

Investigation of Storage Options for Scientific Computing

on Grid and Cloud Facilities

Gabriele Garzoglio
1

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL, 60510, USA

E-mail: garzoglio@fnal.gov

Abstract. In recent years, several new storage technologies, such as Lustre, Hadoop,

OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to

characterize them under a variety of configurations, more work is needed to evaluate these

technologies for the use cases of scientific computing on Grid clusters and Cloud facilities.

This paper discusses our evaluation of the technologies as deployed on a test bed at
FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed

consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients,

some running on the storage server nodes themselves. With this configuration, the evaluation

compares the performance of some of these technologies when deployed on virtual machines

and on "bare metal" nodes. In addition to running standard benchmarks such as IOZone to

check the sanity of our installation, we have run I/O intensive tests using physics-analysis

applications. This paper presents how the storage solutions perform in a variety of realistic use

cases of scientific computing. One interesting difference among the storage systems tested is

found in a decrease in total read throughput with increasing number of client processes, which

occurs in some implementations but not others.

1. Introduction
In order for large distributed systems to maintain good scalability into the next generation of Grid and

Cloud infrastructures, the ability for applications to access data from a large number of concurrent

clients is of fundamental importance. Several new storage technologies have emerged recently with

interesting properties of fault tolerance, fairness of bandwidth distribution across clients, and minimal
operational overheads. Rigorous testing of these solutions for specific access patterns is the key to

understand the relevance of these solutions for specific use cases.

The Grid and Cloud Computing department of the Fermilab Computing Sector has conducted an
evaluation of four storage technologies for the use cases of data intensive science on Grid and Cloud

resources. The technologies evaluated are Lustre [2], Hadoop [3], BlueArc [4], and OrangeFS [5].

Because of the relevance of virtualization technologies in the everyday operations of modern
computing facilities, we focused on the evaluation of client and server deployments over a variety of

virtualized resource configurations.

 In our evaluation, we tested storage technologies using three different methodologies:

1
 To whom any correspondence should be addressed.

FERMILAB-CONF-12-261-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

1. Standard benchmarks: We used the standard storage benchmarks MDTest [13] and IOZone

[7]. MDTest measures scalability of the meta-data operations. IOZone measures aggregate

bandwidth to storage, simulating both high-speed highly-concurrent sequential random access

patterns;
2. Application-based benchmarks: we use the offline framework of the NOνA experiment to

measure storage performance, simulating a skimming root-based application demanding a

highly-concurrent random access pattern;
3. HEPiX Storage Group benchmarks: in collaboration with the HEPiX Storage Working Group,

we have integrated the NOνA computing framework with the HEPiX storage test bed. The

HEPiX group has used this application to evaluate storage technologies not covered under our

investigation, in particular client-side AFS in front of Lustre, GPFS (with and without client-
side AFS), and NFSv4.

In sec. 2, we describe our test bed. The performance measurements from standard benchmarks is

discussed in sec. 3, for the study of aggregate bandwidth, and sec. 4, for the scalability of the metadata
servers. Results from the application-based benchmarks are in sec. 5. A summary of the results from

the HEPiX storage group is presented in sec. 6. We discuss comparative considerations of fault

tolerance and ease of operations in sec. 7, before concluding in sec. 8. Acknowledgments are in sec. 9.

2. Test Bed Specifications

We evaluated Lustre, Hadoop, BlueArc, and OrangeFS by installing the storage servers on four

FermiCloud (FCL) machines, typically using three machines as data nodes and one as a metadata

node. The machine specifications are described in the Lustre report [1] and are summarized in the
diagram of figure 1.

Figure 1. Two diagrams of the test bed. On the left, the servers are installed on “bare metal”
and the clients are on FCL or ITB. On the right, the servers are installed either on “bare meta”

or virtual machines; the clients are either on the same machine as the server (“on-board” clients

or on remote machines (“external client).

