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1. Introduction and methods

Recent years have shown remarkable progress in lattice simulations of quantum chromody-
namics (QCD). Dynamic simulations with multiple flavors of light quarks are now routinely per-
formed and there are first calculations at physical pion masses. Properties of ground states can
now, in many cases, be determined with small statistical errors and with fully controlled system-
atic uncertainties. At the same time new computational methods for smeared interpolating fields
[1, 2] and the use of the variational method [3 – 5] enable extraction of excited energy levels both
in an unprecedented number and with unprecedented statistical accuracy [6 – 8]. However, most
hadronic excitations are resonances and can decay strongly. Therefore the interpretation of the re-
sulting data is straightforward only in the limit of very narrow states, which is often not the case in
nature.

hadron Γ [MeV] hadron Γ [MeV] hadron Γ [MeV]

b1(1235) 142±9 K⋆(1410) 232±21 D⋆
0(2400) 267±40

a1(1260) 250−600 K⋆
0(1430) 270±80 D1(2430) 384±130

110

Table 1: Examples of light, strange-light and charm-light meson resonances. Values from the PDG compi-
lation [9].

Indeed, taking a look at the meson tables in the Particle DataGroup (PDG) compilation [9],
resonances with a substantial hadronic width are more the norm than the exception. Table 1 lists
examples for light, strange-light and charm-light mesons and their PDG values for the resonance
parameters. As can be seen, there are many examples of resonances with sizable total widths,
which should not be neglected. In these proceedings, progress in extracting resonance properties
from lattice simulations is reviewed with an emphasis on recent simulations data rather than the
associated theory.

In experiment, resonance properties are extracted using partial wave analysis. For the relatively
simple case of elastic scattering, the scattering amplitudesal is related to the scattering phase shift
δl for the l-th partial wave:

al = sinδle
iδl =

e2iδl −1
2i

. (1.1)

Near a single relativistic Breit-Wigner shaped resonance,one can then parametrize the scattering
amplitudeal in terms of a resonance positionsR = m2

R and decay widthΓ

al =
−√

sΓ(s)
s− sR + i

√
sΓ(s)

. (1.2)

In a lattice QCD calculation in Euclidean space there is no direct access to the scattering
amplitudes [10]. However, as has been pointed out by Lüscher[11 – 13], the phase shift of the
continuum scattering amplitude in the elastic region can bedetermined from the discrete spectrum
in a finite box.
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Figure 1: Illustration of hadrons with momentap1 andp2 in a finite volume. For a description please refer
to the text. Figure taken from [14].

1.1 The Lüscher method

As mentioned, there is a relation between the phase shift of the continuum scattering amplitude
in the elastic region and the discrete spectrum in finite volume [11 – 13]. Figure 1 illustrates the
idea. In a large box with spatial volumeL3 andL ≫ 1 fm (depicted on the left-hand side) the energy
of the two particle system is to a good approximation given by

E = E(p1)+ E(p2) , (1.3)

whereE(p) =
√

(m2 + p2) and~p =~n(2π/L) in a relativistic simulation with periodic boundary
conditions in space. In a small box (depicted on the right-hand side) withL ≃ 2. . .5 fm the en-
ergy of the interacting system is noticeably shifted with regard to the non-interacting energy level.
This energy shift is related by Lüscher’s formula to the elastic scattering phase-shift. Extracting
resonance parameters from a lattice simulation using this relation therefore involves the following
basic steps:

(1) Extract the energy levelsEn(L) in a finite box for one or more box sizesL.

(2) The Lüscher formula relates this spectrum to the phase shift of the continuum scattering
amplitude.

(3) Given the relevant phase shift data one can extract the resonance massmR and the widthΓR

or the couplingg with some degree of modeling/approximation.

To illustrate the finite volume spectrum, the few lowest energy levels for aρ-meson-like sys-
tem are plotted in Figure 2. For a small coupling the typical avoided level crossing behavior is
observed (left panel). With an increased couplingg the energy shifts with respect to the non-
interacting energy levels get more pronounced and the avoided level crossing gets more and more
washed out (middle panel). The effect of increasing the massat fixed coupling is also illustrated
(right panel). From these illustrations it is clear that data for just a couple of energy levels in a
single volume is of limited use. For a given lattice ensemblemore data can be obtained by also
considering moving frames.

