
LCG Persistency Framework (CORAL, COOL,

POOL): Status and Outlook in 2012

R. Trentadue1, M. Clemencic2,a, D. Dykstra3,b, M. Frank2,a,
D. Front4,c, A. Kalkhof1 , A. Loth1, M. Nowak5,c, A. Salnikov6,c,
A. Valassi1, M. Wache7,c

1 IT Department, CERN, CH-1211 Geneva 23, Switzerland
2 PH Department, CERN, CH-1211 Geneva 23, Switzerland
3 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
4 Weizmann Institute of Science, Rehovot 76100, Israel
5 Brookhaven National Laboratory, Upton, NY 11973, USA
6 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
7 Institut für Physik, Universität Mainz, D-55099 Mainz, Germany
a The author is a member of the LHCb Collaboration.
b The author is a member of the CMS Collaboration.
c The author is a member of the ATLAS Collaboration.

E-mail: andrea.valassi@cern.ch

Abstract. The LCG Persistency Framework consists of three software packages (CORAL,
COOL and POOL) that address the data access requirements of the LHC experiments in
several different areas. The project is the result of the collaboration between the CERN IT
Department and the three experiments (ATLAS, CMS and LHCb) that are using some or all of
the Persistency Framework components to access their data. POOL is a hybrid technology store
for C++ objects, using a mixture of streaming and relational technologies to implement both
object persistency and object metadata catalogs and collections. CORAL is an abstraction
layer with an SQL-free API for accessing data stored using relational database technologies.
COOL provides specific software components and tools for the handling of the time variation
and versioning of the experiment conditions data. This presentation reports on the status and
outlook in each of the three sub-projects at the time of the CHEP2012 conference, reviewing
the usage of each package in the three LHC experiments.

1. Overview
The Large Hadron Collider (LHC), the world’s largest and highest-energy particle accelerator,
started its operations in September 2008 at CERN. Huge amounts of data are generated by
the four experiments installed at different collision points along the LHC ring. The largest
data volumes, coming from the “event data” that record the signals left in the detectors by the
particles generated in the LHC beam collisions, are generally stored on files. Relational database
systems are commonly used instead to store several other types of data, such as the “conditions
data” that record the experimental conditions at the time the event data were collected, as well
as geometry data and detector configuration data. In three of the experiments, ATLAS, CMS
and LHCb, some or all of these types of data are stored and accessed using the software developed

FERMILAB-CONF-12-313-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



Figure 1. CORAL, COOL and POOL are used by physics applications to implement data
persistency using lower level computing services.

by the Persistency Framework (PF), one of the projects set up within the LHC Computing Grid
(LCG) to provide common software solutions for the LHC experiments.

The Persistency Framework consists of three packages (CORAL, COOL and POOL) that
address the data access requirements of the LHC experiments in different areas. POOL is
a generic hybrid store for C++objects, metadata catalogs and collections, using streaming
and relational technologies. CORAL is a generic abstraction layer with an SQL-free API for
accessing relational databases. COOL provides specific software to handle the time variation
and versioning of conditions data. The software has been developed over several years through
the well established collaboration of developers from the LHC experiments with a team in the
CERN IT department, which has also ensured the overall project coordination. All packages
are written in C++, but Python bindings are also provided for CORAL and COOL. As shown
in figure 1, all three packages are used directly by physics applications, but CORAL is also used
internally by COOL and POOL to access relational databases.

1.1. Summary of progress since CHEP2010
A detailed description of the PF package functionalities, software process and collaborations with
other LCG projects can be found in the proceedings of the previous CHEP2010 conference [1]
and in the original references cited therein. The goal of this paper is to focus on the evolution
and progress in the project as a whole and in each sub-project since that time and to provide
an updated summary of its usage in the LHC experiments and of the outlook for the future.