The clients were deployed on FermiCloud as well as on an external cluster, the FermiGrid

Integration Test Bed (ITB in the diagrams). On FCL, the virtualization infrastructure was KVM; on

ITB, it was XEN. This difference may account at least in part for the differences in performance

between on-board and external clients. Note that for the BlueArc server evaluation, we used the
Fermilab BlueArc production servers i.e. we did not deploy the servers in the FermiCloud testbed. The

BlueArc production servers consist of high-end hardware designed for scalability to hundreds of

clients. In this sense, the results may not represent an “apple-to-apple” comparison of BlueArc with
the other storage solutions.

Figure 1 shows two diagrams, or views, of the test bed. On the left, the diagram represents an

installation of storage servers on bare metal (i.e. directly on the host, as opposed to on a virtual
machine) (left box) and clients on different machines (on FCL or, for Lustre, on ITB) (right box). On

the right, the diagram represents servers installed on bare metal or virtual machines (for Lustre) (left

box) and clients either on the same machine as the server – “on-board” clients – or on different

machines (FCL or ITB) – “external” clients (right box).

These “views” of the testbed represent two main topological use cases. On the left, we recreated the
topology of a set of storage service installed on bare metal machines and accessible from remote client

machines. With this topology we compared the performance of storage solutions deployed on the

“bare metal”. On the right, we tested the more complex topology of storage services running on the
same machines as their clients. The storage servers run either on the bare metal or on a virtual machine

(for Lustre). This topology is typical of some storage solutions, such as Hadoop, where the disks from

a cluster are aggregated in a single storage namespace for the client machines on the same cluster.

With this topology, we compared the performance of storage for “on-board” vs. “external” client
machines.

3. Data Access Measurements from Standard Benchmarks

We have used the IOZone test suite to measure the read/write performance of the storage solutions in
the configurations described in sec. 2. We configured IOZone to write and read 2 GB files from

multiple processes, or “clients”, on multiple “bare-metal” and virtual machines. For a given number of

these machines, our measurements typically show the read / write aggregate bandwidth to / from the
clients (y-axis) vs. an increasing number of client processes (x-axis).

3.1. Lustre

We measured the performance of Lustre v1.8.3 on SL5 kernel 2.6.18 with servers on “bare metal” and

virtual machines and with “on-board” (on FCL) and “external” (on ITB) clients. The full report can be
found elsewhere [1]. We report here a few key points from that report.

1. The measured read bandwidth from “external” clients is the same (~350 MB/s) whether the

servers are deployed on bare metal or on virtual machines (VM). The key to fast read
performance from VM is using VirtIO drivers for the network.

2. “On-board” clients read about 15% more slowly than “external” clients. While this is not a

significant difference, it means that the operating system does not perform any optimization

when information is transferred between virtual machines all hosted on the same physical
node.

3. Servers running on “bare metal” provide a write bandwidth three times faster than servers

running on virtual machines (~70 MB/s on VM). We could not improve the performance by
changing the number of CPU assigned to the server virtual machine or changing IDE and

VirtIO drivers for disk and network access. According to anecdotal reports on a proprietary

Lutre-based storage solution, this performance gap may be reduced using SL6, although we
could not test it in this evaluation.

4. Date striping does not have any effect on write bandwidth. External clients read 5% faster

with data striping, not a significant effect.

3.2. Blue Arc
The read and write bandwidth of the Blue Arc (BA) storage was measured on the BA Titan HA

production deployment at Fermilab. This consists of 2 tiers of storage designed for a combined

throughput of more than 5 Gbps. One tier consists of RAID-6 SATA disks designed for a combined
throughput of 200 MB/s or more (see tests on the /nova area below). The other tier consists of RAID-5

fiber-channel disks, faster than the SATA disks, but smaller in aggregate size and spindles because of

the higher cost, designed for I/O intensive applications (see tests of the /garzogli-tst area below). The
storage is mounted via NFS to the clients on the ITB. While the BA installation was shared among

several clusters, we attempted to limit the influence of external network traffic by conducting our

measurement at night and using dedicated BA volumes for some measurements (/garzogli-tst area

tests).

