
CRAB3: Establishing a new generation of services

for distributed analysis at CMS

M Cinquilli1, D Spiga1, C Grandi2, J M Hernàndez3, P
Konstantinov1, M Mascheroni1, H Riahi4, E Vaandering5

1European Organisation for Nuclear Research, CH-1211 Geneva 23, Switzerland
2INFN Bologna, Viale B. Pichat, 40127 Bologna, Italy
3CIEMAT, Madrid, Spain
4INFN Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
5Fermi National Laboratory, Batavia, Illinois, USA

E-mail: mattia.cinquilli@cern.ch

Abstract. In CMS Computing the highest priorities for analysis tools are the improvement
of the end users’ ability to produce and publish reliable samples and analysis results as well as
a transition to a sustainable development and operations model. To achieve these goals CMS
decided to incorporate analysis processing into the same framework as data and simulation
processing. This strategy foresees that all workload tools (Tier0, Tier1, production, analysis)
share a common core with long term maintainability as well as the standardization of the
operator interfaces. The re-engineered analysis workload manager, called CRAB3, makes use
of newer technologies, such as RESTFul based web services and NoSQL Databases, aiming
to increase the scalability and reliability of the system. As opposed to CRAB2, in CRAB3
all work is centrally injected and managed in a global queue. A pool of agents, which can
be geographically distributed, consumes work from the central services serving the user tasks.
The new architecture of CRAB substantially changes the deployment model and operations
activities. In this paper we present the implementation of CRAB3, emphasizing how the new
architecture improves the workflow automation and simplifies maintainability. In particular, we
will highlight the impact of the new design on daily operations.

1. Introduction
The Compact Muon Solenoid (CMS) [1] is one of two general purpose physics experiments which
explores the particle events produced by the Large Hadron Collider (LHC), located at CERN
(Geneva, Switzerland). During the first run, until the first long shutdown, CMS has collected
over 10fb-1 of data, which have been analyzed to produce at the time of writing more than 100
physics papers published by CMS.

The CMS analysis model foresees activities driven by data location: data are distributed
over many computing centers according to CMS data placement policies and the processing
takes place at the sites where data are located. The distributed analysis is a complex task which
involves more than 100 computing centers, of which 7 are Tier-1 and 54 are Tier-2, geograph-
ically distributed all around the world used by a community of more than 1 200 users. More
information about the distributed data analysis flow in CMS can be found in [2]. Figure 1 shows
that since 2010 the number of distinct CMS users running analysis every day averages about
250, reaching peaks of more than 350 distinct users per day. Figure 2 shows the number of jobs

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

Published under licence by IOP Publishing Ltd 1



submitted in the last 6 years: since 2010 an average of 200 000 distinct jobs/day were submitted
in order to analyze data. The CMS Remote Analysis Builder (CRAB) is the CMS tool that
allows the end-user to transparently access the computing resources, without having to know
all the complexities of the underlying environment, and interacts with the experiment specific
services.

Figure 1. Number of distinct users per day
from June 2010 till February 2012

Figure 2. Number of analysis jobs per day
from June 2010 till February 2012

This paper illustrates the changeover from CRAB2, a two tiered client-server, to CRAB3, a
multi-tiered client-server application designed to take advantage of central services, improving
the reliability and control of the system, thanks to the adoption of newer technologies.

Section 2 gives an introduction to CRAB2 describing its main characteristics. Section 3
explains the motivation for evolving the architecture of CRAB2 model, while Section 4 and 5
actually go through CRAB3 details. Sections 6 and 7 describe the test steps and results.