Software development of all three packages continues to follow a well established release
process [1], which has been further streamlined and improved in the last two years. Regular
production releases are prepared whenever one of the experiments demands it, leading to one
release per month on average. As in the past, software libraries and binaries for ATLAS and
LHCb are built and installed on shared disks by the SPI team from the CERN PH Department,
but two improvements are worth pointing out: first, the full validation of the CORAL and COOL
releases has been fully documented [2] and is now also under the responsibility of the SPI team,
offloading the workload of the PF core support team in IT that was previously in charge of
this task; second, the releases are now installed not only on AFS but also on the CVMFS
file system [3], providing easier software distribution to remote sites [4]. The PF software is



supported on many production platforms, including several flavours of Linux (SLC5, SLC6)
and MacOSX (10.6 Snow Leopard), using one or more compilers on each O/S (e.g. gcc4.3,
gcc4.6, icc11 on SLC5). To improve software quality and speed up the early adoption of new
external software versions, automatic builds and tests [5] of CORAL, COOL and POOL are
performed every night on all production platforms, as well as on a few test platforms using new
compilers and build options (such as gcc4.6 with c++0x, gcc4.7 and clang30 on Linux). Since
2011, the MySQL server and the CORAL server used for the nightly tests have been running on
a dedicated cluster maintained by the PF team in the CERN Computer Centre; as in the past,
an Oracle server maintained by the Physics Database Team in CERN IT is also used.

The latest software version recently released is the LCG63 configuration, based on ROOT 5.34
and including CORAL 2.3.23 and COOL 2.8.14. It must be noted that POOL is missing in this
release series, as well as in the previous one based on ROOT 5.32 (the latest such configuration
being LCG62b including CORAL 2.3.22 and COOL 2.8.13). POOL is only included in the still
older release series based on ROOT 5.30 (the latest such configuration being LCG61, including
CORAL 2.3.20c, COOL 2.8.12c and POOL 2.9.20a), which is still used only by ATLAS as their
production software version for the 2012 LHC data taking.

One of the main news for the project as a whole, in fact, has been the decision by LHCb
to drop the use of POOL [6] as the primary persistency mechanism for their event data. At
the end of 2011, LHCb put in production a new persistency service that uses directly ROOT
in a more efficient way than what was done in POOL and is also able to read old POOL files,
making the migration simple and smooth. As a consequence, support for POOL is no longer
required by LHCb, leaving ATLAS as the only user of this PF component. ATLAS will continue
to need support for POOL from the core PF team in IT, including any relevant patches and
releases, only for as long as the 2012 production version of the ATLAS software (based on the
LCG61 series) is actively used. For subsequent production releases (e.g. those based on LCG63
and ROOT 5.34), an ATLAS-supported custom package derived from POOL will be used and
already exists within the ATLAS repository; this will also allow ATLAS to better integrate
into their persistency strategy several recent improvements [7] in their use of ROOT I/O. It is
therefore expected that, as of 2013, POOL will no longer be maintained and supported within
the context of the PF common project, whereas CORAL and COOL will continue to need to be
supported as PF common packages used by more than one experiment [8].

Another important change in the PF usage by the experiments during the last two years was
the LHCb decision to drop the use of the CORAL LFCReplicaSvc component, which provides
database lookup and authentication functionalities using the LFC servers deployed on the Grid.
LHCb is in fact moving towards a distributed conditions database infrastructure more heavily
based on SQLite files [9], while also investigating the possible use of Frontier: both these options
do not involve direct Oracle access from the Grid and as a consequence do not require the
functionalities of the CORAL LFCReplicaSvc component, which has thus been dropped as of
the LCG63 release.

Another change since CHEP2010 concerns the use of Frontier in ATLAS, which has further
expanded: this technology, which was previously used in this experiment only for data access in
the Grid and only for conditions data, is now used in ATLAS also for Tier0 processing [10] and
also for geometry and trigger data.

Table 1 summarizes the usage of CORAL, COOL and POOL in the LHC experiments; the
changes described in this section are highlighted in green (when specific components have been
adopted for new use cases) and red (when the usage of some components has been dropped).

