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We report on the status of our kaon semileptonic form factor calculations using the highly-

improved staggered quark (HISQ) formulation to simulate the valence fermions. We present

results for the form factorf Kπ
+ (0) on the asqtadNf = 2+ 1 MILC configurations, discuss the

chiral-continuum extrapolation, and give a preliminary estimate of the total error. We also present

a more preliminary set of results for the same form factor but with the sea quarks also simulated

with the HISQ action; these results include data at the physical light quark masses. The improve-

ments that we expect to achieve with the use of the HISQ configurations and simulations at the

physical quark masses are briefly discussed.
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1. Introduction and methodology

The study of exclusive semileptonic decays ofD andK mesons provides a way of extracting
the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements|Vcd(cs)| and|Vus| with errors competi-
tive with those obtained using other methods such as leptonic decays, neutrino-antineutrino inter-
actions, orτ decays. Comparison of the values obtained with different methods could reveal new
physics (NP) effects, and comparison of the shape of the formfactors describing those exclusive
decays with experiment can provide a check of the lattice methodology employed.

Our program includes analyzingK → π lν andD → K(π)lν semileptonic decays at zero as
well as non-zero momentum transfer. In these proceedings wefocus on the status of theK → π lν
analysis at zero momentum transfer, which one can combine with experimental data to extract the
CKM matrix element|Vus|. The limiting error currently comes from the lattice determination of
the form factors defined in (1.1) [1]. A precise determination of |Vus| provides stringent tests of
first-row unitarity and gives information about the scale ofnew physics [2].

The theory input needed to extract the CKM matrix elements from exclusive semileptonic
widths are form factors parametrizing the corresponding hadronic matrix elements:

〈P2|V
µ |P1〉= f P1P2

+ (q2)(pP1 + pP2 −∆)µ + f P1P2
0 (q2)∆µ , (1.1)

where∆µ = (m2
P1
−m2

P2
)qµ/q2, q = pP1 − pP2, andV is the appropriate flavor-changing vector

current. We obtain the needed form factorf Kπ
+ (0) using the relationf Kπ

0 (q2) = ms−ml
m2

K−m2
π
〈π|S|K〉(q2),

and the fact thatf+(0) = f0(0) due to the kinematic constraint. This method [3] allows us to
eliminate the need for a renormalization factor and to extract the form factor from three-point
correlation functions with insertion of a scalar current instead of a vector current.

The momentum transfer of the three-point functions is tunedto zero or very close to zero
using twisted boundary conditions to inject external momentum [4]. The general structure of the
correlation functions is given in Fig. 1. We consider eithera movingπ (θ0 = θ1 = 0 andθ2 6= 0) or
a movingK (θ0 = θ2 = 0 andθ1 6= 0), for K → π lν .

2. HISQ valence fermions and asqtad Nf = 2+1 configurations

For the first analysis we use the asqtadNf = 2+1 MILC configurations and the HISQ action
to simulate the valence quarks. The strange valence-quark mass is fixed to its physical value and

the light valence-quark mass is fixed so
mval

l (HISQ)

mphys
s (HISQ)

=
msea

l (asqtad)

mphys
s (asqtad)

. The parameters of the ensembles

included in this calculation and the details of the simulations we perform are collected in Table 1.
In order to extract the value of the form factorf Kπ

+ (0) = f Kπ
0 (0), we perform a simultaneous fit

of the relevant three- and two-point functions. The correlator fits and the multiple checks performed
on their stability under the change of parameters, time range, number of exponentials in the fitting
functions, and correlators included, was described in lastyear’s conference proceedings [5]. The

∗Speaker.
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Figure 1: Structure of the 3-point functions
needed to calculatef DK(π)

0 [ f Kπ
0 ]. Light quark

propagators are generated attsource with ran-
dom wall sources. An extended charm [strange]
propagator is generated atT + tsource.

≈ a (fm) aml/amh Ncon f Nsources NT

0.12 0.020/0.050 2052 4 5
0.010/0.050 2243 4 8
0.07/0.050 2109 4 5
0.05/0.050 2098 8 5

0.09 0.0124/0.031 1996 4 5
0.0062/0.031 1946 4 5

Table 1: Aqstad nsembles and simulation details.amh is
the nominal strange-quark mass in the sea sector,Nsources

is the number of time sources, andNT the number of sink-
source separations.

conclusion is that we find it very difficult to make changes in the fitting procedure that change the
fit results outside the one sigma range. The only change with respect to last year’s fits is that in our
final correlator fits we are including functions with the momentum injected in both theπ and in the
K. The results from these combined fits for the different ensembles are shown in Fig. 2. Statistical
errors are very small,∼ 0.1−0.15%.

