

Health and performance monitoring of the

online computer cluster of CMS

G Bauer
6
, U Behrens

1
, O Bouffet

2
, M Bowen

2
, J Branson

4
, S Bukowiec

2
,

M Ciganek
2
, S Cittolin

4
, J A Coarasa Perez

2
, C Deldicque

2
, M Dobson

2
,

A Dupont
2
, S Erhan

3
, A Flossdorf

1
, D Gigi

2
, F Glege

2
, R Gomez-Reino

2
, C Hartl

2
,

J Hegeman
2a

, A Holzner
4
, Y L Hwong

2
, L Masetti

2
, F Meijers

2
, E Meschi

2
,

R K Mommsen
5
, V O’Dell

5
, L Orsini

2
, C Paus

6
, A Petrucci

2
, M Pieri

4
, G Polese

2
,

A Racz
2
, O Raginel

6
, H Sakulin

2
, M Sani

4
, C Schwick

2
, D Shpakov

5
, M Simon

2
,

A C Spataru
2
 and K Sumorok

6

1
DESY, Hamburg, Germany

2
CERN, Geneva, Switzerland

3
 University of California, Los Angeles, Los Angeles, California, USA

4
 University of California, San Diego, San Diego, California, USA

5
 FNAL, Chicago, Illinois, USA

6
 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

a
Now at Princeton University

E-mail: Olivier.Raginel@cern.ch

Abstract. The CMS experiment at the LHC features over 2’500
devices that need constant monitoring in order to ensure proper data

taking. The monitoring solution has been migrated from Nagios to
Icinga, with several useful plugins. The motivations behind the

migration and the selection of the plugins are discussed.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042049 doi:10.1088/1742-6596/396/4/042049

Published under licence by IOP Publishing Ltd 1

mailto:Olivier.Raginel@cern.ch

1. Introduction
The CMS experiment’s [1][2] online cluster at the LHC [3] consists of 2’300 computers and around
200 switches or routers operating on a 24-hour basis. This large infrastructure must be monitored in a
way that the administrators are pro-actively warned of any failures or degradation in the system, in
order to avoid or minimize downtime of the system which can lead to loss of data taking. Each minute
of colliding beam in the machine is precious, and therefore fast and reliable monitoring and alerting is
crucial. Different groups working on diverse parts of the detector use most of these computers, and the
administration and monitoring of all of them is the responsibility of the DAQ (Data AcQuisition)
group.

The original monitoring solution, based on Nagios, was found to be unsatisfactory, and was
replaced by Icinga, with several useful plugins. The motivations behind the migration and the selection
of the plugins are discussed.

2. Issues and solutions

2.1. Upgrading from a Nagios installation
The overall experience with Nagios in CMS was satisfactory, but there were problems with scaling in
the CMS growing cluster. The simplicity of its plugins and their extensibility are its key assets,
however the difficult-to-maintain process of splitting the configuration in order to scale the monitoring
with the growing infrastructure and the old standards used for the web interface forced a
reconsideration of what to use to re-architecture the monitoring system.

While evaluating the different alternatives possible, mostly three products were considered. The
latest version of Nagios [4] (version 3.2.3, because 3.3.1 had serious bugs), the latest version of Icinga
[5] (1.3 at the time, now 1.7.1), and Shinken [6].

All these products are able to read the previous configuration with very little modifications, and
they can reuse the existing plugins, making any migration easier.

The latest version of Nagios did not have the additional features or enhancements required, i.e. it
still used a CGI web interface written in C, which needed a recompilation for each modification.

The first evaluated version of Icinga was not available in RPM format. An effort was put into
packaging it for version 1.3.1, and giving it back to the community, with the benefit that nowadays
there are available RPMs in the DAG [7] repository. The latest version of Icinga has an improved web
interface following modern standards, which can be easily extended through widgets (called
“cronks”), which are XML files. Icinga also offers JSON output for most of the pages (since version
1.4.1), which allows very easy integration with other tools. Icinga had also a very active community
behind it.

Shinken looked promising, but seemed still in its beta stage at the time. Icinga was selected
considering the points aforementioned.

2.2. Scalability with respect to a growing cluster
The configuration is stored in plain text files. There are modules allowing to store the configuration in
a database, but those were not considered, because generating flat files or filling up a database is
equivalent, so the database only increases the complexity.