2. CRAB2 Overview
CRAB has been in production and in routine use by end-users since Spring 2004. Its usage has
increased particularly with the start of high energy collisions, and has met numerous scaling tests
and service challenges. It was started as a Python [3] stand-alone application hosted completely
on the user’s working station and was in charge of performing all the interactions with the various
services: CMS specific services, the Grid middleware, and the local user working area. In order
to cope with the load, to automatize most of the operations related to the workflow management,
and to improve the management of the tool itself, the stand-alone version was evolved to a client-
server system, CRAB2. The stateful client interacts with the server, delegating all operations
to it, and synchronizing with it. The synchronized information is then stored in a local SQLite
[4] database maintained in the user’s work area. This allows the user to keep track of the
workflow progress and to perform operations on the client side without always contacting the
server. The CRAB2 client is responsible for the job splitting through data discovery and location
through Data Bookkeeping System (DBS)[5] and PhEDEx[6][7], for interacting with the local
user environment, and for retrieving information on how to interact with various computing
centers and their storage systems through SiteDB[8]. More details about the CRAB2 client
implementation and its functionalities can be found in [9].

The CRAB2 server is a 24x7 service designed to manage the user workflow. It is
architecturally based on ProdAgent[10], which is the previous CMS workload management
system. ProdAgent used modules implemented as independent components communicating
with a publish and subscribe model implemented through an asynchronous and persistent

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

2



message service based on a MySQL database [11], exposing an HTTP[12] interface based on
the SOAP protocol[13]. This architecture has been demonstrated to scale horizontally without
major problems just by adding more instances of the server [14], [15]: in fact a client can talk
directly with different servers, with the only constraint that once a submission is bounded to
one, it cannot be moved to another.

3. Motivation for evolution
The client-server model has been demonstrated to improve the management of analysis
workflows. It simplifies the user’s life by handling most of the load on its side and by automating
most operations that do not need direct user interaction. Another advantage of the model is the
optimization of the the resource usage, in particular exploiting at its best the Grid middleware
from few central points (the servers) to improve the scalability of the whole system. A lesson
learnt is that the server handles the interactions with other services without really impacting the
client side, but still providing an improved quality of service and of workflow execution, thanks
to the fact that it is possible to significantly reduce the number of requests to external services
by properly using HTTP protocol headers and caching mechanisms.

In principle this is a big advantage compared to a stand-alone application where the working
area (including log files and environment) is located on the user’s machine. From the service
operator point of view the server contains all the information needed for debugging purposes,
but without the presence of proper interfaces that can be easily queried it is hard to retrieve
the information from the server internals. In addition, the horizontal scalability impacts the
maintenance of the system and the control of it, since the information is spread around various
servers without a proper central point of view.

Another lesson learnt from CRAB2 is related to the efficiency of the user output management.
Since user output files can be relatively big (more than 1GB per job output file), these need to
be stored in a site storage element. The user can pre-select at workflow submission time which
site storage element will store the workflow results. In CRAB2 the stage-out is synchronous:
at the end of the user job on the worker node the output produced is directly copied to the
pre-defined remote storage element, before the end of the job wrapper. As described in [16] this
has been demonstrated to be inefficient and to waste a significant fraction of resources.

The motivations of introducing an evolution of the CRAB2 server architecture by exploiting
a multi-tiered model allows us to add a series of functionalities to the system that otherwise
would not be possible and to improve the service reliability and control. A multi-tiered system
can be composed of multiple services each one having a different role in the system. This
model can then be exploited to introduce centralized services with the advantage of having a
unique point of view on the system with related central control. Central services also provide
the chance to have a unique global queue where all the requests can be collected and where
advanced features can be easily supported, such as the prioritization between various workflows
and to better ensure that the load of the various workflows is fairly spread among various
server instances. Also, a completely stateful server enables the removal of most of the service
interactions and system logic from the client, which can then become a stateless client completely
relying on information provided by the server. This involves a simpler management of the client
application distribution, which can be an expensive task in the case of a thousands of users
working from different client installations. So, with a stateless client most of the changes in the
system would usually affect only the server services, while the client would need to be updated
just for changes in the server interfaces or because of new features being added. Moreover, the
possibility to move to a multi-tiered model introduces a centralized layer, giving a unique entry
point in the system, which is then able to collect all the requests and from which it is possible
to control the whole system. While CRAB2 allowed CMS users to run their analysis workflows
in the distributed environment without major issues, it was also demonstrated that supporting

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

3



more complex use cases or adding new functionalities in a stable and consistent way was not easy.
Providing a better structured and modular implementation, with distinct services performing
distinct activities as in the multi-tier client-server model with central services, enables us to
transparently improve the system reliability and to give a global view of the system. These are
the main concepts which are at the foundation of the next generation of CRAB.