2.1 Chiral-continuum extrapolations

We need to extrapolate our results to the continuum limit andthe physical light-quark masses,
and also adjust for the mistuning of the strange sea-quark mass in the asqtadNf = 2+1 MILC con-
figurations. Our plan is to perform these extrapolations using partially quenched staggered chiral
perturbation theory (SχPT) at NLO plus regular continuumχPT at NNLO. Addressing staggered
effects at NLO should be enough to achieve the sub-percent precision that we target.

In the continuum, the form factor is given byf Kπ
+ (0) = 1+ f2+ f4+ f6+ . . . , where, according

to the Ademollo-Gatto (AG) theorem, the chiral correctionsf2, f4, f6 ... go to zero in theSU(3)
limit as (m2

K −m2
π)

2. This means that at NLO there are no free low-energy constants andf2 is fixed
in terms of experimental quantities. At finite lattice spacing, however, we would have violations of
the AG theorem due to discretization effects in the continuum dispersion relation needed to derive
the relation betweenf Kπ

0 (0) and the correlation functions we are generating.

The general structure of the fitting function we plan to use for our chiral fits is thus

f Kπ
+ (0) = 1+ f PQ,stag.

2 (a) + C(a)
4

(

a
r1

)2

+ f cont.
4 (logs)+ f cont.

4 (Li)

+r4
1 (m

2
π −m2

K)
2

[

C′(1)
6 +C(a)

6

(

a
r1

)2
]

, (2.1)

where the constantsC(a)
4 , C(a)

6 , andC′(1)
6 ∝ C12+C34− L2

5 are free parameters to be fixed by the
chiral fits. TheL′

isare the usualO(p4) low-energy constants (LEC’s), and theCi j areO(p6) LEC’s
defined in [7]. The functionf PQ,stag.

2 (a) is the NLO partially quenched SχPT expression, which
incorporates the dominant lattice artifacts from taste breaking. To a very good approximation, there
are no free parameters in that function. The taste-splitting and the taste-violating hairpin parameters
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are already available for both the valence and the sea quarksfrom lattice calculations for asqtad
or HISQ fermions, respectively. We are also in the process ofcalculating the taste-splittings for
the mixed mesons, those made of one sea fermion and one valence fermion. The only parameter
that we do not get from other calculations is an extra taste-violating hairpin parameter that appears
due to the fact that we have a mixed action. We need to leave this quantity as a free parameter of
the fit, although we expect its impact to be small. We take the NNLO contribution, f4, from the
calculation in [6]. Finally, we try to include terms proportional toa2 with free parametersC(a)

4 (to

take into account the violations of the AG theorem at finite lattice spacing) andC(a)
6 (to account for

the residuala2 dependence at higher orders).
Since we have not completely checked the NLO partially quenched SχPT calculation, here

we use a simplified version without hairpin terms. We also approximate the taste-splittings of the
mixed action mesons by the average of the sea and the valence values,∆mix = (∆sea(asqtad) +
∆valence(HISQ))/2 (we checked that using the preliminary values for the correct splitting does not
change the extrapolatedf Kπ

+ by more than 0.1%). With these simplifications, we tried several
variations of the fitting function in (2.1): fixing the LEC’sLi ’s to their value from the global fit
in [8], fixing them to the value from the fits in [9], or leaving theLi ’s as free parameters in the fit
with prior central values equal to the results in [8] and varying the prior widths from the errors in [8]
to an order of magnitude larger; including only the term proportional toC(a)

4 , the one proportional to

C(a)
6 , or both, etc. The extrapolated value forf Kπ

+ (0) has statistical errors between 0.2% and 0.3%
in all cases and the different results agree with each other within one statisticalσ . The violations
of the AG theorem are around 0.32−0.15% fora≈ 0.12 fm and 0.15−0.1% for a≈ 0.09 fm. A
typical example of the fits we have performed is shown in the left side of Fig. 2.

In order to check the impact of the choice of fitting function in the extrapolation, we have
also done a number of fits replacing the NNLO continuumχPT functions by a NNLO analytical
parametrization

f Kπ
+ (0) = 1+ f PQ,stag.

2 +C(a)
4

(

a
r1

)2

+ r4
1(m

2
π −m2

K)
2
[

C(1)
6 (r1mπ)

2+C(2)
6 (r1mK)

2

+ C(3)
6 (r1mπ)

2 ln(m2
π/µ2)+C(4)

6 (r1mπ)
4+C(a)

6

(

a
r1

)2
]

, (2.2)

where f PQ,stag.
2 is the same partially quenched NLO SχPT expression as in (2.1) and theC(a)

4 ,C(a)
6 ,

andC(i)
6 with i = 1−4 are the free parameters in the fit. Again, we tried variations of the functional

form in (2.2), turning on and off different NNLO anda2 terms, and parametrizing them in different
ways. All the fitting functions we tried in this category gaveresults within one statisticalσ of each
other. In the right-hand side of Fig. 2 we plot an example of these fits. Both methods to describe
NNLO contributions give results that, again, agree within one statisticalσ .