We conducted a comparison of the performance between clients on bare metal and virtual machines

to answer the question

 How well do VM clients perform vs. Bare Metal clients?

The measurements were performed with a varying number of clients hosted on the FermiGrid

Integration Test Bed. The VM used VirtIO network drivers, always superior in performance to the

IDE drivers in our tests. Figure 2 shows a plot of the comparison, where in general one can observe

that

 clients on the bare metal read ~10% faster than on VM;

 clients on the bare metal write ~5% faster than on VM.

Figure 2. A comparison of Blue Arc bandwidth performance for a
varying number of clients (x-axis) on bare metal (BM) and on virtual

machines (VM). Bare metal read and write bandwidths are higher than

on virtual machines.

Figure 3. Left: the diagram shows that the VM transmits data to the

server using 3 network buffers. The transmit network buffer in the

virtual machine writes to the network buffer of the bridge managed by
the host operating system. In turn, the bridge writes to the transmit

network buffer of the host machine. This, then, sends the data over the

network. Right: The size of the buffers is controlled by the txqueuelen

parameters of the network interfaces. The table shows the values tested
for such parameter for the different interfaces.

Eth interface txqueuelen

Host 1000

Host / VM bridge 500, 1000, 2000

VM 1000

We tried to reduce this gap for writing by changing the size of the Ethernet buffer of the network

bridge used by the VM to send data. As shown in figure 3 (left), the VM client transmits data to the

server transferring the network data from the VM transmit buffer, to the buffer of the bridge managed

by the host operating system, to the transmit buffer of the host machine. A mismatch in the length of
these buffers is known to cause a slowdown in network write operations. We changed the length of the

bridge buffer using “reasonable” values, as in figure 3 (right). As shown in figure 4, these changes did

not affect the write bandwidth to BA.

Figure 4. A comparison of the write bandwidth to BA (y-axis) for a varying

number of clients (x-axis) on 6 bare metal or 6 virtual machines, when
varying the size of the network bridge buffer of the host. The variation in size

(txqueuelen parameter) does not affect the write bandwidth of the virtual

machines, as shown by the red, brown, and yellow traces. The bare metal
write bandwidth is always higher, as shown by the black trace.

3.3. Hadoop

We deployed Hadoop v0.19.1-20 with 1 name node and 3 data nodes on top of ext3 disk partitions on
4 physical hosts. Clients mount the Hadoop file system via Fuse [6] from FCL and ITB. We measured

read and write bandwidth under different conditions to answer the following questions:

 How well do VM clients perform vs. Bare Metal clients?

 Is there a difference for External vs. on-board clients?

 How does number of replicas change performance?

Figure 5 shows a plot of the measurements for different conditions of the clients and of the number

of replicas.
The read measurements (top plot) show that a small number of “on-board” bare metal clients have

non-physically high read speed, given the network hardware. Considering the amount of memory

available on the machines (24 GB / machine), the relatively small number of clients (up to 24 overall
i.e. 8 per machine), and the size of the test files (2 GB per client), this can be explained as an effect of

kernel data caching. For larger numbers of clients, the caching effect disappears as expected. The "on-

board" bare metal clients generally performed the fastest. Read performance is generally 50% – 100%
faster than clients on virtual machines ("on-board" or external).

The write measurements (bottom plot) show that “on board” clients on bare metal also gain from

kernel caching for a small number of clients. They are also generally faster than for clients on virtual

machines (“on-board” or external), except for a large number of clients (above 45).

As for the difference between “on-board” vs. external clients on virtual machines, the plots show
that “on-board” clients are generally faster than external clients for write and vice versa for read (for 1

replica).

Figure 5. A comparison of the read (top) and write (bottom) bandwidth (y-

axis) of Hadoop for a varying number of clients (x-axis) under different
conditions. Brown trace: clients run on 3 bare metal machines with Hadoop

set to 1 replica. Yellow trace: “on-board” clients run on 21 virtual machines

(7 VM on the 3 data nodes) with 1 replica. Black, dark-green, light-green
traces: external clients run on 21 VM (7 VM x 3 hosts) with 1, 2, and 3

replicas respectively.