4. CRAB3: Evolution to a multi-tiered model
CMS has decided to move all the workload management tools (production, Tier-0, reprocessing
as well as analysis) to a common framework named WMCore [17]. Having a common core to
build the systems needed to manage the CMS workflows encourages synergy between developers,
improving their productivity and reducing development and operation costs. This is a clear step
towards a sustainable model. In order to exploit all the advantages of an evolved client-server
system, CRAB has been completely re-engineered using WMCore as a core framework.

This has included the introduction of new services with these characteristics:

• a central global queue,

• central services without a single point of failure,

• asynchronous stage-out service,

• distributed agents processing workflows,

• global monitoring,

• all services with RESTFul[18] interfaces.

5. Description of the architecture
The list of the main services composing the analysis system are:

• CRABInterface: central RESTFul web interface that receives the user requests and injects
them into the system; it provides APIs to monitor and operate on the already submitted
workflows;

• CRABCache: central user file storage with a RESTFul web interface;

• RequestManager: central web service that manages and tracks the workflow requests;

• GlobalWorkQueue: central queue of all user requested workflows; it serializes and
prioritizes requests;

• AsyncStageOut: central service that moves user workflow outputs to a final location
predefined by the users;

• WMAgent: service in charge of translating the user requests into jobs; it manages the
job’s life cycles and interacts directly with the Grid;

• CentralMonitoring: CouchDB[19] based central service which stores workflow data and
provides needed views monitoring of the workflow progress an results; it includes a set of
web pages which allow to monitor the system behavior.

5.1. Central services
Reliability and redundancy are two important aspects of this architecture. The possibility to
have multiple agents that can be easily installed and configured to automatically pull work from
the central queue, plus redundant central services that can collect requests and then distribute
the work to the various agents in a fair way, provides a more stable service to the user. An
appealing example appears in the case in which a WMAgent instance has issues that lead to the
shutdown of the service: in that case it may happen that the jobs that were incomplete and still
managed by the agent are lost, but everything that has been processed till that point is not lost

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

4



and the workflow execution could be restarted in another agent (at the moment of writing, this
functionality is not yet in place, but the architecture and technologies have been designed to
allow this). Also, this architecture avoids having a central point of failure that blocks the whole
system. For example, if the central services are somehow not reachable because of a problem,
the rest of the distributed system can still continue to work and to process the work that has
been already acquired from the central services.

Figure 3 shows an overview of the various services of the system. The CRABInterface is
the entry point of the system: client requests pass through it and, after proper validation, are
injected into the database. The injection phase uses the RequestManager Python APIs from
the common WMCore framework; these populate the two back-ends used by this service: an
Oracle database containing relationally organized information and a CouchDB database which
collects the documents representing all workflow requests containing the workflow parameters
(information specific to the workflow execution like the software and architecture version to be
used or the input data to be used, or metadata information such as the owner details, time of
injection or other properties needed by the system itself). While CouchDB behaves as an archive
of documents with fast direct access by any monitoring applications, the Oracle schema allows to
mantain the relation among workflows, input requirements, physics groups and users. A possible
evolution of the system could entirely drop the relational database and rely just on CouchDB.
Once a request has been successfully injected then it can be passed to the GlobalWorkQueue
which regularly pulls new workflows from the RequestManager. After a new workflow request
has been pulled, it is stored in the central queue which works in a FIFO mode. In the future
it will also be possible to define the workflow priority and in this way it will become a priority
queue: this would speed up an analysis which is especially important from the physics point of
view. For the analysis workflow this has not been yet investigated, but it will probably be one
of the future key functionalities of the system.