It was difficult to maintain the process of changing the configuration during cluster growth. The
load on each monitoring server is proportional to the number of checks and the number of hosts
monitored, and once the maximum load on a single server was reached, the configuration had to be
split across several servers. In order to show a unified view of the whole cluster, the monitoring
information had to be aggregated onto a central dashboard, which added another layer of complexity.
The splitting was a manual task and required both guessing as to how the cluster would grow and
cautiousness in writing the configuration so that it could be re-used across servers.

Gearman provides a generic application framework for farming out tasks to other machines or
processes that are better suited to do the work. It allows work to be executed in parallel, to balance the

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042049 doi:10.1088/1742-6596/396/4/042049

2

processing load on several machines. It can be used in a variety of applications, from high-availability
web sites to the transport of database replication events. It is the nervous system through which
distributed processing communicates [8].

Icinga can leverage the power of Gearman by using a module, which is installed as a broker
directly inside the main executable and farms out all checks needed to be run to the Gearman server
and checks for results to be processed. This allows easy scaling; the central server is only a scheduler,
there can be as many worker nodes as needed, and they each have the same configuration.

Icinga makes use of the multiple queues allowed by Germand (see Fig. 1). Two queues hold the
hosts checks and services checks respectively, consumed by the workers, injected by the scheduler.
The next queue is consumed by the scheduler, injected by the workers and check_multi and holds the
results of the checks. Finally, the scheduler fills one last queue, which holds the performance data to
be processed, consumed by PNP4nagios. Each worker also has its own queue so one can also monitor
that it is alive, using a special plugin called check_gearman.

Gearman quickly became the central piece for the scaling of our monitoring infrastructure, because
of its inherent efficiency. It is very stable and reliable, and has proved to be a good choice.

Figure 1 Scalability with respect to the number of checks

A standard check can either be run locally on the monitoring server or remotely through some
mechanisms. The most common ones are SSH [9], NRPE [10] and SNMP [11]. SSH has more
overhead and is potentially more secure. SNMP is light and fast but difficult to extend and
complicated to setup to have good security (SNMPv3). NRPE (Nagios Remote Plugin Execution) is
the best of both worlds: easy to setup, secure enough, fast and easy to extend. It has a drawback that
required patching: the limit of the output on a 32-bit operating system was limited to 4096 characters.

Regardless of the mechanism to execute remote checks, for each check run from the monitoring
server a connection to the remote server needs to be open. Therefore, the load on the monitoring server
scales linearly with the number of checks done on a single machine, which was already problematic
when having over 20 checks on all hosts.

To reduce this overhead, a plugin called check_multi [12] is used. It can run on the monitoring
server one single remote check that can cascade on the remote monitored client and check several
plugins in a row. Currently the CMS monitoring server runs two remote check_multi checks per host
instead of 27 remote checks. The problem posed by this solution is that all results appear as one single
service in Icinga. This causes issues because the alerting is done on a service, which contains multiple
checks, some of which requiring alerting and some not. Furthermore a failure on one check causes the
whole service to be critical, and will therefore hide any additional check failures in this service. To

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042049 doi:10.1088/1742-6596/396/4/042049

3

remedy this, the tests are then split as passive ones, which allow fine-tuned notifications, and proper
alerting.

In summary, for the standard 27 tests run on all the monitored hosts, two active tests are defined in
Icinga, which make use of check_multi. These check_multi checks output XML data, which is piped
into send_multi (part of mod_gearman), which then takes care of parsing and splitting the 27 results
and sending them back through the Gearman queue. The master Icinga scheduler processes the 27
passive tests. The configuration is a little bit more complex than in plain mode, but check_multi
provides tools for generating the passive checks from the local/remote check_multi configuration,
reducing the effort required in configuration and maintenance.

As most of the checks take as long to run as the overhead of the NRPE connection, tunneling the 27
passive checks through check_multi reduces the load on the monitoring server roughly by a factor of
15 and cuts the time needed to run them all in half.

2.3. Configuration management
The CMS cluster is managed by a configuration management tool called Quattor [13]. To avoid the
duplication of information, a perl script that extracts information out of Quattor and generates a
configuration suitable for Icinga has been developed. The script also generates the network topology,
in order to hide all failures located behind a failed switch or router.