While the original relation [11 – 13] was limited to rest-frame calculation in multiple spatial
volumesL3, the corresponding Lüscher formulae and interpolator constructions for equal mass
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Figure 2: Illustration of levels in a finite volumeL3 × T for a ρ-like resonance. The resonance massm
in units of the pion mass and the couplingg are varied (assuming only elastic scattering and using the
appropriate Lüscher formula). The blue levels show the non-interacting levels and the blue dotted line
indicates the resonance mass.

hadronsmh1 = mh2 in moving frames [15 – 18] have been known for a while. During the last year
the corresponding expressions for unequal mass hadronsmh1 6= mh2 in moving frames have been
derived [19 – 22]. It turns out that for the case of unequal mass hadrons, even and odd partial waves
mix, creating an additional complication for theab initio determination of phase shiftsδl from
lattice data.

In addition to the above, there are some more recent ideas to extract resonances from lattice
simulations [23, 24]. One of these, the so-called histogrammethod [23] is illustrated briefly in the
next section. For a description of the so-called correlatormethod please refer to [24] directly.

2. Methods in a toy model study

In a recent publication, Giudice, McManus and Peardon [25] tested both the Lüscher method
and the histogram method [23] in the context of the O(4) non-linear sigma model, where precise
data can be obtained: the authors of [25] managed to accurately extract six energy levels for a
range ofL/a = 8,9, . . . ,19. For both methods, data was extracted in the elastic region (where the
methods should be applicable) and in the inelastic region.

The histogram method [23] can be summarized by the followingprocedure:

(1) Determine the lowest few energy levels and interpolate to obtain a continuous functionEn(L)

in the interval[L0,LM].

(2) Slice this interval[L0,LM] into M parts of length∆L = LM−L0
M .

(3) Slice the energy interval[Emin,Emax] into bins of length∆E .

(4) Make a histogram and normalize to get the distributionW (E) or correspondinglyW (p).

(5) Subtract the non-interacting backgroundW0(E) (or W0(p)).

(6) In [23] it is shown that close to a resonance one gets a Breit-Wigner shape

W (p)−W0(p) ∝
1

[E(p)2−M2
r ]2 + M2

r Γ2 , W (p) = W (E)
∂E
∂ p

. (2.1)
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Figure 3: Probability distributionW −W0 for a narrow resonance with different strategies for the background
subtraction. Figures taken from [25].

Figure 4: Final results for a resonance in the inelastic regime. In this case, the relation to resonance param-
eters is unclear. Figure taken from [25].

For further details please refer to [23, 25]. In practice, itturns out that the successful applica-
tion of this procedure hinges on details of how to deal with the necessary background subtraction
(step (5)). This behavior is illustrated in Figure 3, where anarrow resonance was investigated with
different strategies for the background subtraction. The figure also illustrates that, in the context
of this toy model, a narrow resonance can be extracted reliably once the background has been sub-
tracted correctly. Unfortunately this was only achieved after omitting some of the data from the
analysis.

The authors also apply the histogram method in the inelasticcase, where there is no theoret-
ical support for its applicability. Figure 4 shows that nevertheless some sort of resonance shape
emerges.

Let us now turn to the Lüscher method [11 – 13] described in theprevious section. The left and
center panels in Figure 5 show the results for a narrow and wide resonance. In both cases a clear
resonance shape can be identified, although the resonance parameters can be determined much
more accurately for a narrow resonance. In addition the authors also investigated what happens
in the toy model when the method is applied above inelastic threshold. This can be seen in the
right panel of Figure 5, where a narrow resonance is seen below threshold and the data becomes
nonsensical above inelastic threshold. This illustrates that care needs to be taken when using the
Lüscher method for the extraction of resonance parameters.

To compare how well the two methods fare, Table 2 lists the resonance parameters obtained
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Figure 5: Phase shift data obtained from the Lüscher method.The blue line in the right plot shows the
position of the inelastic threshold. For a description please refer to the text. Figures taken from [25].

Lüscher histogram
parameter set aMσ aΓσ aMσ aΓσ

set A 1.35(2) 0.115(8) 1.33(5) 0.10(5)
set B 2.03(2) 0.35(2) 2.01(2) 0.35(10)
set C 3.1(7) 1.2(5) - -

Table 2: Comparison of resonance massM and widthΓ obtained with the Lüscher and histogram methods
for narrow (set A), medium (set B) and broad (set C) resonances [25].

with the help of the two methods. While the results from the two methods agree within their
statistical uncertainty, the Lüscher method leads to smaller statistical uncertainties and can be used
to successfully extract broader resonances.

