Top Quark Angular Distributions - Theory

Stephen J. Parke

Theoretical Physics Dept., Fermi National Accelerator Laboratory, Batavia IL 60510, USA
E-mail: parke@fnal.gov

Abstract. The theoretical aspects of top quark angular distributions will be reviewed with special emphasis on spin correlations in top quark pair production.

1. W-boson Helicity fractions in Top Quark decay

In the Standard Model, the W-bosons from top quark decay are primarily longitudinal which imparts particular angular distributions for the decay products of the W-boson, as given by

\[
\frac{1}{\Gamma_T} \frac{d\Gamma}{d\cos \chi_l} = \frac{3}{4} \frac{(m_t^2 \sin^2 \chi_l + 2m_W^2(1 - \cos \chi_l)^2/2)}{(m_t^2 + 2M_W^2)} \tag{1}
\]

where the angle, \(\chi_l\) is defines in Fig. 1. Thus, the W-boson helicity fractions are

- longitudinal \(\sim m_t^2 \approx 70\%\)
- transverse(L) \(\sim 2m_W^2 \approx 30\%\)
- transverse(R) \(\mathcal{O}(m_b^2) \ll 1\%\) \(\tag{2}\)

The W-boson helicity fractions effect the \(p_T\) distributions of the decay products and thus these distributions can be used to measure the helicity fractions.

2. Top Quarks decay before Spin Decorrelation

The top quark decay width \((G_Fm_t^3 \sim 1 \text{ GeV})\) is much larger than the QCD hadronization scale \((\Lambda_{QCD} \sim 0.1 \text{ GeV})\) and much larger than the spin decorrelation scale \((\Lambda_{QCD}^2/m_t \sim 0.1 \text{ MeV})\). Therefore, spin correlations in top quark pair production are reflected in angular correlations of the decay products, see [1] and [2].

3. Top Quark Pair Production

3.1. Quark-antiquark annihilation or unlike helicity gluon fusion

For top quark pair production via quark-antiquark annihilation or unlike helicity gluon fusion, there exists a spin axis such that the top quarks are produced in only the up-down or down-up configuration, i.e. parallel, since the spin axes are back to back,

\[
q_L \bar{q}_R, \; q_L \bar{q}_R, \; g_L g_R, \; g_R g_L \rightarrow t_U \bar{t}_D + t_D \bar{t}_U. \tag{3}
\]
No combinations $t_U\bar{t}_U$ or $t_D\bar{t}_D$ are produced, see Fig. 2. This spin basis is known as the Off-Diagonal basis, see [3] and [4], and the spin axis makes an angle Ω wrt to the top quark momentum direction in the ZM frame. This angle is given by

$$\tan \Omega = (1 - \beta^2) \tan \theta = \frac{1}{\sqrt{2}} \tan \theta. \quad (4)$$

Where the speed and the scattering angle of the top quark are given by β and θ, respectively. Note, at threshold, $\Omega = \theta$ at the spin axis is aligned along the beamline, whereas at ultra-high energies, $\Omega = 0$ and the spin axis is aligned along the direction of motion of the top quark (ZMF helicity).

3.2. Like helicity gluon fusion

For top quark pair production via like helicity gluon fusion in the helicity basis, the top quarks are produced in only the left-left or right-right configuration, i.e. anti-parallel,

$$g_{L}g_{L}, \; g_{R}g_{R} \rightarrow t_{L}\bar{t}_{L} + t_{R}\bar{t}_{R}. \quad (5)$$

No combinations $t_{L}\bar{t}_{R}$ or $t_{R}\bar{t}_{L}$ are produced in this process, see Fig. 3.