Alerting is based on host groups, generated from a wiki page, and alerts can be sent either by email
or by SMS. The wiki page only contains which server or quattor profile belong to which group, and
who should be notified would anything happen to any machine within this group.

To extend services for each sub-detector, services just need to be put into groups, and the groups
need be filled from the wiki page. This results in a flexible and clear, yet simple configuration
management, and additions/suppressions can be very easily implemented.

2.4. Performances
The use of these performance enhancing modules and the work on grouping the checks has yielded
impressive performance improvements over the previous Nagios infrastructure allowing for the
monitoring of 65’000 checks run every 2 minutes on average, compared to 20’000 every 5 minutes on
the previous system. It has also allowed the scaling down of the hardware requirements from four 8-
core machines to one 4-core machine generating all the RRDs, and two 8-core machines, one running
the Icinga server and the other running all the checks. Furthermore the design allows the easy growth
of the infrastructure without the need to rethink the monitoring system as a whole.

2.5. PNP4nagios
Most of the executed checks generate performance data, which are simple metrics used to monitor the
health of a machine and its variation. For example the checks for the disk occupancy, the memory
usage, the ping response time, and other such variables generate performance data. They are very
useful to graph, in order to see trends and correlations in the data. PNP4nagios [14] graphs any
plugin’s performance data that follows the Nagios plugin development guidelines [15]. This also
allows developing custom plugins and having the results graphed.

PNP4nagios can also merge plots, in order to show the metrics from several hosts on a single
graph. One example for this is the monitoring of the temperature of the hosts (see Fig. 2). Local
checks are in place to ensure hosts don't overheat, and turn themselves off in case they reach some
thresholds. It is useful to be able to correlate the temperature within a building, a room or a rack, to
pinpoint a cooling issue for example, or simply to observe the heat impact of data taking.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042049 doi:10.1088/1742-6596/396/4/042049

4

Figure 2 Overall temperature display of 1028 computers from the High Level Trigger farm over a week

PNP4nagios also allows the aggregation of plots. As all the data are stored in RRDs [16], it is easy
to collect metrics from several hosts/checks, and graph them together, either merged like in Fig. 1, or
stacked like in Fig. 3. For example, in CMS the Storage Manager machines, which are used to store
the data selected by the High Level Trigger [17] on disk before shipping it to CERN’s Tier-0 [18] for
storage and processing, have four network interfaces that can all receive data during taking data. In
order to graph the total bandwidth usage, all four network cards for all 16 storage managers need to be
stacked, which is very easy to do with PNP4nagios (see Fig. 3).

Figure 1 Stacked incoming data bandwidth on all 16 Storage Managers over 24h

Thanks to caching (see next section), the load on the disks isn't too high. The only issue that needed
tuning was that PNP4nagios writes a summary file in XML for each service check, that describes the
metrics available in the service. Because of the number of checks with metrics for each host (~10) and
the number of hosts (~2300), the default refresh time of 5 minutes was too short to handle the graphing
of all the metrics of the entire cluster. Indeed, that would result in writing over 70 files per second.
Therefore the frequency of writing these XML files to disk has been decreased to once per day, which
means one file written every 4 seconds, a compromise against an acceptable delay when new checks
are added.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042049 doi:10.1088/1742-6596/396/4/042049

5

2.6. RRDcached
PNP4nagios generates many RRD files, which needs a lot of I/O to disk. In order to leverage the load,
RRDcached is used. It simply caches all updates to a RRD file. Changes are synchronized to disk only
every 5 minutes by default. The RRDcached daemon has a feature that the client can use to tell it to
force the file to be synchronized to disk right away. This feature can be used in order to serve the latest
data. As trends are more used than live statistics, this feature is not used. RRDcached is part of
RRDtool since version 1.4.

2.7. Integration with external tools
Some sub-detectors need to integrate Icinga's results within their own monitoring architecture, in order
to show a coherent overall status. This is done using JSON [19] standard outputs (available from
version 1.4.1 in Icinga). Most of the monitoring pages in our infrastructure can output JSON data,
which can then easily be parsed and displayed inside another application.

3. Conclusion
The new Icinga based monitoring system is able to monitor over 2'300 computers and 200 switches,
with a granularity of two minutes. Most of the configuration for the hosts and switches are generated
from Quattor, getting the hosts and groups from Quattor profiles. On all those hosts, 27 standard
checks are run through check_multi, with additional checks added on a host-by-host basis depending
on its functionality.