3. QCD resonances

Let us now turn our attention to the calculation of hadron resonances in QCD. These calcu-
lations are computationally demanding and very challenging from a technical point of view. It is
observed in many calculations that ¯qq operators conventionally used for the study of hadron ex-
citations couple very weakly to multi-hadron states [26 – 28, 6]. A similar observation was made
in string breaking studies [29, 30]. This necessitates the inclusion of hadron-hadron interpolators.
Figure 6 shows an example of quark diagrams for a typical meson-meson channel. In particular
some of the quark lines contain backtracking quark lines which are very expensive to calculate as
they require the use of all-to-all propagator techniques. Aparticularly promising technique is the
distillation method [1, 2].

3.1 Theρ meson: A benchmark calculation

In experiment, theρ meson is seen as a p-wave resonance inππ-scattering. In many ways the
ρ meson is an ideal candidate for a benchmark calculation. While the physicalρ can also decay
into four pions, there is a large span of (unphysical) pion masses where the decay into two pions
is the only possible decay. Furthermore, the resonance is ofmedium width (much smaller than
its mass) and well isolated from other resonances. The signal in this channel is of a good quality
even with a moderate number of gauge configurations. Naturally this was the first QCD resonance

6



Review of lattice studies of resonances Daniel Mohler

Figure 6: Example of the Wick contractions arising in a meson-meson channel with ¯qq and meson-meson
interpolator basis.

where Lüscher’s method has been applied to extract the mass and width of the state [31]. In the
meantime several groups have successfully demonstrated the feasibility of determining resonance
parameters of theρ meson in a QCD calculation [32 – 37]. In this section the current state of affairs
is illustrated.

Figure 7 shows the results obtained by the ETM Collaboration[32]. They use four ensembles
with the same lattice spacing and different light valence quarks and three momentum frames. This
enables them to extract phase shifts for each ensemble and toperform an extrapolation to the chiral
limit (assuming the couplinggρππ to be mass independent), while all of their data is extractedin
the elastic regime where the framework is applicable.

Figure 8 shows similar results from the PACS-CS collaboration using two ensembles and three
momentum frames [33]. Again, all data has been obtained in the elastic region.

Figure 9 shows results by Langet al. [34] from a single ensemble, demonstrating that a very
good statistical accuracy can be achieved using the distillation technique [1, 2]. All these results
were presented in parallel talks at Lattice 2011.

More recently, Pelissier and Alexandru [35] presented results from a dynamical simulation
on asymmetric lattices [38, 39], which followed an exploratory quenched simulation [40]. They
generated three ensembles withN f = 2 nHYP-smeared clover fermions at a lattice spacing of

Figure 7: Phase shift results for theρ meson resonance calculated by the ETM Collaboration [32]. The four
panels show results for gauge ensembles with four differentpion massesmπ ≈ 290,330,420,480 MeV.
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Figure 8: Phase shift results for theρ meson resonance calculated by the PACS-CS collaboration [33]. The
pion masses used in the simulation are indicated in the panels.
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Figure 9: Phase shift results for theρ meson from [34].

a = 0.1225(7)fm and with a pion mass ofmπ = 304(2)MeV. Their lattice sizes are 242×Lz ×48
with Lz = 24,32,48. To extract the two lowest states they use a variational basis with one ¯qq and
one meson-meson interpolating field. These results are plotted in Figure 10.

To compare all results for the resonance massmR and the couplinggρππ it is best to plot the
results in dimensionless units by multiplying the masses with the Sommer scale [41]r0. To this
end the values forr0/a for each ensemble are used. The results are shown in Figure 11and the
errors plotted encompass the statistical uncertainty and the uncertainty in the Sommer scale. Plotted
in this scale-independent way all available results agree with each other fairly well, although the
values obtained by Langet al. for both the mass and the coupling are somewhat lower than the
rest. This highlights the need to address various systematic uncertainties in more detail in future
simulations.

In this regard, it is instructive to take a look at the interpolator dependence of the results from
[34] which are shown in Figure 12. On the left side of the figurethe energy levels resulting from
several choices including both pion-pion and ¯qq interpolating fields are shown. Here, a basis of
just two interpolating fields turns out to give rather unreliable results when compared to several
choices of a bigger basis. Notice that all fits had an acceptable χ2/d.o. f .. On the right side of the
plot choices of basis without a pion-pion interpolator are shown. In all cases the errors are larger
than for the mixed basis, especially for the first excitation. In the case of a moving frame with

8



Review of lattice studies of resonances Daniel Mohler

Figure 10: Phase shift results from [35], where asymmetric lattices were used to get phase shift points in
the whole resonance region.
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Figure 11: Comparison of recent lattice results for theρ meson resonance mass (right panel) and coupling
(left panel).