4. Polarized top quark decay

The decay products from a polarized top quark have their moment vectors correlated with the top quark spin axis as follows:

$$\frac{1}{\Gamma_T} \frac{d\Gamma}{d\cos \chi_i} = (1 + \alpha_i \cos \chi_i)/2, \quad \text{where} \quad \alpha_i = \begin{cases} +1.0 & (+0.998) & l^+ \\ +1.0 & (+0.966) & \bar{d}-\text{quark} \\ -0.31 & (-0.314) & \bar{\nu} \\ -0.31 & (-0.317) & u-\text{quark} \\ -0.41 & (-0.393) & b-\text{quark} \end{cases} \quad (6)$$

at LO with the NLO results, see [5], in parenthesis. χ_i is the angle between the decay product and the spin axis in the top quark rest frame.

5. Understanding the Full Correlated Matrix Element Squared

In top quark rest frame, denote the polar and azimuthal angles of the charged lepton from top quark decay wrt to the top spin axis by χ and ϕ respectively. Whereas for the anti-top quark these angles wrt to the anti-top quark spin axis by $\bar{\chi}$ and $\bar{\phi}$ respectively. ϕ and $\bar{\phi}$ are determined...
Opposite-helicity gluons dominate when $\beta \gamma \sin \theta > 1$ \((\beta^2 > \frac{1}{2 - \cos^2 \theta})\):

\[\tan \Omega = (1 - \beta^2) \tan \theta \]

Figure 2. Spin correlations for the production of top quark pairs via unlike helicity gluon fusion or quark-antiquark annihilation.

Wrt to the scattering plane. Then for quark-antiquark annihilation, the correlated part of the full matrix element squared, apart from over all factor \((b \cdot \nu)(\bar{b} \cdot \bar{\nu})\), is given by

\[|A|_{LR}^2 + |A|_{RL}^2 \sim [(2 - \beta^2 s_\bar{b}^2)(1 + c_\chi \bar{c}_\chi) + \beta^2 s_\bar{b}^2 s_\chi \bar{s}_\chi \cos(\phi + \bar{\phi})] \] (7)

in the Off-Diagonal bases. Also for unlike helicity gluon fusion

\[|A|_{LR}^2 + |A|_{RL}^2 \sim \frac{(7 + 9 \beta^2 s_\bar{b}^2)}{(1 - \beta^2 s_\bar{b}^2)^2} \beta s_\bar{b}^2 \left[(2 - \beta^2 s_\bar{b}^2)(1 + c_\chi \bar{c}_\chi) + \beta^2 s_\bar{b}^2 s_\chi \bar{s}_\chi \cos(\phi + \bar{\phi})\right] \] (8)

again in the Off-Diagonal bases. Notice that the part of these two expressions between \([\cdots]\) are identical, so that these two expressions only differ by an overall factor.

Whereas for like helicity gluon fusion in the helicity bases, we have

\[|A|_{LL}^2 + |A|_{RR}^2 \sim \frac{(7 + 9 \beta^2 s_\bar{b}^2)}{(1 - \beta^2 s_\bar{b}^2)^2} \beta s_\bar{b}^2 \left[(1 + \beta^2)(1 - c_\chi \bar{c}_\chi) -(1 - \beta^2)s_\chi \bar{s}_\chi \cos(\phi - \bar{\phi})\right] \] (9)

in the helicity basis. So the full correlation is determined by the angles of the charge leptons (or down type quarks) wrt the spin axis and momentum conservation. The term proportional to \(\cos(\phi - \bar{\phi})\) is the interference terms between the \(t_L \bar{t}_L\) & \(t_R \bar{t}_R\) \((t_U \bar{t}_D \& t_D \bar{t}_U)\) for like helicity gluon fusion (unlike helicity gluon fusion or quark-antiquark annihilation). Eqn (5), (6) and (7) can be easily derived from Eqn (B1), (47) and (48) of ref. [4] respectively.

For the uncorrelated case, just set \(c_\chi \bar{c}_\chi\) and \(\cos(\phi \pm \bar{\phi})\) equal to their uncorrelated average values, zero! The expressions for arbitrary spin axis can be found in the slides presented at the workshop.
gg → t\bar{t} Spin Structure

Like-helicity gluons dominate when $\beta \gamma \sin \theta < 1$:

maximum correlation in helicity basis (for all β) for these events.

\begin{align*}
(1 + \beta)^2 : (1 - \beta)^2
\end{align*}

For $q_L g_L → t\bar{t}$, flip the spins on both the gluons and the top quarks.