Figure 3. CRAB3 architecture with the various tiers. In particular
these can be grouped in: the central services in the center of the
figure, the distributed services on the right, the client and the
AsyncStageOut on the left. Server interface services includes both
CRABInterface and CRABCache.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

5



CRABInterface: this is a RESTFul based interface which provides the APIs needed for
the client to operate on a workflow resource. It also provides the possibility to work with the
campaign resource, which can be easily explained as a set of workflows with some similarities,
e.g. workflows running on different input datasets with the very same analysis code. The main
advantage of this is the possibility to do bulk requests on all the workflows which are part of
a campaign, automatizing most of the work. Table 1 shows the set of APIs provided by the
interface. Each time a method is invoked, before actually executing the associated code, all the
input arguments are validated and a strict consistency check is done to avoid the injection of
malicious data and to reject malformed, invalid requests. Once the input sanitization has been
successful then the requested operation can be performed and the result can be returned to the
client. The answer uses the HTTP codes defined in the RFC-2616[12]. Also the APIs always
answer with a JSON formatted body, and if the client asks for a wrong formatting, the server
returns the HTTP 406 error plus a short message explaining the failure reason.

To monitor the workflow progress and to provide the user with other workflow execution
information, the CentralMonitoring database is used. This is a query of a single service for the
information about workflows which can be spread across many different hosts, rather than an
arbitrary number of serial HTTP requests to various sources, and parsing possibly large amount
of data in memory. Also it decouples the load generated by the monitoring applications from
the system load, reducing interference with the workflow management due to monitoring load
issues.

A RESTFul interface from which it is possible to access information on the database content
and to script against it in order to extract information about the workflows in the system is an
important feature. In particular it is a relevant improvement with respect to CRAB2, where the
information was stored only in a database and the interface only used the SOAP protocol.

Table 1. CRABInterface RESTFul interface provided APIs. Two main resources are available:
workflow and campaign.

METHOD URI DESCRIPTION

GET /campaign Retrieves campaigns for defined user
PUT /campaign Creates a new campaign
GET /campaign/<name> Retrieves the campaign information
POST /campaign/<name> Modifies an existing campaign
DELETE /campaign/<name> Aborts all workflows in the campaign
GET /workflow Retrieves latests workflows for the user
PUT /workflow Creates a new workflow
GET /workflow/<name> Returns the workflow status summary
POST /workflow/<name> Modifies an existing workflow, or resubmit it
DELETE /workflow/<name> Abort an existing workflow
GET /workflow/<name>/errors Returns the workflow error summary
GET /workflow/<name>/report Returns the workflow report summary
GET /workflow/<name>/logs Returns the workflow log file locations
GET /workflow/<name>/data Returns the workflow output file locations
POST /workflow/<name>/dbs Trigger the data publication
GET /workflow/<name>/schema Returns the workflow configuration
GET /workflow/<name>/configcache Returns the user workflow configuration

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

6



CRABCache: RESTFul based service that serves user analysis input files. Each time a
new workflow is requested in the CRABInterface, the client has to provide a valid input files
URL. This is where the client packs user input files needed to run the analysis code in a tarball
which is then uploaded to CRABCache. CRABCache verifies the input file metadata like file
format, file size that has to respect a certain limit, user quota limits and file integrity. Then it
returns an HTTP code respecting the RFC-2616 depending on the result of the operation and
if the operation was successful it also returns a unique identifier that can be used to download
the file. Once the client receives the positive CRABCache answer it can specify the tarball
URL in the workflow input parameters: the CRABInteface will then use this for the workflow
specification at the injection time. This information will be propagated by the various layers in
the system through the chain down to each single job running on the worker nodes. At that time
the job preparation step will download the input files from the CRABCache and unpack them.
This means that each job will download its input file and this could correspond to hundreds
of thousands downloads per day. As showed in Figure 2 CMS is currently running an average
of about 200 000 jobs/day which means that there will be a rate of about 3 requests/second if
jobs are running regularly spanned over time. In the worst case there can be spikes where many
jobs will start at about the same time and this could degrade the system service quality where
many parallel downloads can cause a slowdown or a distributed denial of service of CRABCache.
This can be mitigated by keeping another updated CRABCache instance to be used when such a
situation happens. Also, in case the load increases such that a single instance cannot scale enough
the system could use intermediate proxy services which cache the tarballs to be downloaded from
the WN.

