] and a calorimeter. Ten layers of silicon microstrip detectors 

provide CMS with the required granularity and precision. Furthermore, another three layers of silicon 

pixel detectors placed close to the interaction point improve the measurement of the impact parameter 

of charged-particle tracks, as well as the position of secondary vertices. An electromagnetic 

calorimeter (ECAL) [4] surrounds the tracker system. Between the magnetic solenoid and the 

electromagnetic calorimeter a hadronic calorimeter (HCAL) [5] is placed. 

The Detector Control System (DCS) is responsible of ensuring the safe and optimal operation of 

the experiment so that high quality physics data can be recorded by the data acquisition system [7]. 

The DCS input data rate is in the range of        ⁄ . This data is not only stored to a database but it 

also needs to be processed at this rate in order to take automatic decisions and sequence commands 

that are sent to different parts of the system. 

2.  The DCS Overview 

The distributed control system of the CMS experiment has to meet some challenging requirements 

derived from the scale and characteristics of the experiment. Some of its hardware needs to operate in 

an environment with radiation doses up to           ⁄  and a high magnetic field. In addition, many 

locations inside the detector are inaccessible without moving sections of the detector weighting several 

tons. 

The design of the control system, like in other international projects of the size of CMS, involved 

many groups working locally at CERN in collaboration with others groups working remotely. The 

organization of the project and its infrastructure needs to accommodate this working style with local 

and remote man power. 

Other requirements are imposed from operational aspects. The DCS system has to run without 

interruption, eventually only stopping for long shutdown periods. The system should provide an 

interface intuitive and powerful enough to allow a single operator, with a few hours of training, to 

control and monitor the whole experiment. Finally, the system should work in synchronization with 

the LHC machine state so that the experiment is ready for data taking whenever LHC is delivering 

stable colliding beams and, at the same time, it makes sure that the experiment is in a safe mode for 

other not stable LHC conditions. 

2.1.  The control system infrastructure and technologies 

CMS experiment facilities are located in Cessy (France). From the DCS point of view the building 

complex (Fig. 1) can be divided in three main areas: the surface buildings, the underground detector 

hall and the underground computer hall. In the surface counting room (SCX) sit the experiment online 

database together with the web servers, sharing room with a 3000 server farm used for the physics 

event building and filtering. Also on the surface, the experiment control room (also in SCX) contains 

the DCS human-machine interface. The operator controls the experiments from this room in 

collaboration with a small shift crew in charge of other systems. The detector is installed in the 

detector hall (UXC55) where there are a few hundreds of electronics racks. The DCS equipment in 

these racks needs to be radiation tolerant. Low voltage power supplies regulating the power to each 

channel are located in this area, as close as possible to the detector, since low voltage lines cannot 
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travel through long distances without significant attenuation. Also, some high voltage power supplies 

are installed in the detector hall mainly due to the complicated cabling structure needed to bring them 

to another location. The computer hall (USC55) also hosts the power supply mainframes cannot 

withstand the detector hall environment. Together with the industrial power supplies CMS uses in-

house power supply solutions where the industrial equipment didn’t satisfy sub-detector needs. 

 

 

Figure 1. The CMS experimental facilities 

In addition to the equipment supplying power there are also CERN-made solutions used in the DCS. 

The Embedded Local Monitoring Board (ELMB) [6] is a radiation tolerant data acquisition board 

developed by the ATLAS experiment. It provides analog and digital input/outputs. The card is used all 

over the experiment facilities (including inside the detector cavern) for monitoring all kind of sensors 

(like temperature, humidity and pressure) and also to control other hardware by means of its digital 

and analog outputs. The Detector Control Unit (DCU) and the Readout Boxes (RBX) are CMS-made 

solutions installed on the detector itself. Both solutions have a controller module that is used to control 

and monitor different bias voltages used by the electronics of the particle detector sensors. Finally, 