Last but not least, progress has also been made in each of CORAL, COOL and POOL to
fix specific issues and to provide new functionalities as requested by the experiments or by
individual users. The main changes in POOL concern several fixes and enhancements in the
collection packages, developed exclusively by ATLAS to be used in ATLAS, which will not



Table 1. Summary of CORAL, COOL and POOL usage in ATLAS, CMS and LHCb.

described in this paper. Within CORAL and COOL, service and operation support continues
to be the critical area where most of the work was carried out and most of the progress was
obtained, especially for any issues involving the optimization of connectivity and data access
performance for Oracle database services. In particular, the two main such achievements, about
which more details will be given in sections 2 and 3, are the improvement of CORAL handling of
network and database instabilities (also covered in much greater detail by another presentation
at this conference [11]) and the validation of COOL query performance on Oracle 11g servers.
Another enhancement for CORAL in this area, which however will not be described in detail
in this paper, was the reduction of the number of Oracle data dictionary queries in CORAL,
resulting in faster data retrieval from the database. Finally, some R&D on the monitoring
of CORAL server and proxy components was also carried out [12], although this has not yet
resulted in the development of production-quality components.

2. Improvements in CORAL handling of network instabilities
As described in section 1, the CORAL software is effectively the entry point for the LHC
experiments to access from their C++ applications the data that they store in Oracle databases.
This makes CORAL the ideal place in the software chain to implement in a common way several
features optimizing the data access patterns of the LHC experiments to Oracle. In particular,
one extremely desirable feature for CORAL would be a functionality enabling client applications
to safely handle database and network instabilities, transparently reconnecting when possible
and appropriate, and immediately throwing an exception in all other cases.

One implementation of this functionality was already present in CORAL since the very
earliest versions of the software in 2006 [13] and had never been reported to cause any issue.
As the load on the Oracle database servers and the usage of the CORAL software increased
with the gradual ramp-up of LHC operations since the end of 2009, however, several application
hangs, crashes and other issues have been reported by all three experiments using CORAL.
While the exact details of these incident reports differ from case to case, it was immediately
obvious that all these issues had ultimately been triggered by a network or database glitch,



Figure 2. An ssh tunnel is used to simulate a network glitch in the connection to the database.

reported by the Oracle client to CORAL using a well-known error code (most often, ORA-
03113). More importantly, as the analysis of the problem progressed, it soon became apparent
that in many such situations the damage was caused not only by the network glitch itself, but
also by bugs, and other intrinsic limitations of the handling of this external problem, within the
old implementation of the ’reconnection’ functionality in CORAL.

As a consequence, the improvement and eventual reimplementation of the handling of network
and database instabilities has become one of the main areas of work in CORAL since CHEP2010.
This is a large task which has been achieved in several phases over time and is now essentially
complete. Only a brief summary of the most relevant issues and achievements will be presented
in this paper, as all this work is described in far greater details by another presentation at this
conference [11]. The following is an overview of the various tasks achieved in this area in different
phases, in chronological order.

• The issue most frequently reported by all three experiments, an application hang caused
by an infinite loop when CORAL retries over and over to begin a user session over a
physical connection that was broken by a network glitch (causing a flood of ORA-24327
error messages), was successfully analyzed, reproduced and fixed by a patch released in
CORAL 2.3.13 in December 2010.

• To reproduce this issue, an ad-hoc test suite, based on CORAL python bindings (PyCoral)
and using an ssh tunnel to simulate a network glitch, as shown schematically in figure 2,
had to be developed: this test, first introduced in CORAL 2.3.13 in December 2010, has
then been significantly extended over time to cover the many other situations covered by
the new CORAL reconnection mechanism and is now still routinely executed within the
CORAL nightly test suite.

• The next major milestone was the analysis and fix of the CORAL crashes reported by some
users in situations involving network glitches. It was soon understood that this was due
to a set of bugs that affect not only the old CORAL handling of network glitches, but
more generally the CORAL management of closed sessions, even when a session is closed
as the result of an explicit user request to disconnect. To solve this large family of issues,
a major internal reimplementation of all CORAL plugins has been planned and largely
implemented, involving for instance the replacement of bare pointers by shared pointers
in most C++ classes of the CORAL plugins. Out of the many patches required, those
necessary to address these bugs for Oracle (in both single-threaded and multi-threaded use
cases) and SQLite (in single-threaded use cases only) have been successfully completed in
the CORAL 2.3.16 release in June 2011, while those for the other plugins (Frontier, MySQL
and CoralServer) are being added over time and are in some cases still pending.

