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Abstract

The effects of charged particle beams crossing a third-
order resonancein an accelerator are studied. A 20% emit-
tance growth or 2.5% of trap-fraction can be used to define
the critical or tolerable resonance strength, which is found
to follow simple scaling laws vs tune-ramp rate and ini-
tial emittance. One scaling law can be derived by solving
Hamilton's equations of motion in a perturbative approach.
Such scaling laws can be used to evaluate the performance
of high power accelerators, such as fixed-field alternating-
gradient accelerators (FFAGS) and cyclotrons[6].

INTRODUCTION

The third-order resonance plays a dominant role in
dynamic aperture and may aso limit accelerator perfor-
mance[1, 2, 3, 4]. In particular, the betatron tunes of non-
scaling FFAGs are designed to ramp through many res-
onances during the acceleration process. We study here
the fractional emittance growth (FEG) and particle trap-
fraction after crossing the third-order resonance. Our aim
isto derive scaling laws for a tolerable resonance strength.
The results will be compared with multi-particle track-
ing [5]. The model ring used for tracking resembles the
Fermilab Booster, which is of circumference 474 m, com-
posed of 24 FODO cells with 24-fold supersymmetry. The
betatron functions at the quadrupoles are 32 = 40 m,
BE =83m, B8P =6.3m, B2 =21.4 m. A sextupole
and an octupole are placed at one of the D-quads to gener-
ate the third-order resonance strength G and the horizontal
detuning «.. The beam kinetic energy is kept at 1 GeV. The
horizontal tune is ramped from v = 6.40 to 6.28 crossing
the 3v = ¢ resonance, while the vertical tune is fixed at
6.45. In general, 5000 macroparticles are used, initialy in
a 6-o-truncated Gaussian distribution of rms emittancee ;.

HAMILTONIAN AND FIXED POINTS
We start from the Hamiltonian [7]
H =6+ %aﬂ + GI?"? cos 3¢ (1)

in the horizontal phase space, describing the action I and
angle v of aparticlein the rotational frame of athird-order
resonance, where G is the absolute value of the resonance
strength and 6 = v — ¢/3 isthe proximity of the horizontal
betatron tune v to theresonanceat 3v = ¢. The Hamilton's
equations of motion are

I=3GI*?sin3y, 't/}:cs—i-af—l—gGIl/QcosSw. 2

*Work supported by the US DOE under contracts DE-FG02-
92ER40747, DE-AC02-76CH030000, and the NSF under contract NSF
PHY-0852368.

When « > 0, unstable fixed points (UFPs) are given by
ol 3 3 [ 16a0 [ §<o,

¢ ~T1tiVi e { 0< 8 < 9G2/160,
with ¢, = 0, £27/3 changing to =, £7/3 as ¢ changing
from negative to positive. The stable fixed points (SFPs)
aregiven by

ol 3 3 160
SIp — < < o < 2
= g 096160, (3)

with g, = 7,+7/3. These are shown in Fig. 1. The

total area of the three resonance islands is approximately
1_7T6 G1/2|5|3/4|a|75/4.
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RING BEAM AND ADIABATIC RAMPING

Without loss of generality, we consider only downward
ramping of the horizontal tune. AsshowninFig. 1, theres-
onance islands move outward with increasing size at pos-
itive detuning, trapping particles. Thisis demonstrated by
simulating aring of particlesin Fig. 2. It is apparent that
the emittance increases without limit. As aresult, the res-
onance crossing effects are characterized by the fraction of
particles trapped inside the islands.

On the other hand, with negative detuning, the reso-
nanceislands move inward and no particles can be trapped.
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However, the emittance will increase because particleswill
stream aong island separatrices. The characterization here
is the fractional emittance growth, FEG = A¢/¢,. where¢;
is the initial rms emittance of the beam. This is demon-
strated by simulating aring of particlesin Fig. 3. Figure 4
shows the FEG and trap-fraction exhibiting oscillations,
which die down at adiabatic tune-rampingrates, |dv/dn| <
5x 10~7. The oscillatory structure refl ects the exact timing
when the particles encounter the fixed points. If particles
accumulate near the UFPs, the FEG will be large. If parti-
cles accumulate near SFPs, the FEG will be small but the
trap-fraction will be large. Since the starting conditions
are the same for al simulations, the timing dependency is
trand ated to the tuneramp rate instead.
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We now examine the physics of the adiabatic FEG limit
when a < 0. As the resonance moving inward reaches
the ellipse of particles, Fig. 5 shows that the phase space
is adiabatically deformed to the inner separatrix of the is-
lands, and as the resonance moves away, particle will be
distributed along the outer orbit of the separatrices. The
FEG is the ratio of the island-area divided by the initial
phase-space area, which is equal to the inner area bounded
by the separatrices shown in thetop four plots of Fig. 5. As
the resonance collapses after bifurcation, the phase-space
ellipse follows the Hamiltonian torus and the phase-space
area does not change. We calculate the island areas of the
resonance Hamiltonian at the instant that the inner stable
area is equa to the initial phase-space €llipse, which is
depicted as green dashes in Fig. 6. It fits the simulation
data fairly well, and reveals a scaling law FEG ~ 7.3.5 ,q,
where the adiabatic-ramping scaling parameter is S.q =
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G/(;"*|a]). For abeam of initial distribution p(I), the
FEG after crossing the third-order resonanceis

