IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Data Bookkeeping Service 3 - A new event data catalog for CMS

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2012 J. Phys.: Conf. Ser. 396 052036
(http://iopscience.iop.org/1742-6596/396/5/052036)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 131.225.23.169
The article was downloaded on 01/08/2013 at 20:45

Please note that terms and conditions apply.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/396/5
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052036 doi:10.1088/1742-6596/396/5/052036

Data Bookkeeping Service 3 - A new event data
catalog for CMS

M Giffels', Y Guo? and D Riley?

! PH-CMG-CO. CERN, CH-1211 Geneve 23, Switzerland
2 Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.
3 Cornell University, Ithaca, New York, U.S.A.

E-mail: Manuel.Giffels@cern.ch, yuyi@fnal.gov, Daniel.Riley@cornell.edu

Abstract. The Data Bookkeeping Service (DBS) provides an event data catalog for Monte
Carlo and recorded data of the Compact Muon Solenoid (CMS) Experiment at the Large Hadron
Collider (LHC) at CERN, Geneva. It contains all the necessary information used for tracking
datasets, like their processing history and associations between runs, files and datasets, on a
large scale of about 10° datasets and more than 107 files. The DBS is widely used within CMS,
since all kind of data-processing like Monte Carlo production, processing of recorded event data
as well as physics analysis done by the user, are relying on the information stored in DBS.

1. Introduction

The CMS Data Bookkeeping Service (DBS) comprises databases and services used to store and
access metadata related to CMS physics event data. In addition to recording what data exist,
DBS also stores process-oriented provenance information, including parentage relationships of
files and datasets, configurations of processing steps, and the associations with run number and
luminosity section necessary to find a particular set of events within a dataset.

The CMS DBS is a federated system of services and databases, with several different DBS
instances used for specific purposes. The Global-DBS records all official CMS data, real or
simulated, that are available for physics analysis. The CMS Tier0 DBS instances records
information for data from the detector as it is processed by the Tier0O facility. The CAF
instance records data from the prompt reconstruction stream used for detector calibrations and
diagnostics. Finally, physics analysis DBS instances let individual physicists or physics groups
record and manage the results of their analysis steps. Physics analysis data determined to be
of general use for a physics group can be repackaged and migrated to the Global-DBS via the
StoreResults service [1] and the DBS Migration Service. This paper describes the motivation
and design of the third major version of the system, DBS 3.

The second version of DBS [2], DBS 2, was designed and implemented in 2006-2007, prior to
full operation of the LHC. At the time, CMS did not have a standardized services architecture,
so the DBS 2 team chose to implement it using Java servlets in an Apache Tomcat container.
Without a standard model for deploying new services, many requests were made for additional
data to be stored in DBS 2 that were not entirely consistent with its original purpose. DBS 2
used XML RPC for client-server communications, and in some cases had very “thick” client
APIs, which eventually lead to numerous problems with API versioning.

Published under licence by IOP Publishing Ltd 1

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052036 doi:10.1088/1742-6596/396/5/052036

Since the time when DBS 2 was designed, the CMS data processing model has evolved
in ways that were not anticipated by the DBS 2 design, and the CMS DataManage-
ment/WorkflowManagement (DMWM) project had developed a standard architecture and de-
ployment model for CMS web services. A 2009 project status review led to the decision to start
work on DBS 3, to better match CMS requirements and integrate with other DMWM projects.
Design goals for DBS 3 included: aligning the data model with the evolved CMS processing
model and use cases; reset to the original project scope by spinning-off any services that were
outside the project scope; simplified APIs and optimized database schemas based on observed
DBS 2 usage, “logical” provenance, collapsing out the split and merge steps of the processing
history that have no effect on the data content. An initial set of high and low level use cases,
corresponding APIs, and an initial schema and architecture were developed over Summer 2010,
followed by an intensive design review in September 2010.

After the design review, we built prototypes of various possible architectural and technology
choices, eventually resolving on the current DBS 3 design and implementation.

2. DBS 3 - A RESTful Web service

For the current generation of web services, the CMS DMWDM project has standardized on the
Representational State Transfer (REST) architecture [3]. Choosing REST simplifies the task of
integrating the different components of the DMWM system into a common architecture. REST
also imposes a discipline of thin client interfaces. We largely standardized on the Java Script
Object Notation (JSON) data-format for exchanging information, as a simpler alternative to
the XML used in the previous generation. The DMWM project also standardized on Python
as the implementation language, using the SQLAlchemy and CherryPy toolkits, and a standard
“WMCore” framework. Despite some initial skepticism, our prototyping convinced us that the
chosen technologies could be competitive with the performance and reliability of the Java servlets
used for DBS 2, while the advantages of using a common language and toolkit across all DMWM
projects are obvious. By adopting the common DMWM architecture, DBS 3 transparently
becomes a service provider for the CMS Data Aggregation Service (DAS) [4], which makes it
possible to de-aggregate DBS into several services with narrower scope without significant loss
of query functionality. DBS 3 also benefits from the work already done within the DMWM
project on scalability, testing, and deployment.