5.2. Distributed services
When a workflow request is in the central queue then it can be pulled by a LocalWorkQueue,
a component part of the WMAgent. This component regularly checks if there are pending
workflows that are waiting to be processed and, if so, it retrieves their definitions in order to
perform the data location discovery, fill the local agent database, and pass the work to the
other agent components. One of the main advantages of a local queue is to avoid overloading
a single agent with many requests and to balance the load among various agents. That is
why the LocalWorkQueue pulls workflows based on the internal agent load, which is calculated
based on how many free slots the agent can still use for the sites where the workflow can run
on (e.g.: where the input data is). The information about site load is known thanks to the
ResourceControl which resides in the local agent. This module registers the resources the agent
can use (namely, the Grid sites) specifying how many jobs can be run per type of job. This
provides a local information system to know which site has free slots in order to balance the work
between the different sites. The LocalWorkQueue also uses this information to understand if the
agent still has site slots available in order to pull or not a new workflow. Once a workflow has
been pulled inside the WMAgent it is translated into jobs through the splitting operation. All
jobs can be executed independently from each other and the agent, thanks to a library which is
able to transparently interact with different Grid middleware systems or even batch schedulers,
keeping track of jobs progress, successes, failures and automatic resubmissions.

A persistent Job State Machine stored in a CouchDB database associated to an agent keeps
track of all the jobs status changes and of the final results. Also, another database on the same
CouchDB instance stores the result of all the job reports. An internal relational database named
WMBS caches information about input files to be processed and produced output files in order
to keep track of the progress, but also to give the potential to implement DAG workflows where
the output of a workflow can be automatically used as input of another one.

Monitoring system: to monitor the system behavior, each agent on the system periodically

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

7



produces status snapshots of all active workflows which are then pushed to the CentralMoni-
toring system. The design of CouchDB easily allows this; agents create a document for each
workflow in their local database; this document is then filtered and replicated centrally by using
the CouchDB continuous replication system. This allows the central system to contain informa-
tion about the progress of all workflows, the status of the agents, and how the site resources are
being used.

Client: the client provides a similar interface between the two CRAB versions. The biggest
change will be the introduction of a new way of monitoring the workflow progress allowed by
the multi-layered system: from a job oriented approach to a data oriented view with summary
information about workflow progress and result. It is not a user priority to care about how many
jobs were needed to analyze the dataset required, but rather to have quantitative and qualita-
tive information on the analyzed and produced data. This means that when a user requests a
new workflow specifying an input dataset he has the ability to monitor the workflow progress
knowing which percentage of the job’s workflow (without actually knowing the exact number
of jobs) have been successful, failed or are still pending in the system or currently running on
the remote sites. While new results are produced the user is able to retrieve the output files
from the remote storage elements where the files have been stored. Also, to obtain qualitative
information about the workflow, the user has access to a client command which queries the
CRABInterface API that shows a snapshot of the current analyzed and produced data. Always
through a client-CRABInterface interaction ,the client is able to help users troubleshooting failed
jobs by getting error summaries grouped by site failures or specific job failures. In addition to
this, a user can also access specific log file information. Another important impact of a such
stateful server is the possibility to remove most of the service interactions and system logic
from the client, having the possibility to move to a stateless client that is completely relying on
information provided by the server. Obviously it is also possible to have the client using a local
cache with the workflow working areas, similar to CRAB2, but still without state of the workflow.