Programmable Logic Controllers (PLCs) are used to control critical processes involving safety 

aspects. Table 1 summarizes the list of the most broadly used hardware in the experiment DCS. The 

table includes the estimated number of parameters directly associated with the readout and control of 

the equipment. The communication drivers used are also listed in the table. The commercial power 

supplies used are addressed using OPC [7] (Object Linking and Embedding (OLE) [8] for Process 

Control) either over Ethernet or using Controller Area Network (CAN) [9] field buses. The OPC 

standard specifies the communication of real-time infrastructure data between control devices from 

different manufacturers. The Distributed Information Management system (DIM) [10] created at 

CERN is used by the custom hardware to communicate via Ethernet with the distributed control 

system PCs. A DIM server can be configured to publish DIM services containing information relative 

to the monitored hardware. These services can also be used to send information, like commands or 

settings, to the hardware. Any number of DIM clients can connect to a DIM service. PLCs are 

connected to the DCS system using industrial communication drivers (SIEMENS S7 [11] and Modbus 

[12]) over Ethernet.  
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Table 1. Example of some representative DCS control and monitoring hardware used by 

CMS 

Device type Usage Brand Driver Parameters 

Power supply 
Front end electronics and 

detector biasing 

CAEN 

W-IE-NE-R 

CMS-made 

OPC/Ethernet 

OPC/CAN 

DIM 

~2.5 M 

Embedded Local 

Monitoring Board 

(ELMB) 

Temperature, humidity 

and pressure monitoring 

Water leak detection 

Laser monitoring 

CERN-made OPC/CAN ~24 K 

DCU, RBX Detector monitoring CMS-made DIM ~0.5 M 

PLC 

Safety, Cooling 

Rack electrical 

distribution 

Siemens 

Schneider 

S7 

Modbus/tpc 
~12 K 

 

2.2.  The Control System Software 

The detector control system rack mounted PCs (about 100) are also located in USC55 in S1, S2 and S4 

distributed in 14 racks. The next sub-sections gives the details on the technology choices for the 

operating system, the computer management tools and the software chosen to build the distributed 

control system. 

2.2.1.  The Operating System. The choice of the operating system for the control PCs was driven by 

the use of OPC communication. At the time of the choice the OPC protocol was only available for 

Windows operating systems. Windows XP was chosen by CMS as operating system for all control 

PCs.  

2.2.2.  The Controls Software. PVSS commercial Supervisory Control and Data Acquisition (SCADA) 

software was selected [13] as the development package for the detector controls at CMS and the other 

LHC experiments. The engineering controls CERN group together with the LHC experiments founded 

the Joint Controls Project (JCOP) in charge of identifying common needs across the experiments and 

developing common solutions for them. The result of this project, the JCOP framework, consist on a 

set of tools and templates built in PVSS to simplify the task of connecting and creating the PVSS 

infrastructure needed to control and monitor the hardware commonly used by the experiments.  

2.2.3.  The Computer Management. CERN has built its own framework to manage Windows PCs 

across whole site. The Computer Management Framework (CMF) allows for creating sets of 

computers than can be customized by the experiments to configure the software and the policies that 

are installed on each of them. All the Windows machines used at CMS for controls are configured 

using CMF. The central DCS team takes care of the maintenance of the whole DCS computing 

infrastructure so that from the sub-detector point of view the PCs are no more than a computing 

service. This strategy ensures that the exact states of the machines can be automatically recovered in a 

new PC when replacing a faulty production one.  

2.3.  The System Architecture 

Figure 2 shows an overall view of the CMS DCS architecture. The whole detector is controlled from a 

single operator station. A user interface (1) remotely connects to the central DCS PVSS system 

providing the operator with a global control of the whole detector (3). This control is provided by 

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 012023 doi:10.1088/1742-6596/396/1/012023

4



 

 

 

 

 

 

means of a logical node tree which has a parent node for each of the experiment sub-detectors. This 

way, the central tree takes control of each of the sub-detector trees (8). The central DCS operator can 

partition out parts of the control tree and delegate their operation to the sub-detector control stations 