The plots also show that the number of replicas has little or no effect on read bandwidth, while the

write bandwidth scales almost linearly with the number of replicas. So, while data (block) placement

does not make a big difference in read speed since in our use case blocks are read mostly sequentially,

the replication of blocks to increase fault tolerance slows down the system almost proportionally to the
number of replicas.

3.4. OrangeFS

Similarly to Hadoop, we initially deployed OrangeFS v2.8.4 with 1 name node and 3 data nodes on
top of ext3 disk partitions on 4 physical hosts. With OrangeFS, however, we’ve noticed an

improvement in performance by increasing the number of name nodes to up to four. Clients mount

OrangeFS via NFS from FCL specifying a name node.

We measured read and write bandwidth performance under different conditions to answer the
following questions:

 How well do VM clients perform vs. Bare Metal clients?

 Is there a difference for External vs. on-board clients?

 How does number of name nodes change performance?

Counterintuitively, figure 6 shows that for a given total number of client processes, clients on bare

metal did not perform better than on virtual machines. In particular, we compare the performance of
bare metal clients with the “fastest” on-board clients on virtual machines (3 name nodes and 4 data

nodes when each client mounts a specific name node). Writes are slower (~80%) on bare metal than

on VM. Reads are slightly slower for a few clients, but significantly slower (~50%) for a large number
of clients (above 40).

As for the difference between “on-board” vs. external clients on virtual machines, figure 6 shows

that read bandwidth is faster (10% to 60%) on “on-board” clients than on external clients. The write

performance measurements, however, are not as consistent and we consider the write results (for the
on-board vs. external clients comparison) not conclusive. In fact, for most configurations, the write

bandwidth is the same for “on-board” and external clients (the traces on the plots are superimposed);

however, for one of the external client configurations we consistently measured that external clients
write slower (~70%) than the on-board clients (red trace with square symbols – clients on VMs each

mounting one of the 4 name nodes in the testbed). The measurements were reproducible and we could

not reconcile this discrepancy.
The OrangeFS system allows the instantiation of multiple name nodes in the system. For our set up

with three data nodes, we performed measurements of read and write bandwidth with one name node

and four name nodes. When using 4 name nodes, we tried two cases: (1) we mounted all client

machines through one name node; (2) we mounted a specific name node to certain client machines, in
order to balance manually the load. From our measurements it appears that the read performance is

improved (10%-60%) with four name nodes; however, the write performance is worsened (~70%)

when using external clients. This may point to the need to optimize the number of name nodes of an
OrangeFS storage, depending on the expected access pattern. As for the effects of performing manual

load balancing (point (2) above), we observe that the manual balance has slightly improved read

performance for the same conditions (all on-board or external clients), although, this effect is not

present for the write performance.

Figure 6. A comparison of the read (top) and write (bottom) bandwidth (y-

axis) of OrangeFS for a varying number of clients (x-axis) under different

conditions. Explaining the legend, clients run “on-board” on the 4 storage

servers hosts (4 BM on-board) or on 21 virtual machines (7 VM on 3
hosts), “on-board” and externally. Performance varies depending on the

number of name nodes instantiated (4nn or 1nn) for 3 data nodes (3dn). It

also varies depending on whether each client virtual machine mounts a
different name node (Clts mount many) or all mount one name node (Clts

mount 1).

4. Metadata Access Measurements from Standard Benchmarks
We measured the performance of the metadata servers of Lustre, Hadoop, and OrangeFS using the

MDTest utility [13]. This tool can be configured to run typical file system operations (directory / file

creation, directory / file stats, etc.) from multiple hosts concurrently. The interaction with the file

system from each client host is coordinated via MPI.

Figure 7. The number of operations per second for various types of
metadata operations (directory creation, file stat, etc.) for the three

different modalities of interactions (Unique, Shared, Single) with

Hadoop, OrangeFS, and Lustre. For Haddop and OrangeFS, the
measurements have been taken with an increasing number of clients

processes.