FEG = 7.3/G—ﬁp ¢
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where a Gaussian bunch of initial rms emittance ¢; is as-
sumed in the last step and T'(2) is the Gamma function.
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For FFAGs, the adiabatic FEG is too large to be accept-
ablein practice. Thetune-ramp rate usually dependson en-
ergy gain per turn, and one often tries to ramp through the
resonances asfast aspossible. Thetypical tune-ramprateis
about 1073 ~ 1075 per revolution. Figure 7 shows that the
FEG becomes detuning independent when the tune-ramp
rateis higher than ~ 10 5,
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Scaling Law for negative detuning

To understand how emittance increases on passing
through the third-order resonance at negative detuning, we
investigate the action change of a particle near the outer-
most of the beam. In particular, we are interested in the



particle that collides with an UFP at turn n,s,, when I = 0
and vy = 0. To study the particle motion near the UFP,
we Taylor expand its action-angle about the UFP. Since the

N 1 d
betatron tune is ramping, 1) = § = — oo Atturnn,

Al = 67r2GI3f/p2 €os 3tufp Z—Z (An)3, Ay WZ—Z (An)(Q,S)
where Al = Iy — Ig, with Iy thefinal action, and An =
n—nup. At negative detuning, when the betatron tune is
ramped downward, the UFP moves inwards as the proxim-
ity 0 decreases from a positive value to zero. Equation (3)
indicates that 1ys, = m, £7/3. Thus the action of the par-
ticleincreases after passing the UFP. The motion of the par-
ticle before colliding with the UFP isthe reciprocal of what
happens after colliding with the UFP. Therefore

1 AT
qupza(lq;—i-lf) I; (1—}—?) (6)

where I, /I is the initial/final action of the particle. We
next make the identification of the particle’s action at the
outer-edge of the beam with the beam emittance; i.e., I; =
3e; and Iy = 3¢, with €7 being the final rms emittance
of the beam, to arrive at a relation between the emittance

growth Ae/¢; and the change in particle phase A:
Ae  12v37Ge? (Ag)*? <1 + A6>3/2 -

€ V|dv/dn| 2€; '
It is evident that the relation isindependent of the detuning
« and is dependent on only one scale parameter
€;

|dv/dn| ®
A simulation was performed to illustrate the emittance
growth by tracking the Hamiltonian of Eqg. (1) using asym-
plectic integrator. The outer edge of a Gaussian bunch of
rms emittance e; = 8.54 wum has initial action I; = 3¢; =
25.62 wum, where aring of 500 macroparticles are placed.
The resonance strength is G' = 0.1483 (7m) /2, the de-
tuning is a = —937.5 (wm) !, and the tune-ramp rate is
dv/dn=—6 x 10~°. We start the tracking at a time when
the UFP has an action I,,¢, =41;, with initial proximity pa-