AsyncStageOut: asynchronous stage-out is the major change introduced in the analysis
workflow with CRAB3. With CRAB3 the stage-out of an output file produced by a job is
always local: once a job is successfully complete the wrapper reads the local site trivial file
catalog [7] to retrieve the local storage information, copies the output files there and writes the
output location details in the job report. Asynchronously the AsyncStageOut service checks
for new output files produced by all analysis workflows by querying the CentralMonitoring
database and performs transfer requests with the gLite FTS service [20]. This service performs
third party transfers between two remote storage elements. Once transfers are completed, the
remote output file locations are written back to the CentralMonitoring. The main advantages
of using this approach are as follows:

• the allocated job worker node resource is not used for remote transfers but just for local
transfers, which are faster, also increasing the CPU efficiency of the jobs and releasing the
node slot to another job in a shorter time;

• gLite FTS service is already being used for PhEDEx transfers, so site to site transfer
channels have been already validated and continuously used by the official data transfer
service allowing to rely on a stable infrastructure;

• the user doesn’t experience a delay on accessing workflow results: by default the
CRABInterface retrieves the file location of already transferred files, but for files not yet
transferred it uses the temporary location used with local stage-out.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

8



5.3. Security
Both CRABInterface and CRABCache services, which are the entry point to the system from the
analysis point of view, are deployed as back-end of the CMSWeb[21] front-end. The front-end
is an Apache[22] server running as a reverse proxy and redirecting various requests to the back-
end services. The role of the front-end also includes the authentication of the received HTTPS
requests, accepting requests only from CMS users registered in the SiteDB service. Once the
requestor has been authenticated, proper headers are generated by the front-end in order to
enable the back-end to receive the requests. The back-end runs on a CherryPy[23] server. Once
the request is on the back-end, the service may trust it, since the authentication has been already
performed on the front-end, it has just to take care of the authorization. From this point of view
all users are able to create and monitor workflows (since the front-end already authenticated
them) with the only main constraint that only the user which is owner of a submitted workflow
can actually modify it (by killing or resubmitting it). There is a special case where a service
operator owns a special role propagated by the front-end to the back-end: in this case the server
doesn’t impose any restrictions, giving the possibility to the server operator to stop or restart a
workflow in case it is needed.

6. Status and first experiences
Although CRAB3 is not in production yet, we have performed two kinds of tests which have
given us important feedback about its reliability. The first type of test has been done internally
by developers only, and, in a nutshell, it has been a validation and a scale test at the same time.
Its aim was to make sure the system is able to handle the load we expect in production. The test
has been performed by sending a number of workflows similar to the number of workflows we
expect in production. The second type of tests involved a restricted set of expert CRAB2 users,
and was a functional test. Its aim was to collect feedback directly from the users in order to
start feedback driven development. It has been performed together with the Integration team,
by starting a biweekly release of the software. In the following two subsections we will describe
these two tests in details.

6.1. Validation and scale tests
In order to have a general idea of how the whole infrastructure works with a load similar
to the one we currently have in production with CRAB2, we decided to test the whole
stack. Starting from the client we simulated the behavior of the users by periodically sending
analysis workflows at determined intervals with the client. Workflows were digested by the
CRABInterface and sandbox uploaded to the CRABCache; the workflows were then processed
by the RequestManager, the GlobalWorkGueue, and finally by the WMAgent. A single agent
instance was used, and the deployment was done in one box, meaning that all the components
were installed on the same machine: a 4-core Intel Xeon E5520 2.27GHz server with 16GB
of RAM. Jobs were not actually sent to the Grid, but we developed a plug-in that emulates
the behavior of a job workflow. This plug-in was then added to a WMCore library which
transparently supports different Grid middleware and batch systems. Once WMAgent performs
the submit, the plugin immediately returns a success without even contacting the Grid; the
same applies when the agent components check the jobs status, where the virtual job is basically
waiting a configurable runtime of 70 minutes (± 20% of randomness) before the the agent sees
the job as completed. Once this happens, the job workflow in the agent is then the usual one and
the interaction with the underlying middleware is finished. By using this approach it is possible
to emulate the job life cycle without actually sending the jobs to the Grid. The advantages of
this approach are that:

• the Grid and site resources are not overloaded with useless jobs which require precious
computing time to be performed

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

9



• the tests are less influenced by external latencies, and it is therefore possible to see how the
analysis system works.