(9). In addition to the sub-detectors, central DCS also connects to other services (5) and models those 

services in the control tree. In particular, the power distribution of the ~500 experiment racks is 

modeled in a sub-tree as well as well as the experiment cooling system. The communication to the 

LHC machine (4) is modeled in another tree that interprets different defined handshake protocols. On 

the other hand, the experiment Run Control system (2) is not modeled in the control tree but it does 

spy on it to be aware of the status of each of the detectors participating in a physics run. The sub 

detectors are modeled (10) following a set of conventions and rules dictating the commands and states 

they should implement on the higher layers so that central DCS can communicate homogeneously 

with the sub-detectors most top nodes. The particularities of each sub-detector are hidden down on 

their control tree. At the bottom of the trees there are the proxy type nodes. These nodes, called device 

units (DU), model the hardware devices. A direct line connects CMS protection mechanism to the 

hardware (11). This direct connection goes in parallel to the control tree so it ignores any possible 

created partition, setting directly the hardware devices to a desired safe state when required. Central 

DCS automates most of the detector control and uses the central control tree to dispatch commands to 

the sub-detectors (6).  

 

 

 

Figure 2. The DCS architecture 

 

2.3.1.  The Control Tree. The modeling of the CMS detector is implemented using the Finite State 

Machine (FSM) toolkit. The FSM toolkit is only partly developed in PVSS. Most of its modelling 

functionality is based in the State Modelling Interface (SMI++) [14]. SMI++ was originally developed 
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by DELPHI experiment during the LEP era. It uses its own language, the State Manager Language 

(SML), to model objects. The PVSS interface to SMI++ translates the FSM rules into SML language. 

PVSS connects at run time with SMI++ executable instances where the FSM node state calculations 

are done.  

The complete CMS FSM tree is made of approximately       nodes. To ensure a homogeneous 

and maintainable result from the development of each of the sub-detector trees the central DCS team 

created a set of naming and programming rules governing the design of FSM unit types and how they 

are put together to create the trees [15]. Even with the convention and rules provided, the JCOP FSM 

offers a good degree of flexibility and the complexity of the behavior of an FSM tree grows very fast 

when adding a very few levels and tree nodes types. For this reason, in addition to design guidelines, 

the central DCS team collaborates since 2009 with a group from the Technische Universiteit 

Eindhoven (TU/e) creating a set of tools that can automatically analyze the FSM tree looking for and 

finding potential problems before they happen in the production system [16]. The SMI++ SML 

language constructs used in the FSM tree are translated to mCLR2 [17] mathematical language. The 

aim is not to model the CMS detector but to model how the FSM itself behaves so that it can be 

investigated what might happen for particular trees (in this case CMS tree). The model can then be 

questioned for property verification. A first useful verification test was to inquire from the model 

whether with CMS's FSM tree it is possible that a combination of states generates a situation where an 

infinite loop of state changes can happen. Verifying properties of an FSM tree in mCRL2 is time 

consuming and computationally very expensive. The FSM tree modeled in mCRL2 has been found to 

have a state space of at least         states. It is of course computationally impossible to run checks 

on such a state space. Using Bounded Model Checking (BMC) [18] many tree properties can be 

studied locally in single FSM trees, reducing the computation time and state space          . The 

current objective is to create tools that can detect most of the problems already at design time. CMS is 

sharing these tools and other experiments are also using them to analyze their FSM trees. 

 

Figure 3. The CMS FSM graph 

Figure 3 shows a representation of the CMS FSM tree created with one of the visualization tools of the 

TU/e group. The figure provides visual evidence of the size and complexity of this control tree. 

2.3.2.  Automation and Protection. The main reason to use automation in CMS is to contribute to the 

increase of efficiency in the recording of physics data. By automating the detector high voltage power 

ramping-up between LHC particle fills and stable colliding beams declaration, the DCS reduces to the 
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minimum the preparation time for physics data taking. There also automatic behaviours programmed 

to make sure that the sub-detectors are operated under safe conditions and turning off power when 

sub-optimal conditions are detected. When talking about the DCS Automation [19] in CMS we are 

referring to the central DCS automation. It is based on a three-dimensional action matrix where the 

sub-detector partitions are in one dimension, the LHC beam mode (like injecting, ramping, 

squeezing…) on another one and the LHC machine mode (setup, proton_physics, ion_physics…) on 

the third one. For each point on this three dimensional distinct space there is a DCS automatic action.  