Accordingly, DBS 3 has been completely re-designed and re-implemented in Python using
the CherryPy and SQLAlIchemy toolkits within the CMS standard DMWM framework. It uses
RESTful interfaces (see Figure 1), where the APT used is chosen by the path in the URI and the
operation is chosen by the HT'TP method. DBS 3 supports GET, POST and PUT operations.
The deletion of data inside the catalog is not provided to ensure perpetual traceability. The
client-server communication is stateless, which enhances the scalability of the service. An Oracle
Database backend provided for CMS [5] is utilised as persistent storage in DBS 3. A standard
layered architecture is used, with Data Access Objects (DAO) [6] at the lowest layer.

The database schema for DBS 3 was reexamined de novo, based on our use cases, usage
statistics for DBS 2, and feedback from the design review. The DBS 3 schema particularly
benefitted from the narrower and more precisely defined project scope compared to DBS 2. The
narrower scope was largely made feasible by the integration of different services through the
common DMWM architecture.

3. The deployment and packaging of DBS 3

DBS 3 is deployed on the CMS core system for web services (CMSWEB)[7] (see also Figure 1),
which is developed, managed and operated by the HTTP-Group within the DMWM project.
All hosted projects can profit from a common infrastructure providing sophisticated tools and
documentation for the deployment and management of their projects on CMSWEB. To ensure

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052036 doi:10.1088/1742-6596/396/5/052036

Clients

https://dbs/<called api>?argument1&..
+ eventually request body

json

HTTP Method [
{
GET |3\ |nternet $€---—-——————————- "keyl" : "valuel",
—POST HTTP Method Dataformat
— PUT Body or Response| "key N" : "value N"
DELETE (not implemented) }

X509 authenticated]

CMSWEB Frontend

Apache-Servers

v

CMSWEB Backend

U i i i
Oracle DB Backend DBS 3 - RESTful Web service

CherryPy

SEEEEEEDEE

Figure 1. Function principle of the DBS 3 RESTful web service deployed on the CMSWEB
cluster.

a secure operation, each project that will be deployed on CMSWEB, have to pass a full code-
audit. Additionally, deployment and management scripts based on the common infrastructure
are validated by the HT'TP group. Beside the required tests during the deployment procedure,
DBS 3 is already intensively tested on our development virtual machines using sophisticated test
suites and procedures before the deployment is requested. Altogether, this procedure ensures
that only well-functioning versions of DBS 3 are deployed.

The packaging of DBS 3 is done using common tools provided by CMS computing. The RPM
Package Manager (RPM) is used together with the Advanced Packaging Tool (APT) as package
management system. Any developer can request a private repository for building RPMs used in
development and testing. RPM building in the private repository is semi-automated using the
CMS package tools. Together with the developed DBS 3 setup scripts, each developer is able
to create a new development environment within a short time. RPMs in the official repositories
used for the deployment on CMSWEB are build using a fully automated tool called Builder Agent
developed within the DMWM project.

4. Performance and integration testing of DBS 3 using PhEDEx LifeCycleAgent

Most of the functionality of DBS 3 is already tested during development and deployment.
However, that is not sufficient to ensure a well interoperability of all services relying on DBS 3.
Therefore, additional performance and integration tests are required. During the process of

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052036 doi:10.1088/1742-6596/396/5/052036

evaluation, it turned out that the PhEDEx LifeCycleAgent [8] is well suited to perform those
tests.

List all AOD datasets
(Initial Request)

Workernode 1 Workernode ... Workernode O

Simulated CRAB2 Task 1 20 [N-1 Simulated CRAB2 Task N

listPrimaryDSType listPrimaryDSType
(mc or data) (mc or data)

Thread 1

" LifeC ntl

listFiles listFiles

Thread ... listParentFiles listParentFiles

(Ifn 1) (Ifn 1)

Thread M

peojAed arowau/ppy.

Proiked srowmaIPPY

listParentFiles listParentFiles

(fn N) fn N)
listFileLumis listFileLumis
(Ifn 1) (Ifn 1)
listFileLumis listFileLumis
S (Ifn N) (Ifn N)

Figure 2. Sketch of the LifeCycleAgent ~— — 7 " "~

working principle. . L .
Figure 3. Realistic example of an analysis

workflow defined in a LifeCycleAgent work-
flow.