• Another set of crashes reported by some users during the cleanup phase of their application
(e.g. when closing a statement associated to an already deleted session), not necessarily after
a network glitch, was eventually understood to be specific to the OracleAccess plugin and



to be caused by the way this uses the Oracle Call Interface (OCI) [14] client structures. The
issue is quite similar to the other set of crashes described above, but involves segmentation
faults deep inside the Oracle client library, rather than in the CORAL code itself. The
relevant fixes, which essentially consist in delaying the release of the OCI structures until
they are no longer used by any other OCI structure in CORAL, have been completed in
the CORAL 2.3.23 release in June 2012,

• Building on the expertise and tools developed to address all of these preliminary issues, a
new strategy for the reconnection functionality in CORAL was designed and implemented.
The previous version of this functionality was implemented in a common CORAL
component used by all back-ends (Oracle, SQLite, MySQL. . . ) and implied the destruction
and re-creation of an instance of the relevant CORAL C++ class describing database
sessions. The new strategy is implemented only for the Oracle back-end within the
OracleAccess plugin and essentially consists in “refreshing” the existing CORAL session
instance with the new OCI data structures obtained when reconnecting to Oracle. The
CORAL client actively probes the connection to the server using a relatively inexpensive
OCI call to check if it has been lost, every single time that an SQL statement or another
command is about to be sent to the server for processing. If the connection has been lost,
a reconnection is attempted if possible and appropriate (i.e. if there is no risk of data
inconsistency), otherwise an exception is thrown (e.g. if data has been lost because an
update had been executed but not yet committed). The reimplementation of the CORAL
handling of network glitches has now been completed and was finally released with CORAL
2.3.23 in June 2012.

• Finally, a few issues reported by CORAL users and involving the Oracle Transparent
Application Failover (TAF) [14] mechanism have been analysed. In particular, some tests
have been performed to understand if TAF could be a useful complementary mechanism to
transparently handle network glitches, or conversely if it could be a source of interference
with their handling in CORAL. The results of this analysis are however still preliminary
and more work will be done in this area to get a better understanding of these issues.

3. COOL query performance validation on Oracle 11g servers
Out of the many backends supported by COOL via CORAL, Oracle is the one that has been
used for many years by both ATLAS [15] and LHCb [9] to store the master copies of their
conditions databases. In particular, these data are stored in Oracle Real Application Clusters
(RAC) at the CERN Tier0 site, which have been running until 2011 version 10g (10.2.0.5)
of the Oracle database server software. The plan for an upgrade of these and all other LHC
physics databases to the next major Oracle server version 11g was announced in 2011 by the
Physics Database Team in CERN IT, who are responsible for the operation of these installations.
Following a well established change management policy, all of the applications accessing these
databases, including COOL, underwent an extensive period of performance validation using
dedicated “integration” services [8] running Oracle 11g, to ensure the absence of any major
showstoppers before the migration could be eventually performed at the end of 2011.

After a large optimization effort in 2008 [16], COOL query performance is by now considered
to be relatively under control. The two most important issues which in the past were found
to lead to poor performance due to execution plan instability, i.e. unreliable statistics and
bind variable peeking, are taken care of using SQL hints in the most important COOL queries.
The test strategy identified in 2008 continues to be considered useful and sufficient to identify
any problems with query performance and scalability: this consists in creating relatively small
COOL test tables containing a few thousand “intervals-of-validity” (IOVs) scattered across a
range of validity times T , and in measuring the query response time to retrieve COOL IOVs
from that table as a function of the validity time T used to look them up. Query performance



1. Use case SV R (COOL-preview on Oracle 10.2.0.5.0)

Oracle Database 10g Enterprise Edition Release 10.2.0.5.0 - 64bit Production
Instance test11 (Linux x86 64 on itrac507) on 2011-12-13

Primary SQL statement (hint option=”):
SELECT /*+ NO BIND AWARE QB NAME(MAIN) INDEX(@MAIN COOL I3@MAIN (CHANNEL ID IOV SINCE IOV UNTIL))