There are two types of automatic actions, the standard actions and the protection ones. Standard 

actions are sent using the FSM control tree. Since they use the control tree these actions are subject to 

the FSM partitioning rules. If any of the node that is supposed to be receiving a command is not in 

central but in local operation mode, then it will not receive the command. The second type of 

automatic action is the protection one. Protection actions do not use the FSM to propagate commands 

to the hardware and they are therefore not subject to FSM partitioning rules. The central DCS team 

designed this protection mechanism to ensure the maximum software protection that was possible to 

achieve within the JCOP framework. 

2.3.3.   Plug-in infrastructure mechanism. To achieve a flexible architecture and simplify the 

maintenance CMS, in collaboration with CERN engineering group, designed a plug-in mechanism 

[19] allowing for installing detector controls functionality with packages called components. These 

components follow the JCOP framework component implementation standards and are installed by 

means of a JCOP installation tool (to which CMS made many contributions). The functional 

components can be moved across the different distributed control nodes providing load balancing 

capabilities. 

2.4.  Remote monitoring and control tools 

The central DCS team has developed a set of web applications allowing for remote monitoring of the 

control system. These applications are used on a daily basis by hundreds of CMS users. For this an 

Oracle Application server is used and the applications are developed as J2EE Java Portlets. The main 

web applications developed and some of their features are: 

 

 Infrastructure monitoring: provides the information of the production PVSS project processes 

allowing also for commands to start/stop them. It also displays the configuration in terms of 

components installed in each of the projects and the connectivity within the distributed 

system. 

 Component installation: it interfaces the installation tool used in CMS to deploy functional 

detector components into the production PVSS projects. The application users can download 

directly their developed functional components from their framework repository and target 

them into production project. 

 DCS Operation: shows the summary information of the control system in terms of readiness 

for physics data taking. Includes information about the current LHC machine and beam 

modes and the automatic actions programmed for them. A log window showing the latest 

events and operator actions is also displayed. 

 FSM monitoring: allow for browsing the entire FSM tree states and display color-coded tree 

diagrams. 

 Alert screen: provides and online version of the DCS alert screen, including the possibility to 

visualize the alert history. 

 Plotting tool: can access the database where all the conditions of the detectors are stored and 

make time plots. 

 Rack and Crate monitoring: shows the information of the environment (mainly temperature, 

humidity and ventilation turbine currents) and the electrical distribution status of all the 

experiment racks. It also provides means to control remotely some experiment VME crates. 
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3.  The DCS History & Current Status  

Figure 4 summarizes the evolution of the detector control system since 1999 when PVSS was selected. 

Before 2003 the detector control system was briefly described in the experiment technical design 

report and most of the work was dedicated to choose the technologies. The JCOP framework started to 

be developed during those years. CAEN and WIENER were chosen as industrial providers for power 

supplies. The period 2003-2004 was mostly devoted to individual implementation of sub-system 

controls performed independently by the sub-detectors. The central DCS team started defining the 

global DCS design concepts in 2003 [20]. The work on the definition of the main development 

concepts resulted in the creation of the first version of a guidelines report [15] to be used by anyone 

developing controls for a CMS sub-system. In parallel to this work, the sub-detectors and the central 

DCS worked in a first proof of concept version of the control system for the Magnet Test Cosmic 

Challenge [21]. This test included a small fraction of each of the sub-detector and a simplified 

supervisor system. The system was operated by an expert for each of the systems participating.  