The LifeCycleAgent was originally developed by the PhEDEx team to drive a realistic
simulation of their data transfer system [9]. The LifeCycleAgent can execute functions in perl
modules as well as external scripts, which makes it useable apart from PhEDEx, too.

The functioning of the LifeCycleAgent is depicted in Figure 2. The LifeCycleAgent uses an
configurable number of threads to process its tasks. The individual tasks are fetched from a task
queue. Each task is associated with a so called payload in JSON format. This payload can be
modified within the task depending on its result. The modified payloads are then passed from
one task to another, which enables the possibility to dynamically add tasks to the queue.

The interrelationship between the tasks is defined in a so called workflow. The workflow
defined in Figure 3 comprises two different external python scripts. The first one is called as
initial request inside LifeCycleAgent and asks DBS 3 to list all known Analysis Object Data
(AOD) datasets. Inside that script an array of payloads is created, which means that the task is
forked dynamically based on the result of the initial request, in other words N tasks are added
to the task queue. The second external scripts calls several APIs of DBS 3. This workflow
is a realistic simulation of NV analysis users creating and submitting their analysis jobs to the
Grid using the CMS Remote Analysis Builder (CRAB) [10]. This analysis workflow is used as
a read-only stress-test of DBS 3.

In addition to the performance tests, integrations tests are needed, too. Recently a campaign
between DAS, PhEDEx and DBS 3 has been started. The idea behind that campaign is
depicted in Figure 4. A tool called DataProvider developed by Valentin Kuznetsov ensures
that a consistent set of fake data are provided to the LifeCycleAgent. Different workflows for
PhEDEx and DBS 3 are injecting that data into their systems. A third workflow uses DAS
to check the consistency of the injected data between both subsystems. This also includes
injections of false-positives. Once this integration tests are established, it is planned to include
other projects within the DMWM realm as well.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052036 doi:10.1088/1742-6596/396/5/052036

PhEDEX DAS DBS 3

Check consisfence of data

LifeCycleAgent
Inject data (Workflows) Inject data

DataProvider
(Consistent Fakedata),

Figure 4. Sketch of the planned interaction tests between DAS, PhEDEx and DBS 3.

5. Conclusion

The development of DBS 3 was driven by the lessons learned from its predecessor DBS 2 and
the ongoing revision of the DMWM software. DBS 3 better fits the needs of the evolving
data processing model of CMS, since the needs were already settled before the design phase.
In addition, DBS 3 is now better integrated into the realm of DMWM. So DBS 3 is taking
advantage of the common infrastructure for deployment and packaging. The RESTful design
using lightweight APIs and a stateless client-server communication ensures a better scalability
of DBS 3 and it is also based on a common ground shared by multiple projects in DMWM.
In addition to the development itself, a lot of effort is spent in the development of test suites,
performance and integration tests between the interoperating projects, which helps to ensure
that the product satisfies the requirements of CMS. DBS 3 is already deployed on CMSWEB,
however it is not yet used in production. Developing a reliable concept of introducing DBS 3 to
CMS is one of future challenges to address.

References

[1] Giffels M, 2011, et al, Design and early experience with promoting user-created data in CMS, J. Phys. Conf.
Ser. 331 072049

[2] Afaq A et al, 2008, The CMS Dataset Bookkeeping Service, J. Phys. Conf. Ser. 119 072001

[3] Fielding R T, 2000, Architectural Styles and the Design of Network-based Software Architectures, Dissertation,
University of California, Irvine, ISBN: 0-599-87118-0

[4] Ball G et al, 2011, Data Aggregation System: A system for information retrieval on demand over relational
and non-relational distributed data sources, J. Phys. Conf. Ser. 331 042029

[5] Pfeiffer A et al., CMS experience with online and offline databases, paper [163] at this conference

[6] Alur D, 2003, Core J2EE Patterns: Best Practices and Design, Prentice Hall International, ISBN: 978-
0131422469

[7] Metson S et al, 2008, CMS offline web tools, J. Phys. Conf. Ser. 219 082007

[8] Wildish T et al, From toolkit to framework - the past and future evolution of PhEDEXx, paper [188] at this
conference

[9] Egeland R et al, 2010, PhEDEx data service, J. Phys. Conf. Ser. 219 062010

[10] Spiga D et al, 2007, The CMS Remote Analysis Builder (CRAB), Lect. Notes Comput. Sci. 4873 580-586