We considered two scenarios. In the first one the number of jobs sent to the system was the
expected value of 300 000 jobs per day, which corresponds to a high rate in the production
environment. In the second scenario we sent a number of jobs four times bigger than the
expected value. The results of these tests are shown in Figures 4 and 5 respectively. The x-axis
is time in minutes, while the y-axis has five lines representing the number of jobs in five different
states in every minute of the simulation. These five states are

• created: jobs sent by the client and not yet processed by the agent;

• executing: jobs processed by the WMAgent and submitted to the (emulated) Grid;

• complete: jobs which have just completed their 70 minutes runtime;

• success: jobs whose output has been processed by the agent;

• clean out: jobs which have been completely digested by the WMAgent.

The result at the expected scale (Figure 4) showed no accumulation of jobs in any state, apart
from complete, which of course linearly increases as jobs are digested by the agent, and executing,
which show the average value of 15 000 jobs, that is the number of jobs in the executing state.
At a scale four times larger than the expected value we observed that the number of jobs in the
created state increases. The investigation done to find out the reason of this delay pointed out
that most of the delay is accumulated when contacting other services, DBS in particular. This is
not an issue for two reasons: first, at the time we performed the test we were still using the old
generation of the services, and we expect a big improvement with the new versions, in particular
DBS3; second, since these delays are not generated by the CRAB infrastructure itself, we can
assume that CRAB has no problems even with a scale four times bigger than the expected value.
This will have to be verified again when the new generation of data services will be ready.
Since the results of the scale test did not highlight showstoppers we proceeded and we started
the functional tests described in the next section.

Figure 4. Distribution of jobs by status vs.
the time during the first CRAB3 scale tests
sending a rate of 300 000 jobs/day.

Figure 5. Distribution of jobs by status vs.
the time during the first CRAB3 scale tests
sending a rate of jobs 4 times bigger then the
one in production.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

10



6.2. Functional tests
The functional tests have been organized together with the integration team of CMS. A
long extended test has been arranged involving approximately 10 expert analysis users. The
setup used for the test is the one box deployment: all the component from CRABCache and
CRABServer to WMAgent installed on the same machine. These tests were very useful and
allowed us to find a series of problems of different functionalities. Examples of main issues
found during the functional test are as follows:

• once a job fails due to a site issue the resubmission did not prevent the job from running
on the very same site which will eventually fail again;

• many layers in the system made it difficult for the user to have a clear picture of all the
actions happening on the server;

• the validation of user configurations when requesting a new workflow was not complete,
leading to situations where user workflows were actually stuck in the system;

• the publication was not synchronizing with the AsyncStageOut component and did not
provide the possibility to have incremental publication of user results;

• the early job binding in WMAgent for production jobs (the destination site is selected up
front the submission) sometimes can result in an inefficient use of the resources for analysis
jobs.

This feedback has provided a series of items where developers could concentrate their effort and
a test/fix/deploy model with frequent CRAB3 releases to be tested has been adopted. As fixes
were included in CRAB, new tags of the software were made and deployed. In this way expert
users could test new functionality as they were fixed and they also could continuously provide
feedback to the developers.
One of the key points emerging from this experience is that the support of users in their work
is potentially simpler thanks to the centralized architecture. In particular this allowed us to
understand the importance of the CentralMonitoring service where a relevant effort has been
dedicated after this phase of the tests. The monitoring will also provide operator interfaces
required to have an overview of the whole system.