 

 

Figure 4. The DCS history 

With the Magnet Test Cosmic Challenge (MTCC) operational experience the central DCS team 

started a long process of systems integration. Between 2006 and 2008, working closely with central 

DCS, each sub-detector and service system went through a process where the systems were adapted 

until they fully complied with the defined development guidelines. Due to this integration work the 

central DCS team could create a common system infrastructure to manage the controls PCs and their 

configurations simplifying the maintenance of the systems. Furthermore, the design guidelines 

governing the control tree implementation allowed for a coherent operation in central mode before 

LHC started its operation. With the systems integrated a new effort on the direction of identifying 

similar behaviors, patterns and needs in the sub-detectors started. The unification period, between late 

2008 and 2010, was used by central DCS to replace controls algorithms in the sub-detectors that were 

doing similar things by common functional components solutions. The protection systems represent 

one of the main results of this period. With the machine operating stably during 2010-2011, the effort 

of the central DCS team was invested in gathering operational experience, improving the computing 

infrastructure and developing the extensive set of web applications. By the end of 2011 the central 

DCS team planned how to confront two upcoming events. First the end of life of the operating system 

in use (Windows XP) and second the aging of the whole computer infrastructure and the need for a 

replacement. 
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3.1.  The Infrastructure Upgrade 

CMS chose a challenging approach for the DCS computing infrastructure upgrade that can be divided 

in three parts: an OS upgrade, a hardware upgrade and an upgrade in the sub-detector components to 

make full use of PVSS redundancy feature. 

3.1.1.  The OS upgrade. CMS will upgrade the OS from Windows XP to Windows 7. CMS is the first 

experiment bringing production DCS systems to this OS. For this reason, a lot of investigation is been 

carried on within CMS and the CERN engineering controls group (EN-ICE) on the performance of the 

currently used drivers and the PVSS software on this OS. Additionally, many CMF packages are been 

adapted to work as well in the new OS. CMS has already successfully moved a few central DCS 

production system to Windows 7. 

3.1.2.  The computing hardware upgrade. The current computing infrastructure consists in about 100 

rack mounted PCs scattered across the experiment (see Fig. 1). Rather than simply replacing the 

current PC by newer models, the central DCS group has chosen for a high-density modular solution 

(DELL Blade [22]) incorporating PCs and networking into a single chassis that provides shared 

power, cooling and management. The current objective is then to bring the whole distributed system to 

one rack hosting two DELL Blade-PC chassis, each one with 16 Blade-PCs running Windows 7 in the 

underground service cavern and a redundant copy in the surface counting room. The Blade-PCs used 

have       of RAM memory and 4 processors with 6 cores each. The new computing power should 

allow the reduction from the ~100 current servers (      RAM and dual core processors) to 32 

Blade-PCs.  

3.1.3.  The redundancy upgrade. The Central DCS team has gathered experience on running redundant 

PVSS systems. The use of this functionality built in the SCADA allows the configuration of a PVSS 

system to run in two different PCs where one of them (the passive one) waits in a standby mode to 

take over whenever the active one fails. Within CERN, CMS is so far the only experiment using this 

PVSS feature. The second rack with two Blade chassis installed on the surface will run passive 

partners for each of the nodes running actively in the underground chassis blades. A paper in this same 

conference, titled “High availability through full redundancy of the CMS detector controls system”, 

gives details on the current experience running PVSS redundant systems, the problems found and the 

plans for completing this upgrade. 

4.  Summary 

The implementation of the CMS DCS fulfils the operational, functional and environmental 

requirements. It provides an efficient automatic detector operation and ensures its safe operation. It 

succeeds in coping with a few million parameters that are monitored and processed raising alerts when 

necessary and storing a set of these parameters into a database for later analysis. 

To reduce developing efforts, the JCOP framework was used for the implementation of the control 

system. Additionally, CMS created a development guidelines report to be followed when using the 

JCOP framework. The use of these guidelines made possible the integration of all the sub-detector 

control systems in a common infrastructure facilitating the software maintenance. 

The last objective/task of the central DCS's effort was to create a compact and redundant system 

infrastructure. The first production systems were already moved to the new infrastructure and the rest 

will be moved before the end of 2012 providing CMS with a high availability infrastructure. 
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