P = (1,0,0) the results are even inconsistent for a small basis and only become consistent with
the mixed basis when the basis is enlarged. It should therefore be stressed that a suitable basis is
crucial to extract physical results.

3.2 Recent results for other QCD resonances

While the extraction of theρ resonance is a great proof of principle that QCD calculations of
resonance properties are feasible, this can only be the start. In this section recent results in other
channels are reviewed.

3.2.1 Meson-meson scattering in theKπ, Dπ and D⋆π channels

Recently, first steps towards the determination of phase shifts and an extraction of resonance
parameters have been taken for the case of meson-meson scattering in theKπ, Dπ andD⋆π chan-

N3
L ×NT κl β a[fm] L[fm] #configs mπ [MeV] mK [MeV]

163×32 0.1283 7.1 0.1239(13) 1.98 280/279 266(3)(3) 552(2)(6)

Table 3: Parameters for the nHYP-smeared Wilson-clover lattices [42, 43] used in [34, 44, 45].
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Figure 13: Phase shift results forKπscattering in s-wave and p-wave for isospin1
2 and 3

2.

nels [44, 45]. For both of these studies configurations withN f = 2 flavors of nHYP smeared
Wilson-clover quarks [42, 43] were used. Table 3 shows the relevant parameters. The distillation
method [1, 2] was used to construct an interpolator basis of several ¯qq and meson-meson interpola-
tors. In both cases only the frame with total momentum zero was considered, which does not suffer
from mixing of even and odd partial waves [19 – 22].

Figure 13 shows phase shift results fromKπ scattering for isospin1
2 and 3

2, in s-wave and
p-wave. To illustrate the qualitative agreement, data extracted from experiment [46, 47] is shown
in black, blue and green while the lattice data is shown in red. For more information and some
cautionary remarks please refer to [44].

Figure 14 shows recent lattice results [48 – 50, 44] for the s-wave scattering lenghts in units of
the reduced massµkπ

1 compared to results from Chiral Perturbation Theory (χPT) [51] or from a
Roy-Steiner analysis [52].

A similar approach has been used to investigateDπ andD⋆π scattering [45] where the charm
quarks are treated with the Fermilab method [53]. Figure 15 shows p⋆

√
s cotδl for the D⋆

0 andD1

1In leading orderχPT this ratio does not depend onmπ .
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more detail please refer to the text.
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Figure 15: Phase shift results for theDπ andD⋆π channels. To extract the data forD⋆π scattering the heavy
quark limit has to be assumed.

channels, since the combinationp∗√
s cotδl = 1

g2 (s−m2
r ) is linear in case of a Breit-Winger resonance.

The left panel shows results in theJP = 0+ channel where theD⋆
0(2400) resonance is observed in

experiment. Three levels have been extracted.

In theJP = 1+ channel there are two resonancesD1(2420) andD1(2430) and without further
assumptions the data is insufficient to extract resonance parameters. In the heavy quark limit, the
narrowD1(2420) is expected to exclusively decay in d-wave, while the broadD1(2430) will decay
exclusively in s-wave. In this limit, one then obtains the results displayed in the right panel of
Figure 15, where the level associated with theD1(2420) has been omitted.

D⋆
0(2400) D1(2430)

glat [GeV] 2.55±0.21 2.01±0.15
gexp [GeV] ≤ 1.92±0.14 ≤ 2.50±0.40

Table 4: Resonance parameters for theD∗
0(2400) and for theD1(2430) extracted in [45]. Experiment values

are quoted as upper limits to reflect that only the total widthis known.

Assuming a Breit-Wigner shape for both theD∗
0(2400) and for theD1(2430), the resonance

parameters displayed in Table 4 are obtained. In addition tothe channels treated as resonances,
energy levels were also extracted in other channels. The resulting spectrum is shown in Figure 16.
For further information including a detailed description of assumptions please refer to [45].

11



Review of lattice studies of resonances Daniel Mohler

D D* D
0
* D

1
D

1 D
2
* D

2

-100

0

100

200

300

400

500

600

700

800

900

1000

E
ne

rg
y 

di
ffe

re
nc

e 
[M

eV
]

naive energy levels
resonances

PDG values
new BaBar states

J
 P

  :     0
 - 

       1
 -       

                   0
+ 

        1
 + 

         1
 +  

       2
 + 

          2
 - 

Figure 16: Energy differences∆E = E− 1
4(MD +3MD∗) for D meson states on the lattice and in experiment.

Likely quantum numbers have been assigned to some of the states seen by BaBar [54]. For more information
please refer to the text and to [45].