For Hadoop and OrangeFS we ran tests with an increasing number of client processes, from 21 to

504, spread across 21 VM (7 VM on 3 hosts), managing up to 50,400 files and directories. For Lustre,

the measurements were done with 48 clients on 6 VM (1 VM on 6 hosts). In addition to MDTest, other

tests have been performed on Lustre and they are described in the Lustre report [1].
We configured MDTest to perform metadata operations with three different modalities:

 Unique: each client performs metadata operations on a directory and files unique for that

client, all at the same time (mdtest -d /mnt/pvfs2/mdtest/ -n 100 -i 3 -N 1 -v -u);

 Shared: one client creates a set of test files, then all clients perform operations on those shared

files at the same time (mdtest -d /mnt/pvfs2/mdtest/ -n 100 -i 3 -N 1 -v -c);

 Single: all clients perform operations on files unique for that client, but all files are located in

a single shared directory (mdtest -d /mnt/pvfs2/mdtest/ -n 100 -i 3 -N 1 -v).

For these modalities, figure 7 shows the number of operations per second for various metadata

interactions.

Figure 8 shows a comparative analysis of the data in figure 7 for directory and file stat for the
“Single” modality of interaction. The plot shows that Hadoop scales better than OrangeFS as the

number of clients grows, especially for file stat. For a small number of clients (up to 63), however,

OrangeFS performs better or similarly to Hadoop. Lustre has a comparable performance as Hadoop
and OrangeFS for the only measurement performed (48 clients).

Figure 8. A comparison of the performance of the medata servers of

Hadoop, OrangeFS, and Lustre. The plot shows the number of operations

per second supported for the two operations of file stat and directory stat
for an increasing number of clients. To give a sense of scale, at 504 clients,

50,400 files or directories were used in the measurement. Hadoop scales

better than OrangeFS for a large number of clients.

5. Data Access Measurements from Application-based Benchmarks

We test the performance of the storage solutions using real High Energy Physics analysis applications.

Our main test benchmark uses “Ana”, the framework of the NOνA experiment [8] at the time, which is

based on root. The application reads a fraction of each event as fast as possible (about 50%),

effectively simulating an event “skimming” application. We access 10 files of 1.5 GB in size in

random order and, before starting each test, we clear the client buffer cache. We run one client per

machine and measure bandwidth by looking at the amount of data transferred from the statistics of the
client network interface.

For Lustre, we also made measurements using a test benchmark based on “Loon”, the framework

of the MINOS experiment [9]. This benchmark, however, resulted to always be CPU-bound, thus not a
good gauge of storage performance [1].

Our benchmarks for write bandwidth also resulted to always be CPU-bound, mainly due to the

allocation of root data structures. The write bandwidth to storage is about 3 MB/s. Such requirement is

easily supported by all storage solutions.

5.1. Lustre

We used our benchmark to measure the performance of Lustre installed on “bare metal” and virtual

machines for “on-board” (FCL) and “external” (ITB) clients. The full report can be found elsewhere
[1]. We report here a few key points of our evaluation:

1. Our baseline is measured using external clients reading from Lustre on “bare metal” with no

data stripes. For 21 clients, the average bandwidth is 12.55 0.06 MB/s; for 1 client 15.6
0.2 MB/s.

2. The performance of Lustre on a virtual machine is comparable to the one on a “bare metal”

installation. For 21 external clients, the average bandwidth is 12.27 0.08 MB/s; for 1 client

15.3 0.1 MB/s.

3. Clients on virtual machines have comparable read performance as clients on “bare metal”.
“On-board” clients are 6% faster than external clients. Note that this result is opposite for

Hadoop and OrangeFS. For 21 clients, the average bandwidth is 13.02 0.05 MB/s; for 1,

14.4 0.1 MB/s.
4. Data striping leads to a more consistent distribution of bandwidth across clients. For example,

21 external clients reading from Lustre on a virtual machine have an average bandwidth of

12.81 0.01 MB/s. Note that the error on the client distribution is 10 times smaller than for
the case with no striping (point 2).