LEADING(@MAIN COOL C2@MAIN COOL I3@MAIN) USE NL(@MAIN COOL I3@MAIN) INDEX(@MAX1 COOL I1@MAX1

(CHANNEL ID IOV SINCE IOV UNTIL)) */ COOL I3.OBJECT ID AS ”OBJECT ID”, COOL I3.CHANNEL ID AS ”CHANNEL ID”,

COOL I3.IOV SINCE AS ”IOV SINCE”, COOL I3.IOV UNTIL AS ”IOV UNTIL”, COOL I3.USER TAG ID AS ”USER TAG ID”,

COOL I3.SYS INSTIME AS ”SYS INSTIME”, COOL I3.LASTMOD DATE AS ”LASTMOD DATE”, COOL I3.ORIGINAL ID AS

”ORIGINAL ID”, COOL I3.NEW HEAD ID AS ”NEW HEAD ID”, COOL I3.I AS ”I”, COOL I3.”S4k” AS ”S4k” FROM
AVALASSI.”XSV RCWD F0001 CHANNELS” ”COOL C2”, AVALASSI.”XSV RCWD F0001 IOVS” ”COOL I3” WHERE

COOL I3.CHANNEL ID=COOL C2.CHANNEL ID AND COOL I3.IOV SINCE>=COALESCE(( SELECT /*+ QB NAME(MAX1) */

MAX(COOL I1.IOV SINCE) FROM AVALASSI.XSV RCWD F0001 IOVS COOL I1 WHERE

COOL I1.CHANNEL ID=COOL C2.CHANNEL ID AND COOL I1.IOV SINCE<=:”since1” ),:”sinc3s”) AND

COOL I3.IOV SINCE<=:”until3” AND COOL I3.IOV UNTIL>:”sinc3u” ORDER BY COOL I3.CHANNEL ID ASC,

COOL I3.IOV SINCE ASC

Main hint in alternative SQL statement (hint option=’-nohint’):
/*+ NO BIND AWARE QB NAME(MAIN) */

Identified 3 execution plan(s) from 12 trace files (in /tmp/avalassi/SV R/10.2.0.5/SV R on lxmrra5001):

Trace file Exec Bind variables Hints
(stat)-(peek)-(hint) plan :since1 :sinc3s :until3 :sinc3u Used Unused

stat-peekhi #1 99000 99000 99010 99000 6 0
stat-peeklo #1 0 0 10 0 6 0
nost-peekhi #1 99000 99000 99010 99000 6 0
nost-peeklo #1 0 0 10 0 6 0
emst-peekhi #1 99000 99000 99010 99000 6 0
emst-peeklo #1 0 0 10 0 6 0

stat-peekhi-nohint #1 99000 99000 99010 99000 2 0
stat-peeklo-nohint #2 0 0 10 0 2 0
nost-peekhi-nohint #1 99000 99000 99010 99000 2 0
nost-peeklo-nohint #2 0 0 10 0 2 0
emst-peekhi-nohint #3 99000 99000 99010 99000 2 0
emst-peeklo-nohint #3 0 0 10 0 2 0

1

SV R / Execution plan #1 (COOL-preview on Oracle 10.2.0.5.0)

Id Operation Name
0 SELECT STATEMENT
1 SORT ORDER BY
2 TABLE ACCESS BY INDEX ROWID XSV RCWD F0001 IOVS
3 NESTED LOOPS
4 INDEX FULL SCAN XSV RCWD F0001 CHANNELS PK
5 SORT AGGREGATE
6 FIRST ROW
7 INDEX RANGE SCAN (MIN/MAX) XSV RCWD F0001 IOVS CSU 3INDX
8 INDEX RANGE SCAN XSV RCWD F0001 IOVS CSU 3INDX
9 SORT AGGREGATE
10 FIRST ROW
11 INDEX RANGE SCAN (MIN/MAX) XSV RCWD F0001 IOVS CSU 3INDX

4 - filter(COALESCE(,:sinc3s)<=:until3)
7 - access(”COOL I1”.”CHANNEL ID”=:B1 AND ”COOL I1”.”IOV SINCE”<=:since1)
8 - access(”COOL I3”.”CHANNEL ID”=”COOL C2”.”CHANNEL ID” AND
”COOL I3”.”IOV SINCE”>=COALESCE(,:sinc3s) AND ”COOL I3”.”IOV UNTIL”>:sinc3u AND
”COOL I3”.”IOV SINCE”<=:until3 AND ”COOL I3”.”IOV UNTIL” IS NOT NULL)
8 - filter(”COOL I3”.”IOV UNTIL”>:sinc3u)
11 - access(”COOL I1”.”CHANNEL ID”=:B1 AND ”COOL I1”.”IOV SINCE”<=:since1)