7. Conclusion and future work
This contribution presented the new generation framework developed to manage CMS analysis
workflows. The described development is based mostly on the lessons learnt from the production
tools and from the experience obtained operating them.
The described system has been developed to optimize the CMS resource usage and to improve
job management. A key point of its design is to implement an architecture organized on several
layers which foresee some services running centrally. This provides the knobs to manage workflow
priorities giving a global view of the load and system usage. The two level of queues avoid a
single point of failure.
The system is not showing performance problems, and the scale tests did not highlight any
problem in the workflow. The service provides graphical and RESTFul interfaces to access the
collected information, a crucial aspect for the operation of the system.
The feedback driven approach successfully allowed the transition from the beta to the pre-
production version.
At the time of writing the system is entering the final integration phase. This means that the
new generation of CRAB will be ready to be the production version by the end of 2012.

References
[1] CMS Collaboration, Adolphi, R., et al.: The CMS experiment at the CERN LHC, JINST, 0803, S08004

(2008).

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

11



[2] Fanfani, A., et al.: Distributed Analysis in CMS, Journal of Grid Computing, Volume 8, 159179 (2010).
[3] Python Programming Language http://www.python.org.
[4] SQLite Home Page www.sqlite.org.
[5] Afaq, A., et al., The CMS dataset bookkeeping service, 2008 J. Phys.:Conf. Ser. 119 072001.
[6] Egeland, R., et al.: Data transfer infrastructure for CMS data taking. In: Proceedings of Science,

PoS(ACAT08)033 (2008).
[7] Tuura, L., et al.: Scaling CMS data transfer system for LHC start-up. J. Phys. Conf. Ser. 119, 072030 (2008).
[8] Bonacorsi, D., Egeland, R., Metson, S.: SiteDB: marshaling the people and resources available to CMS. In:

Poster at the International Conference on Computing in High Energy and Nuclear Physics (CHEP 2009),
Prague, 2127 March 2009.

[9] Codispoti, G., et al.: CRAB: a CMS application for distributed analysis. IEEE Trans. Nucl. Sci. 56, 2850-2858
(2009).

[10] Evans, D., et al.: The CMS Monte Carlo production system: development and design. Nucl. Phys. Proc.
Suppl. 177178, 285286 (2008).

[11] MySQL Open Source Database http://www.mysql.com.
[12] Hypertext Transfer Protocol, Request for Comments 2616, http://tools.ietf.org/html/rfc2616.
[13] Simple Object Access Protocol, Request for Comments 4227, tools.ietf.org/html/rfc4227.
[14] Codispoti, G., et al.: Use of the gLite-WMS in CMS for production and analysis. In: Proceedings of 17th

International Conference on Computing in High Energy Physics and Nuclear Physics. J. Phys. Conf. Ser.,in
press (2009).

[15] Riahi, H., et al.: Large scale and low latency analysis facilities for the CMS experiment: development and
operational aspects, J. Phys.: Conf. Ser. 331 072030 (2010).

[16] Cinquilli, M., et al.: A gLite FTS based solution for managing user output in CMS, in these proceedings.
[17] Wakefield S, et al. Large Scale Job Management and Experience in Recent Data Challenges within the LHC

CMS experiment. Proceedings of XII Advanced Computing and Analysis Techniques in Physics Research,
2008.

[18] Richardson, L., Ruby, S.: RESTful Web Services - Web services for the real world. O’Reilly Media, May
2007.

[19] Apache CouchDB database http://couchdb.apache.org.
[20] Frohner A, et al. Data management in EGEE. Journal of Physics Conference Series 219 062012, doi:

10.1088/1742-6596/219/6/062012, 2009.
[21] CMS web services https://cmsweb.cern.ch

[22] Apache HTTP Server Project http://httpd.apache.org.
[23] Hellegouarch, S.: CherryPy Essentials: Rapid Python Web Application Development, Packt Publishing,

(2007).

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032026 doi:10.1088/1742-6596/396/3/032026

12