rameter §; = —alug, — SGIL2 cos 3, = 0.123 and the
proximity at bifurcation dy,i =9G?/(16|a|) =1.05 x 1075.
It will take (&; + Owir)/|dv/dn| = 2043 turns to ramp the
proximity to pass bifurcation. The results are shown in
Fig. 8. We also show the trajectory of one tagged parti-
cleinitially at »=0 in brown. After anear encounter with
an UFP at ¢ = 7, the particle reverses direction with an
increase in action. The motion of the action of a hypo-
thetical particle colliding exactly with the UFP at ¢ =7/3
is depicted in green according to the Taylor expansion in
Eqg. (5), which nearly overlapsthe tracked trgjectory of this
hypothetical particle shown in blue. The trajectory of the
UFP at ¢) = /3 moving inward is shown in orange. The
changeinthe particl€’'s phase during the resonance crossing
is Ay ~ /10, and remains roughly the same when simu-
lation parameters are varied. This simulation verifies the
process of emittance increase after encountering an UFP.
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To verify the scaling law derived in Eq. (7), we com-
pile and plot in Fig. 9 a large amount of tracking results
of the model ring (not the Hamiltonian in I and ) over a
wide area of the parameter space: detuning from o = 0
to —800 (7m)~!, resonance strength from G = 0.02 to
0.8 (mm)~1/2, initial rms emittance from ¢; = 0.925 to
9.25 mum, and tune-ramp rate from |dv/dn| = 107° to
10~2. On top is plotted in red the scaling law derived in
Eq. (7) with Ay =7 /10 substituted. The verification of the
scaling law is remarkable. The widespread of simulation
data at larger scaling parameter S hasasimilar explanation
as the large-amplitude oscillations in Fig. 4. The indepen-
dence of FEG on detuning parameter is shown in the left
plot of Fig. 10 for four different values of detunings.
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Although Eq. (5) appears to be an expansion in Af =
27 An, which is a large number, however, when the ex-
pansion is continued to a few more terms, we find that
the perturbation is actually a power series expansion in
(G127 An]” ~ 12752 Ay, which turns out to be ~0.12
when S = 0.1 and Ay = 7/10 are substituted. For this
reason, Eq. (5) is not applicable to adiabatic tune ramping,
where S might be large. The scaling law for adiabatic tune
ramping in Eq. (4) was obtained from solving the Hamilto-
nian exactly in a non-perturbative manner.
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Tolerable resonance strength

Figure 10 shows on the right the FEG vs resonance
strength from simulations for various tune-ramp rates, but
at fixed initial rms emittance e; = 4.62 7um and detuning
a=-391 (mm)~!. Here we set 20% as the tolerable emit-
tance increase for crossing the third-order resonance. Then
the corresponding critical or tolerable resonance strength
[G]rrG=0.2 Can beread off readily for each tune-ramprrate.
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Figure 10: (Color) Left: Emittance growth when passing

through a third-order resonance at tune-ramp rate |dv/dn| =
6 x 10~°and resonance strength G = 0.1483 (wm)~%/2 for
various detuning parameters. Right: FEG vs resonance strength
G for a wide range of tune-ramp rates at initial rms emittance
€; =4.62 mpm and detuning o= —391 (7m) 1.

Similarly, [G]rrg=0.2 can be extracted from simulations
with other detunings and initial rms emittances. Finaly,
weplot [G]rec—o.2¢.’> VS |dv/dn| inFig. 11. All datafall
roughly on the scaling law

dv !
o 9)
Actualy, the above can be derived directly from the scal-
ing law derived in Eq. (7) with Ay = 7/10 or Fig. 9. The
FEG = 20% correspondsto S =0.027, and Eq. (9) follows.
We note that the quantity Ge.’? is dimensionless and con-
stitutes a scaling parameter at constant tune-ramp rate. For
this reason, it is sometimes called the effective resonance
strength.
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PARTICLE TRAPPING IN RESONANCE
ISLANDSWHEN DETUNING a > 0

Since particleswill be trapped in islands when the detun-
ing is positive and the tune is ramped downward, the trap-
fraction is amore useful characterization of the resonance-
crossing effects. However, it is more practical to define the
trapped effect as ftrap = NI>Ii.rnax /Ntotalr where Niotal
is the total number of particlesin thebeamand N7~y, ...
is the number of particles with action I larger than that of

initial maximum after passing through the resonance, inde-
pendent of whether they are trapped inside the resonance
islands or they fall outside the islands while moving along
the separatrices. Although this definition may differ from
the trap efficiency employed in Ref. [2, 3], nevertheless, it
should make comparison with experimental measurements
more appropriate, where scraping is often used to remove
large-amplitude particles.