/*+
BEGIN OUTLINE DATA

IGNORE OPTIM EMBEDDED HINTS
OPTIMIZER FEATURES ENABLE(’10.2.0.5’)
ALL ROWS
OUTLINE LEAF(@”MAX1”)
OUTLINE LEAF(@”MAIN”)
OUTLINE(@”MAX1”)
OUTLINE(@”MAIN”)
INDEX(@”MAIN” ”COOL C2”@”MAIN” (”XSV RCWD F0001 CHANNELS”.”CHANNEL ID”))
INDEX(@”MAIN” ”COOL I3”@”MAIN” (”XSV RCWD F0001 IOVS”.”CHANNEL ID”

”XSV RCWD F0001 IOVS”.”IOV SINCE” ”XSV RCWD F0001 IOVS”.”IOV UNTIL”))
LEADING(@”MAIN” ”COOL C2”@”MAIN” ”COOL I3”@”MAIN”)
USE NL(@”MAIN” ”COOL I3”@”MAIN”)
PUSH SUBQ(@”MAX1”)
INDEX(@”MAX1” ”COOL I1”@”MAX1” (”XSV RCWD F0001 IOVS”.”CHANNEL ID”

”XSV RCWD F0001 IOVS”.”IOV SINCE” ”XSV RCWD F0001 IOVS”.”IOV UNTIL”))
END OUTLINE DATA

*/

2

Figure 3. COOL performance report for SV queries against an Oracle 10.2.0.5 server.

and scalability are good if the resulting plots show that query response time is flat and does
not increase as a function of the validity time T . As explained in Ref. [16], two sets of curves
are generally considered, with and without SQL hints: when using hints, it is expected that all
curves should be flat (indicating that hints stabilize the Oracle execution plan and the indexes in
the schema are optimally used), while some of the curves without hints may exhibit an increase
in the query response time (indicating that an alternative sub-optimal Oracle execution plan
is used, for instance one involving a full index scan or a full table scan). In particular, each
set contains six curves, representing all combinations with low and high values of peeked bind
variables, and with good, bad or missing statistics.

One major result achieved during the validation of COOL query performance in 2011 is that
this procedure has now been fully automated. With a few clicks, it is now possible to produce
an extremely detailed report of COOL query performance for any COOL software version and
against any chosen Oracle database, covering nine of the most important data retrieval use cases
in COOL, e.g. both “single-version” (SV) and “multi-version” (MV) data retrieval for several
data types and versioning/tagging strategies. The first two pages of the performance report
for a typical SV use case against an Oracle 10.2.0.5 server are shown in figure 3: as described
above, the two plots on the first page show that performance for this version of the Oracle server
software was adequate with hints (left); the SQL query executed and its execution plans for each
of the twelve curves (as obtained from server-side trace files) are also displayed and summarized,
confirming at a much more detailed level that strictly the same execution plan is used for all of



Figure 4. Performance plots for COOL SV queries with hints, for 10.2.0.5 (left), 11.2.0.2
(centre) and 11.2.0.3 (right) Oracle server versions.

the six cases when hints are present.
The main reason why a fully automated tool to produce a COOL performance report was