5. For a larger number of clients (e.g. 49 “on-board” and external clients), the distribution of
bandwidth to clients is not fairly distributed (the bandwidth spread is 20%). However, the

spread is comparable between “on-board” and external clients.

In addition, it should be noted that the configuration of the read-ahead parameter of Lustre has an
impact on the performance of root-based applications. In our case, our skimming application

benchmark reads 50% of each event by design. On BA, OrangeFS, and Hadoop, the clients transfer

50% of each file as expected. Conversely, on Lustre they transfer 85% because the default read-ahead
configuration is inadequate for this use case. Tuning this parameter is crucial for good performance.

5.2. Blue Arc

The application benchmark to evaluate the performance of the Blue Arc storage was measured reading

data from the BA production system at Fermilab. We ran measurements to answer the following
questions:

 How does read bandwidth vary for clients on “bare metal” vs. virtual machines?

 For a larger number of clients (e.g. 49), is the distribution of the bandwidth fair across clients?

To answer the first question, we ran tests with clients on 11 “bare metal” machines (on both FCL

and ITB), then on 21 virtual machines on ITB, to compare their performance. The resulting average

bandwidth was essentially the same, at 8.38 0.03 MB/s and 8.15 0.03 MB/s respectively. Figure 9

shows the plots of the results. It should be noted that some VM showed consistent slow performance
accessing storage, although in the time allocated for the tests, we were unable to identify the reason.

Figure 9. Read bandwidth accessing data on the Blue Arc using the application-based

benchmark. One benchmark process is run on each of 11 “bare metal” machines (left plot) and

on 21 virtual machines (right plot). The read bandwidth is essentially the same. Three virtual
machines performed consistently slower.

Figure 10. Read bandwidth accessing data on the Blue

Arc using the application-based benchmark. One

benchmark process was run on each of 49 virtual
machines. The read bandwidth is fairly distributed

across clients (within 1% of the distribution). Three

virtual machines performed consistently slower.

To answer the question on fairness of the bandwidth distribution across clients, we ran concurrently

a benchmark process on each of 49 virtual machines deployed on 11 hosts. We chose this number of

virtual machines because it is the maximum number we could create without disrupting other activities

and, at the same time, it is not too small compared to the typical use case of Grid machines
concurrently accessing storage, generally at a few hundreds machines.

The resulting aggregate bandwidth is about 400 MB/s. At this scale, the BA system fairly

distributed the available bandwidth across all 49 machines (within less than 1% of the distribution), as
shown if figure 10. As noted above, 3 virtual machines had a consistently slow connection to the

storage.

5.3. Hadoop

We evaluated the performance of Hadoop with the same system configuration used for the IOZone
tests (see sec. 3.3). We measured read and write bandwidth under different conditions to answer the

following questions:

 How does read bandwidth vary vs. the number of file replicas?

 Is there a difference for external vs. on-board clients?

 For a larger number of clients (e.g. 49) at the saturation of the network, is the distribution of

the bandwidth fair across clients?
To answer the first question, we ran the application-based client on 21 external virtual machines (1

process per machine) three times, each time configuring the system to provide a different number of

replicas (from 1 to 3). When a client accesses a data block within a file, the metadata server (name
node) makes available that block from one of the data nodes. Because access to the blocks is

sequential, the read bandwidth is not affected by the replication factor. Figure 11 (left plot) shows that

the measured read bandwidth is the same at 7.9 0.1 MB/s for the measurements with 1, 2, and 3
replicas.

Figure 11. The plots show the read bandwidth from Hadoop running concurrently one
instance of the application-based benchmark at each of the 21 virtual machines. The plot

on the left shows that the number of replicas does not affect read bandwith. The plot on

the right shows that clients on external virtual machines read about 5% faster than
clients on-board.