3. Preliminary results with HISQ valence quarks and HISQ Nf = 2+1+1
configurations

The second stage of our semileptonic decay program is the study of decays withq2 = 0 for
D and K mesons using HISQ for the valence and the sea quarks,i.e., simulating on the HISQ
Nf = 2+1+1 MILC configurations.
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q2 =
0)

continuum NLO
continuum NNLO (fit)
coarse NNLO (fit)
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coarse (a = 0.12 fm)
fine (a = 0.09 fm)

chi^2/dof=0.75  p=0.61

f
+
(0) = 0.9701(19)    bootstrap error (500 boots.)

Figure 2: Left-hand plot: example of chiral-continuum extrapolations using the fit function in Eq. (2.1)
with C(a)

6 = 0 and freeLi ’s and priors equal to the results in Ref. [8]. Right-hand side: example using the fit

function in Eq. (2.2) withC(a)
6 =C(3)

6 =C(4)
6 = 0. Errors are statistical only, from 500 bootstrap ensembles.

The setup and methodology of the calculation is common to theasqtadNf = 2+1 calculation
and is described in Sec. 1. Aside from the reduction in discretization errors provided by having
HISQ sea quarks, the main improvement of this calculation respect to the asqtadNf = 2+1 one is
that we will include ensembles with physical light-quark masses. The parameters of the ensembles
we plan to include in this analysis, as well as the status of the runs, are shown in Table 2. The plan
is to have around 1000 configurations per ensemble and 4-5 different source-sink separations per
ensemble at three different values of the lattice spacing. For the key ensembles we are generating
data for 8 time sources, and, for the remaining ensembles, 4 time sources. For the light and strange
valence-quark masses we will use the physical values. For the charm-quark masses, we will simu-
late at a value equal to the sea charm-quark mass in addition to the current estimate of the physical
one, to allow for later corrections ofamphys

c .

≈ a (fm) aml/amh amc Volume Ncon f available Nsources NT % run completed

0.15 0.035 0.831 323×48 1020 8 5 100

0.12 0.200 0.635 243×64 1053 4 4 100
0.100 0.628 323×64 1020 4 4 0
0.035 0.628 483×64 460 8 4 50

0.09 0.200 0.440 323×96 1011 4 4 0
0.100 0.430 483×96 1000 4 4 0
0.035 0.432 643×96 497 8 4 0

Table 2: HISQ ensembles and simulation details.Nsourcesis the number of time sources, andNT the number
of sink-source separations for which we have generated data. The number of configurations,Ncon f available
and the status of the runs (last column) correspond to July 2012.

In these runs we generate the correlation functions needed for the calculation of the form
factor at zero momentum transfer for bothK → π lν andD → K(π)lν . The energies of the pions

5



K semileptonic decay form factors with HISQ valence quarks E. Gámiz

0 0.5 1 1.5 2

|r
1
p

P
|
2

0.96

0.98

1

1.02

1.04

E
P

2 /(
|p

P
|2 +

m
P

2 )

0.12 fm; m
l
=0.2m

s

0.15 fm physical masses
0.12 fm physical masses
0.12 fm; m

l
=0.1m

s

Figure 3: Deviation of our data from the continuum
dispersion relation prediction.

0 0.5 1 1.5

(r
1
mπ)2

0.97

0.98

0.99

1

1.01

f 0 (
q2 =

0)

continuum NLO
continuum NNLO (fit, asqtad data only)
a = 0.12 fm (N

f
 = 2+1 asqtad configurations)

a = 0.09 fm (N
f
 = 2+1 asqtad configurations)

a = 0.12 fm (N
f
 = 2+1+1 HISQ configurations)

a = 0.15 fm (N
f
 = 2+1+1 HISQ configurations)

Extrapolated value from NNLO asqtad fit

Preliminary

Figure 4: Form factor f Kπ
+ (0) as a function of the

π mass from the asqtadNf = 2+ 1 and the HISQ
Nf = 2+1+1 calculations, together with the results
from a fit to asqtadNf = 2+1 alone, also plotted on
the left-hand side of Fig. 2.

and kaons generated on those ensembles show very little deviation from the continuum dispersion
relation, see Fig. 3. The points with larger errors in that plot correspond to the energies needed
to inject momentum in aK to getq2 = 0 in K → π lν when we have physical light-quark masses.
Thus, for physical light-quark masses, moving pions will give us significantly smaller statistical
errors than moving kaons inK → π lν decays.