Although the decision to migrate from Nagios to Icinga was mostly motivated by the philosophy
behind the Icinga project, and its newer interface and wider feature list, it has exposed many very
useful plugins used in the new system. This experience has been presented to other groups at CERN.
Icinga, along with some of the plugins presented here, have been tested and are being used by other
CERN experiments [20].

The use of these performance enhancing modules and the work on grouping the checks has yielded
impressive performance improvements. This has allowed all sub-detectors to reliably monitor their
production critical machines, and some have even implemented their own checks.

The system is fully commissioned and its design allows the easy growth of the infrastructure,
providing enough scalability to survive well beyond the upcoming long shutdown.

4. Acknowledgement
This work was supported in part by the DOE and NSF (USA) and the Marie Curie Program.

References
[1] The CMS Collaboration, The Compact Muon Solenoid Technical Proposal, CERN LHCC 94-

38, 1994.
[2] The CMS Collaboration (Adolphi R et al.) The CMS Experiment at CERN LHC, JINST 3

S08004 361, 2008.
[3] Lyndon Evans and Philip Bryant (eds) (2008). LHC Machine. Journal of Instrumentation JInst 3

S8001E
[4] Nagios Is The Industry Standard In Infrastructure Monitoring, Nagios.org, http://nagios.org
[5] Icinga takes open source monitoring to the next level, icinga, http://icinga.org
[6] Shinken, The next Industry Standard in IT Monitoring, http://shinken-monitoring.org
[7] DAG, RPM packages for Red Hat, RHEL, CentOS and Fedora, http://dag.wieers.com/rpm
[8] Gearman provides a generic application framework to farm out work to other machines or

processes that are better suited to do the work, http://gearman.org/#introduction
[9] The Secure Shell (SSH) Authentication Protocol, https://tools.ietf.org/html/rfc4252
[10] NRPE, Nagios Remote Plugin Executor, http://docs.icinga.org/1.6/en/nrpe.html

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042049 doi:10.1088/1742-6596/396/4/042049

6

http://nagios.org/
http://icinga.org/
http://shinken-monitoring.org/
http://gearman.org/#introduction
https://tools.ietf.org/html/rfc4252
http://docs.icinga.org/1.6/en/nrpe.html

[11] A Simple Network Management Protocol (SNMP), https://tools.ietf.org/html/rfc1157
[12] check_multi is a multipurpose wrapper plugin which takes benefit of the Nagios 3.x capability

to display multiple lines of plugin output, Matthias Flacke,
http://my-plugin.de/wiki/projects/check_multi/discussion

[13] Quattor is a system administration toolkit, https://trac.lal.in2p3.fr/Quattor/wiki/Web
[14] PNP is an addon to Nagios which analyzes performance data provided by plugins and stores

them automatically into RRD-databases, http://docs.pnp4nagios.org/pnp-0.6/start
[15] Nagios Plug-in Development Guidelines, Nagios Plugins Team,

http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN201
[16] RRDtool is the OpenSource industry standard, high performance data logging and graphing

system for time series data, Tobias Oetiker, OETIKER+PARTNER AG,
http://oss.oetiker.ch/rrdtool

[17] The CMS High Level Trigger System: Experience and Future Development, Sparatu & all,
International Conference on Computing in High Energy and Nuclear Physics (CHEP), NY,
May 2012, Proccedings CHEP2012212

[18] CMS Tier-0: Preparing for the future, Dirk Hufnagel, International Conference on Computing
in High Energy and Nuclear Physics (CHEP), NY, May 2012, Proccedings CHEP2012309

[19] JSON (JavaScript Object Notation) is a lightweight data-interchange format., http://json.org
[20] Tools and strategies to monitor the ATLAS online computing farm, Scannicchio & all,

International Conference on Computing in High Energy and Nuclear Physics (CHEP), NY,
May 2012, Proceedings CHEP2012348

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042049 doi:10.1088/1742-6596/396/4/042049

7

https://tools.ietf.org/html/rfc1157
http://my-plugin.de/wiki/projects/check_multi/discussion
https://trac.lal.in2p3.fr/Quattor/wiki/Web
http://docs.pnp4nagios.org/pnp-0.6/start
http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN201
http://oss.oetiker.ch/rrdtool
http://json.org/