We measured the read bandwidth for “on-board” and external virtual machines, running one

instance of the application-based benchmark per virtual machine, using 21 virtual machines. These

were instantiated on 4 physical hosts on FCL for “on-board” clients (as many as the server nodes, by
definition) and on 7 hosts on ITB for external clients. The system was set up with 2 replicas, although

this does not affect the results, as discussed. Figure 11 (right plot) shows that the external clients read

about 5% faster than “on-board” clients. External clients are always faster, irrespectively of whether

the on-board virtual machines are deployed on the name node or on the data nodes. The virtualization

managers, KVM for on-board clients and XEN for external clients, may be in part responsible for the
difference. This trend, however, is similar to the results from OrangeFS, but opposite for Lustre

(virtual server deployment), where on-board clients read 6% faster than external clients. Similarly to

the BA measurements, three virtual machines showed particularly slow access to the data and their
measurements are not shown in the plot.

The same trend can be seen in the measurements to study the fairness of the bandwidth distribution

for a large number of clients (49). This number of clients has an aggregate bandwidth (~330 GB/s) at

the saturation of the network to the 3 data nodes (1 GE interface per node). We ask whether in these
conditions, the storage solution can apportion approximately the same amount of bandwidth to each

client.

Figure 12. The plot shows the fairness of bandwidth distribution

when running 49 clients concurrently. For each client, the open

circles show on the left y-axis the ratio between the time it takes for
that client to read all the data (15GB) and the time of the fastest

client. The full circles show on the right y-axis the same

information in terms of bandwidth. External clients are 10% faster
than on-board clients; within each group, though, bandwidth is

distributed fairly within 2% of the distribution.

Figure 12 shows a plot of the measurements. We run 49 clients concurrently and we measure the
time it takes for each client to read 10 files of 1.5 GB each. On the left y-axis, for each client the open

circles show the ratio between this time and the time from the fastest client, 1117 seconds. For

convenience, the clients are sorted on the x-axis from fastest to slowest. For example, client number

21 (the fastest of the on-board clients) takes about 7% longer (1.07) to read the 15 GB of data, as
compared to client number 1, the fastest of the external clients. The slowest client read takes 13%

longer than the faster, if we do not consider the virtual machines with very slow access to the data (5,

in this case, marked as “outliers” when in the plot). On the right y-axis, the full circles show the same

measurement in terms of bandwidth.

In summary, when running 49 concurrent clients, external clients read about 10% faster than on-
board clients, a larger difference than noted above (5%) for 21 clients. Among on-board and external

clients, the bandwidth is distributed “fairly” i.e. each client gets the same share of the bandwidth

within 2%.

5.4. OrangeFS

We evaluated the performance of OrangeFS with 1 name node and 3 data nodes on 4 hosts. We

measured read and write bandwidth under different conditions to answer the following questions:

 Is there a difference for external vs. on-board clients?

 For a larger number of clients (e.g. 49) at the saturation of the network, is the distribution of

the bandwidth fair across clients?
To answer the first question, similarly to the measurements for Hadoop, we ran the application-

based benchmark on 20 virtual machines. The results are similar to the ones for Hadoop, with external

clients reading at 7% higher bandwidth than on-board clients (for Hadoop it was 5%) and opposite of
the Lustre results (sec. 5.3). The left plot of figure 13 shows the measured bandwidth for the external

(triangles) and on-board (circles) clients.

Figure 13. The plot on the left shows the bandwidth from the application-based benchmark

running as one process on each of 21 on-board and external virtual machines. The plot shows

that external clients read 7% faster than on-board clients. The plot on the right shows the

fairness of bandwidth distribution when running 48 clients concurrently. For each client, the
open circles show on the left y-axis the ratio between the time it takes for that client to read all

the data (15GB) and the time of the fastest client. The full circles show on the right y-axis the

same information in terms of bandwidth. Among external clients, the bandwidth is fairly
distributed (within 2%); however, among on-board clients it is not, with a spread of 20% of the

distribution.