This definition of trap-fraction has another merit that it
can also be used to characterize resonance crossing effects
even when the detuning is negative and there is no trapping
by islands. Thus there is a correlation between FEG and
ferap @t negative detuning, which is evident in the left plot
of Fig. 12, wherethecritical or tolerable resonance strength
[Glrrc=0.2 for an emittance increase of 20% in resonance
crossing at negative detuning is equivalent to the critical or
tolerable resonance strength [Gy,... ., .. » When 2.5% of
particles are being excited to have actions larger than the

initial maximum action of the beam.
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Figure 12: (Color) Left: Correlation between FEG and firap, for
a < 0 for beams with different emittances, resonance strengths
and tune-ramp rates. Right: Trap-fraction vs scaling parameter
S of Eq. (8) for awide range of initial emittances, two detuning
parameters, and afixed tune-ramp rate dv/dn = —6 x 1075,

Figure 13 shows the trap-fractions calculated for dif-
ferent tune-ramp rates with detuning parameter o = 391
(7m)~'. Experimental data from Ref. [3] are also shown
with blue and red boxes. They appear to agree reason-
ably well with our simulation results at tune-ramp rates
—8.6x107%and —1.4 x 10~

Similar to the scaling property shown in the previous
section, an equivalent resonance strength can be defined as
Ge 1/ 2 which is dimensionless. Including the square root
of the tune-ramp rate, this becomes the scaling parameter
defined S in Eq. (8). Theright plot of Fig. 12 shows fyap
vs S for variousinitial emittances and detunings, but for a
fixed rampingrate of dv/dn = —6x10~°. Theplot reveals
a rough scaling behavior for fi..,. However, when track-
ing results corresponding to more detunings and tune-ramp
rates are added, the data are not so well clustered.

We next read off the critical or tolerable resonance
strength [G]y,... . ., that produces a 2.5% trap-fraction.
The equivalent critical resonance strength is plotted against
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tune-ramp rate in Fig. 14. The tracking data exhibit scaling
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when the detuning is nearly zero (dashed line), and
- Ay 23
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when the detuning is as high as o = 1174 (7m) ~* (solid
line). Notice that Eq. (10) is exactly the same as Eq. (9)
a negative detuning, since G|y, _, ., IS equivaent to
[GlrEc=0.2. We can draw the conclusion that the scaling
curve at negativedetuning for [G] rrc=0.2 1Sapproximately
the same as the scaling law for [G]y,.. . ., @ positivede-
tuning, at least in the small-positive-detuning regime.
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Comparison with the scaling law of Ref. [3]
Aiba, et al define an adiabatic parameter in Eq. (27) of

Ref. [3], .
0 |dv/dn|
ad - a9 )
31/236|a|Ge/?

9

(12)

where our notations have been used, and derive a trapping
efficiency in their Eq. (33),

1
71' G : 1
PT = — | — nfzefnadv
21/2 <31/3|a|e:/2>

where 1 = n,q Or 1 according to n.q = 1. Although their
definition of trapping efficiency may be different from our
firap, the scaling law should be universal. Equation (13),
however, differs markedly from our scaling laws for the

(13)

FEG and fi;ap, having different dependency on resonance
strength G, initial rms emittance e;, tune-ramp rate dv/dn,
as well as detuning parameter . As an example, with
G =0.2 (mm)~1/2, ¢; =10 mum, |a| = 100 (7m)~!, and
|dv/dn|=1 x 1077, 7,4 =0.19 and Eq. (13) reducesto

1/2
P T G
T ~ S7/9 o 179 )
21/2 31/3|a|61/2

which is proportional to || ~'/2. When 7,4 increases to
larger than one, P becomes proportional to | ~/3. In
any case, increasing detuning will decrease trapping effi-
ciency and therefore emittance growth; but this does not
help much according to our scaling laws.

CONCLUSIONS

We characterize the effects of abeam crossing the third-
order resonance by the fractional emittance growth FEG
and trap-fraction fy,.,, and discover that @ fi,ap = 2.5% at
positive detuning is equivalent to a FEG = 0.2 at negative
detuning.

From comparison with simulation results, the crit-
ical or tolerable resonance strengths, [G]rrg—0.2 and
[G] f,0p=2.5%, &€ found to obey scaling laws, and the two
areidentical for small detunings.

The FEG at negative detunings can be derived from
Hamilton’s equations of motion in a perturbative approach,
and is found to obey a scaling law with scaling parameter
S = Gy/e;/|dv/dn].

Our method is aso applicable to other resonances. For
example, in crossing an octupole-driven resonance, the
critical or tolerable resonance strength should scale like
~ ¢; !|dv/dn|'/? and should be nearly independent of the
nonlinear detuning parameter. These results will be useful
in the design of high power accelerators, in the estimate
of the emittance growth in cyclotron, and as the require-
ment of slow-beam extraction using the third-order reso-
nance[8].

(14)
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