Figure 3. Spin correlations for the production of top quark pairs via like helicity gluon fusion.

6. **Observables**

6.1. The Effects of Spin Correlations

The dominant effect of the spin correlations is to correlated the angles of the decay products between the top quark and antitop quark, i.e. between χ_i and $\bar{\chi}_i$. This correlation is given by

\begin{align*}
\frac{1}{\sigma_T} \frac{d^2\sigma}{d\cos \chi_i d\cos \bar{\chi}_i} = \frac{1}{4}(1 + C_{t\bar{t}} \alpha_i \alpha_{\bar{i}} \cos \chi_i \cos \bar{\chi}_i)
\end{align*}

where

\begin{align*}
C_{t\bar{t}} = \frac{\sigma_{\uparrow\uparrow} + \sigma_{\downarrow\downarrow} - \sigma_{\uparrow\downarrow} - \sigma_{\downarrow\uparrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\downarrow\downarrow} + \sigma_{\uparrow\downarrow} + \sigma_{\downarrow\uparrow}} = \begin{cases}
-0.456 \quad (-0.389) \quad \text{Helicity at Tevatron} \\
+0.910 \quad (+0.806) \quad \text{Beamline at Tevatron} \\
+0.918 \quad (+0.913) \quad \text{Off - Diagonal at Tevatron} \\
+0.305 \quad (+0.311) \quad \text{Helicity at LHC(14 TeV)},
\end{cases}
\end{align*}

at LO with NLO in parenthesis, see [5]. At the LHC, the coefficient $C_{t\bar{t}}$ in the off-diagonal and beamline bases is small, < 0.10.

6.2. Azimuthal Correlations

However, there are interference effects between the various spin components of the top-antitop system, e.g. between $t_L \bar{t}_L$ & $t_R \bar{t}_R$ for like helicity gluon fusion, which leads to azimuthal correlations between the decay products,

\begin{align*}
\frac{1}{\sigma_T} \frac{d\sigma}{d\Delta \phi} = \frac{1}{2}(1 - D \cos \Delta \phi)
\end{align*}

where in the ZM frame, the azimuthal correlations along the production axis are given by

\begin{align*}
D = \begin{cases}
+0.132 \quad \text{Tevatron} \\
-0.353 \quad \text{LHC(14 TeV)}
\end{cases}
\end{align*}

from [6]. The azimuthal correlations about the beam axis in the Laboratory frame for the dilepton events are discussed in [4], see Fig. 4. These azimuthal correlations are easier to
Di-lepton azimuthal opening angle ($\Delta \phi$ distribution)

Restrict $\beta \gamma \sin \theta$ to small values (like-helicity gluons) by limiting $m_t \bar{m}_t$.

Advantage: $\Delta \phi$ invariant under longitudinal boosts: measure in lab frame!

Disadvantage: Two ν’s make $m_t \bar{m}_t$ unobservable.

![Figure 4. The $\Delta \phi$ distribution of di-lepton events assuming the true $m_t \bar{m}_t < 400$ GeV.](image)

Figure 4. The $\Delta \phi$ distribution of di-lepton events assuming the true $m_t \bar{m}_t < 400$ GeV.

observe than the other angular correlations. In fact, they have been observed in the last year by both the Atlas [7] and CMS [8] experiments at the LHC. See also relevant talks by ATLAS and CMS in these proceedings.

Acknowledgments

Fermilab is operated by the Fermi Research Alliance under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy. I wish to thank the organizers of Top 2012 for a wonderful, stimulating workshop near the beautiful historic city of Winchester, England.

References

[8] [CMS Collaboration], CMS-PAS-TOP-12-004.