3.2.2 κ and σ resonances from staggered simulations

There are two recent papers [55, 56] aimed at the extraction of the κ andσ resonances using
staggered quarks. In both cases the asqtad medium-coarse ensemble of size 163×48 with mu/d =

0.2ms and a ≈ 0.15fm generated by the MILC collaboration has been used. As a basis one ¯qq
and one meson-meson interpolator, picking the goldstone pion/kaonπ5/K5 is used. Extracting two
energy levels and assuming a Breit-Wigner shape the resonance parameters in Table 5 are extracted.

I = 1
2 πK I = 0 ππ

gκπK = 4.54(76)GeV gσππ = 2.69(44)GeV
MR = 0.779(27)a MR = 0.691(37)a

Table 5: Resonance parameters attributed to theκ andσ resonances [55, 56]. For cautionary remarks please
refer to the text.

It should however be pointed out that the ¯qq interpolators inevitably couple to all staggered
taste combinations [57, 58]. Therefore, the variational analysis may render other taste combinations
Kbπb andπbπb as excited states. Moreover the experimental data already shown in Figure 13 for
theκ channel makes the assumption of a Breit-Wigner shape questionable.

3.2.3 ∆(1232) ↔ Nπ by the QCDSF collaboration

The QCDSF collaboration is investigating nucleon-pion scattering in the∆(1232) channel
[59] using 323 × T , 403 × T and 483 × T lattices with a pion massmπ ≈ 250 MeV. Preliminary
results for the phase shift are plotted in Figure 17. For the delta-pion-nucleon coupling they obtain
g2

∆πN
4π = 11±4

3 which should be compared to the value
g2

∆πN,exp

4π ≈ 14.4 extracted from experiment.

3.2.4 Baryon interactions in a matrix Hamiltonian model

In Lüscher’s method finite volume errors should be exponentially suppressed as a function of
the lattice sizeL. This assumes that hadrons at the boundary of the box are in the asymptotic region,
otherwise the error may scale asL−1. In [60] this issue is investigated in a matrix Hamiltonian
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Figure 17: Preliminary results from a simulation of nucleon-pion scattering by the QCDSF collaboration
[59]. The plot shows data in the vicinity of the∆(1232) resonance.

Figure 18: Left panel: Estimates of the phase shift employing Lüscher’s formula to the∆Nπ model for
different lattice extentL; Right panel: The resonance energy from the Lüscher method compared to a direct
calculation. Plots taken from [60].

model for∆ ↔ Nπ. Figure 18 shows some of the results. In the left panel results from the Lüscher
method using a different spatial extent are plotted. In the right panel the results from the Lüscher
method are compared to the direct calculation. While both methods agree for large volumes, it is
clear that large finite volume effects are present in this case. For further discussion please refer to
[60].

4. Beyond QCD

As already demonstrated in the case of toy models, nonperturbative methods for the extraction
of resonances in a lattice simulation can also be applied to problems beyond QCD. As an example,
the Lüscher method has been used recently in a simulation of the pure Higgs-Yukawa sector of
the electroweak standard model [61]. The model consist of a complex scalar Higgs doublet and
a mass-degenerate fermion doublet (representing top and bottom quarks) coupled in a chirally
invariant way. In this case properties of the Higgs resonance can be extracted.

Figure 19 shows the results for three different quartic couplings λ̂ . While this model is quite
distinct from the situation in nature, is is very interesting to observe that the width of the Higgs
stays small even at large coupling.
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Figure 19: Elastic scattering phases obtained for three different quartic couplingsλ̂ within a chiral Higgs-
Yukawa model. Plots taken from [61].

5. Summary & Outlook

While the field is progressing fast and the last year has seen first QCD resonance studies in
channels other than theρ meson channel, lattice studies of (QCD) resonances are still in their
infancy. Part of the reason is that the standard Lüscher method is limited to the case of elastic
scattering. While there has been some progress recently [62– 66] most ideas to go beyond the case
of elastic scattering require a certain degree of modeling.

To illustrate the severity of this limitation it is instructive to appeal to experiment once more.
Even in the low-lying meson spectrum, there are several interesting cases where multiple thresholds
are expected to be important. Two prominent examples would be thea0(980) which goes both to
ηπ andK̄K and theK1(1270) where the branching ratios toKρ , K⋆(872)π, Kω andK⋆

0(1430)π
are all known to be sizable.

Last but not least there are also many interesting states, especially the so-called X, Y and Z
states in the charmonium spectrum, where a first principle calculation from lattice QCD is needed,
but where most interesting states are above multiparticle thresholds. In short, there is much progress
to be made for a comprehensive description of QCD resonances, and beyond.
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