We fit the correlation functions generated on the HISQ configurations for theK → π lν de-
cays using the same fitting functions and following the same strategy described in Sec. 1. The
preliminary results from these fits are shown in Fig. 4, together with the data generated on the
asqtad configurations and the results from the fit to the asqtad data alone (left plot in Fig. 2). The
Nf = 2+1+1 HISQ data are very close to the continuum line obtained by fitting theNf = 2+1
asqtad data. In particular, the point corresponding to the ensemble with physical quark masses and
a≈ 0.12 fm lies right on top of the extrapolated value we got from the asqtad fit. This seems to in-
dicate that the discretization effects in the HISQ data are going to be smaller than in the asqtad data,
as expected. The statistical error of the physical mass point is∼ 0.2%, larger than the 0.1−0.15%
error we got for larger masses, but of the same order as the extrapolated value.

4. Conclusions

We have nearly completed the calculation off Kπ
+ (0) at two different values of the lattice spac-

ing using the asqtadNf = 2+1 MILC configurations. The last step towards finishing the calcula-
tion is checking the NLO partially quenched SχPT expressions and completing the error budget.
We estimate that the total error is going to be between 0.35− 0.5%, dominated by the statistical
and extrapolation errors (0.2− 0.3%) and the uncertainty associated with the deviation ofamsea

s

from the physical value (∼ 0.2%). We are also investigating the impact of subleading errors, such
as finite volume effects. The total error will be competitivewith current state-of-the-art calcula-
tions [10, 11].
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The dominant two errors in the calculation on the asqtadNf = 2+ 1 configurations will be
reduced in the next step of our program namely, the calculation on the HISQNf = 2+ 1+ 1
configurations, for which we have shown preliminary resultshere. Having data at the physical
quark masses will reduce the statistical and extrapolationerrors, as well as the one associated with
the choice of chiral fitting function. Discretization errors are also considerably smaller for the HISQ
action than for the asqtad action, as explicitly seen in Fig.4. Finally, the strange sea-quark masses
are much better tuned on the HISQ ensembles, and we are including the effects of the dynamical
charm-quark.

5. Acknowledgments

We thank Johan Bijnens for making his NLO partially quenchedχPT and NNLO full QCD
χPT codes available to us. Computations for this work were carried out with resources provided by
the USQCD Collaboration and the Argonne Leadership Computing Facility, the National Energy
Research Scientific Computing Center, and the Los Alamos National Laboratory, which are funded
by the Office of Science of the U.S. Department of Energy; and with resources provided by the
National Institute for Computational Science, the Pittsburgh Supercomputer Center, the San Diego
Supercomputer Center, and the Texas Advanced Computing Center, which are funded through the
National Science Foundation’s Teragrid/XSEDE Program. This work was supported in part by
the MICINN (Spain) under grant FPA2010-16696 andRamón y Cajalprogram (E.G.), Junta de
Andalucía (Spain) under grants FQM-101, FQM-330, and FQM-6552 (E.G.), European Commis-
sion under Grant No. PCIG10-GA-2011-303781 (E.G.), by the U.S. Department of Energy under
Grant No. DE-FG02-91ER40677 (A.X.E.) and DE-FG02-91ER40628 (C.W.B.), and by the U.S.
National Science Foundation under grants PHY0757333 and PHY1067881 (C.D.).

References

[1] M. Antonelli et al., Eur. Phys. J.C69, 399-424 (2010). [arXiv:1005.2323 [hep-ph]].

[2] V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Nucl.Phys. B830(2010) 95 [arXiv:0908.1754
[hep-ph]].

[3] H. Na, C. T. H. Davies, E. Follana, G. P. Lepage, J. Shigemitsu, Phys. Rev.D82 (2010) 114506.
[arXiv:1008.4562 [hep-lat]].

[4] C. T. Sachrajda and G. Villadoro, Phys. Lett. B609(2005) 73 [hep-lat/0411033].

[5] E. Gámiz, C. DeTar, A. X. El-Khadra, A. S. Kronfeld, P. B. Mackenzie and J. Simone,
PoS(Lattice 2011)281 [arXiv:1111.2021 [hep-lat]].

[6] J. Bijnens, P. Talavera, Nucl. Phys.B669 (2003) 341-362. [hep-ph/0303103].

[7] J. Bijnens, G. Colangelo and G. Ecker, JHEP9902(1999) 020 [hep-ph/9902437].

[8] G. Amoros, J. Bijnens and P. Talavera, Nucl. Phys. B602(2001) 87 [hep-ph/0101127].

[9] A. Bazavovet al. [MILC Collaboration],PoS(Lattice 2009)079 [arXiv:0910.3618 [hep-lat]].

[10] P. A. Boyleet al. [RBC-UKQCD Collaboration], Eur. Phys. J. C69 (2010) 159 [arXiv:1004.0886
[hep-lat]].

[11] V. Lubicz et al. [ETM Collaboration], Phys. Rev. D80 (2009) 111502 [arXiv:0906.4728 [hep-lat]].

7

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(Lattice 2011)281
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(Lattice 2009)079