prepared in 2011 is that the initial results of COOL query validation on Oracle 11g servers
indicated a problem, so large that it could be a potential show-stopper for the migration. The
preliminary results of this issue seemed to indicate that the Oracle 11g Cost-Based Optimizer
(CBO) was leading to worse performance for COOL queries than the 10g CBO; at some point,
when the problem had not yet been completely understood, the workaround of using a hint
in COOL to force the use of the 10g CBO within the 11g server had even been considered
and successfully tested. Eventually, the problem was understood as being due to a bug in the
version 11.2.0.2 of the Oracle 11g software, which had been used for the initial tests, fixed in
the next version 11.2.0.3 of the software. The effects of this bug and of its fix can be seen in
figure 4, where the performance plots for COOL SV queries with hints are shown for 10.2.0.5
(left), 11.2.0.2 (centre) and 11.2.0.3 (right) Oracle server versions: it is immediately obvious
that queries are too slow and not scalable for Oracle 11.2.0.2 (query response times are high and
increasing), even when hints are used. Luckily, figure 4 also shows that performance is again
good and scalable against Oracle 11.2.0.3. To be 100% sure that the problems observed were
due to a limitation of 11.2.0.2, this issue was actually analysed in much more detail, by installing
a test 11.2.0.2 database and modifying it with a few software patches coming from the 11.2.0.3
patch set, until one particular documented bug (absent in 11.2.0.1, introduced in 11.2.0.2 and
fixed in 11.2.0.3) was identified with certainty as being the cause of the observed performance
degradation.

The major upgrade of the database server software from Oracle 10g (10.2.0.5) to Oracle
11g (11.2.0.3) was at last successfully implemented during the winter 2011-2012 shutdown [8].
The services are now running smoothly and many new useful functionalities that have become
available thanks to the upgrade to Oracle 11g (e.g. in the areas of data replication, recovery,
caching and partitioning) are also being evaluated [15]. The tool to produce COOL performance
reports will certainly remain useful in the future to validate any new upgrades in the COOL or
Oracle software versions. In particular, one unexpected lesson that has been learnt from this
story is that serious performance regressions may be expected not only in major Oracle server
upgrades (e.g. 10g to 11g), but also in minor patch set upgrades (e.g. 11.2.0.1 to 11.2.0.2),
hance all such upgrades should also be carefully tested.

4. Conclusion
CORAL, COOL and POOL have been essentially ingredients in the data storage and access stack
of the ATLAS, CMS and LHCb experiments at CERN for many years and have been used for



LHC data taking since 2008. POOL has recently been dropped by LHCb and the responsibility
for its maintenance is being moved to ATLAS, which is now its only user. COOL and especially
CORAL, conversely, remain very active projects which require a large development and support
effort, mainly coming from the core Persistency Framework team in CERN IT. Most of the
activities concern the application-level optimization of connectivity and query performance for
the Oracle relational database technology. Two major achievements in this area, in particular,
concern major improvements in the CORAL handling of network and database instabilities and
the validation of COOL query performance against Oracle 11g servers.

References
[1] A. Valassi et al., LCG Persistency Framework (CORAL, COOL, POOL): Status and Outlook, CHEP 2010,

Taipei, http://iopscience.iop.org/1742-6596/331/4/042043
[2] A. Valassi, Persistency Framework Software Release Process, PF twiki documentation, https://twiki.cern.

ch/twiki/bin/view/Persistency/PersistencyReleaseProcess

[3] J. Blomer et al., Status and Future Perspectives of CernVM-FS, CHEP 2012, NY, http://indico.cern.ch/
contributionDisplay.py?contribId=93&sessionId=6&confId=149557

[4] A. De Salvo et al., Software installation and condition data distribution via CernVM FileSystem in AT-
LAS, CHEP 2012, NY, http://indico.cern.ch/contributionDisplay.py?contribId=349&sessionId=
8&confId=149557

[5] V. Diez Gonzalez et al., The LCG/AA integration build system, CHEP 2012, NY, http://indico.cern.ch/
contributionDisplay.py?contribId=125&sessionId=8&confId=149557

[6] T. Bell et al., Report of the WLCG Technology Evolution Groups in Data and Storage Management, April
2012, https://twiki.cern.ch/twiki/bin/view/LCG/ReportDataStorageTEG

[7] W. Bhimji et al., The ATLAS ROOT-based data formats: recent improvements and performance measure-
ments, CHEP2012, NY, http://indico.cern.ch/contributionDisplay.py?contribId=378&sessionId=
3&confId=149557

[8] D. Barberis et al., Report of the WLCG Database Technical Evolution Group, March 2012, https://twiki.
cern.ch/twiki/bin/view/LCG/WLCGTEGDatabase

[9] I. Shapoval et al., LHCb Conditions Database Operation Assistance Systems, CHEP2012, NY, http:

//indico.cern.ch/contributionDisplay.py?contribId=143&sessionId=8&confId=149557

[10] A. Dewhurst et al., Evolution of grid-wide access to database resident information in ATLAS using Fron-
tier, CHEP2012, NY, https://indico.cern.ch/contributionDisplay.py?contribId=400&sessionId=

6&confId=149557

[11] R. Trentadue et al., Handling of network and database instabilities in CORAL, CHEP2012, NY, https:

//indico.cern.ch/contributionDisplay.py?contribId=102&sessionId=8&confId=149557

[12] A. Loth, CORAL monitoring, EGI Community Forum 2012, Munich, https://indico.egi.eu/indico/

contributionDisplay.py?contribId=16&confId=679

[13] I. Papadopoulos et al., CORAL, a software system for vendor-neutral access to relational databases,
CHEP2006, Mumbai, http://indico.cern.ch/contributionDisplay.py?contribId=329&sessionId=

4&confId=048

[14] Oracle Corporation, OracleR© Call Interface Programmers’ Guide, 11g Release 2 (11.2), http://docs.

oracle.com/cd/E11882 01/appdev.112/e10646.pdf

[15] G. Dimitrov et al., The ATLAS database application enhancements using Oracle 11g, CHEP2012, NY,
https://indico.cern.ch/contributionDisplay.py?contribId=567&sessionId=8&confId=149557

[16] A. Valassi et al., COOL, LCG conditions database for the LHC experiments NSS2008, Dresden, http:

//cdsweb.cern.ch/record/1142723

Acknowledgements
We are grateful to the users of the CORAL, COOL and POOL software in the LHC experiments
for their continuous feedback and suggestions for its improvement. We thank the SPI team
for maintaining the development infrastructure and external software dependencies for the
Persistency Framework. We are also grateful to the ROOT team for their help and suggestions.
Finally, we warmly thank our colleagues from the Physics Database Team in CERN IT, together
with the DBAs in the LHC experiments, for assisting us in understanding the subtleties of the
Oracle database servers they operate.

http://iopscience.iop.org/1742-6596/331/4/042043
https://twiki.cern.ch/twiki/bin/view/Persistency/PersistencyReleaseProcess
https://twiki.cern.ch/twiki/bin/view/Persistency/PersistencyReleaseProcess
http://indico.cern.ch/contributionDisplay.py?contribId=93&sessionId=6&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=93&sessionId=6&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=349&sessionId=8&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=349&sessionId=8&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=125&sessionId=8&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=125&sessionId=8&confId=149557
https://twiki.cern.ch/twiki/bin/view/LCG/ReportDataStorageTEG
http://indico.cern.ch/contributionDisplay.py?contribId=378&sessionId=3&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=378&sessionId=3&confId=149557
https://twiki.cern.ch/twiki/bin/view/LCG/WLCGTEGDatabase
https://twiki.cern.ch/twiki/bin/view/LCG/WLCGTEGDatabase
http://indico.cern.ch/contributionDisplay.py?contribId=143&sessionId=8&confId=149557
http://indico.cern.ch/contributionDisplay.py?contribId=143&sessionId=8&confId=149557
https://indico.cern.ch/contributionDisplay.py?contribId=400&sessionId=6&confId=149557
https://indico.cern.ch/contributionDisplay.py?contribId=400&sessionId=6&confId=149557
https://indico.cern.ch/contributionDisplay.py?contribId=102&sessionId=8&confId=149557
https://indico.cern.ch/contributionDisplay.py?contribId=102&sessionId=8&confId=149557
https://indico.egi.eu/indico/contributionDisplay.py?contribId=16&confId=679
https://indico.egi.eu/indico/contributionDisplay.py?contribId=16&confId=679
http://indico.cern.ch/contributionDisplay.py?contribId=329&sessionId=4&confId=048
http://indico.cern.ch/contributionDisplay.py?contribId=329&sessionId=4&confId=048
http://docs.oracle.com/cd/E11882_01/appdev.112/e10646.pdf
http://docs.oracle.com/cd/E11882_01/appdev.112/e10646.pdf
https://indico.cern.ch/contributionDisplay.py?contribId=567&sessionId=8&confId=149557
http://cdsweb.cern.ch/record/1142723
http://cdsweb.cern.ch/record/1142723