To answer the question on the fairness of the bandwidth, we followed the same methodology as for
Hadoop (sec. 5.3), using 48 virtual machines at the saturation of the network with the 3 data nodes. As

shown on the right plot of figure 13, the fastest external client read the 10 files of 1.5 GB each in 948

seconds (open circles on the left y-axis). The slowest of the on-board clients took 25% longer than this

(as opposed to 13% for Hadoop). The plot shows the same measurement in terms of bandwidth (full

circles on the right y-axis). Within external clients, we see that the fairness of the distribution is

similar to Hadoop, all clients having the same bandwidth within 2% of the distribution. For on-board

clients, instead, the spread is much higher, at about 20%, comparatively a distribution not as fair. This

last result is similar to the spread measured for the virtual server deployment of Lustre (for both on-
board and external clients in that case).

6. Data Access Measurements from the HEPiX Storage Group

In order to extend the evaluation of storage solutions using our application-based benchmark beyond
the technologies targeted in this work, we have partnered with the HEPiX storage group [10]. The

group, lead by Andrei Maslennikov, deploys different storage technologies on a testbed. It then

evaluates the performance using applications from Atlas and CMS, as well as our benchmark based on

the NOνA offline framework.
The group measures the number of physics events per second (y-axis) read by a given number of

concurrent application instances / jobs (x-axis) in a fixed amount of time (figure 14). The

measurements consist of 20,40,60,80 jobs on a 10-node cluster (2,4,6,8 jobs per node), where each of
the jobs is processing a dedicated non-shared set of event files. This is a complementary approach to

ours, whereby we measure bandwidth to storage to read a fixed amount of data. In addition, in the

HEPiX testbed the NOνA application writes the few selected events back to storage, while we write
them to local (fast) storage.

The HEPiX group evaluated GPFS, Lustre, NFS and AFS, in addition to hybrid solutions

consisting of AFS in front of Lustre (AFS/VILU) and GPFS (AFS/VIGP), to implement client-side

caching. A status report was presented in Oct 2011 [11]. In the case of the NOνA application, the best
performing storage was Lustre with AFS client caching, closely followed by Lustre. This is consistent

with our findings (sec. 8). GPFS and its AFS-based hybrid configuration performed the worst.

Figure 14. The HEPiX storage group evaluation of storage

technologies. The group runs 20,40,60, 80 instances of a
physics application concurrently from 10 nodes (x-axis) and

measures the number of physics events per second read by the

application in a fixed time (y-axis). The different trends show
the performance of different technologies.

7. Fault tolerance and operational considerations

In addition to measuring the performance of storage solutions, we simulated failure conditions and

evaluated the response of the system. From our experience, we also provide some considerations on

ease of operations for the various technologies.
For Lustre, the considerations on fault tolerance and ease of operations are reported elsewhere [1].

These are a few major considerations:

 The deployment of a Lustre server requires a special Kernel on a special file system. The

deployment of clients requires the installation of a Lustre kernel module. This specialization
of the kernels has operational implications on the availability of security patches and the

ability to perform system upgrades.

 The configuration of the system is conveniently managed through a server (Lustre MGS),

rather than via configuration files.

 For physics applications using root, the default value of the look-ahead parameter may be

suboptimal because of the layout of the events on a root file (sec 5.1). Such parameter requires
tuning, depending on the use case to be optimized.

 Lustre implements fault tolerance using two modes: fail-over and fail-out. In failover, when a

server is down the operation is blocked; in fail-off, the operation fast-fails. Once decided on

the fault tolerance mode, change is not straight forward, as we ascertained when we tried and
lost the data of our testbed.

 In fail-over mode, turning off OST and MDT servers on purpose, we observed the expected

behavior of graceful degradation of service.

 For Hadoop, as expected we observed that block-level replicas make the system tolerant to faults
of individual data nodes. Also, we observe the inability to serve data when the number of failing nodes

is greater than the number of replicas.

As for ease of operations, the Hadoop server is a process in user space, which we implemented on

top of ext3; the client is based on a fuse kernel module that is now standard in most Linux
distributions. The fault tolerance properties of Hadoop and this deployment model make system

operations easy to manage (system upgrades, reboots, etc.) We note, however, two caveats: (1) the

current implementation of the fuse client is not fully-POSIX compliant, although the maintainer of the
module is fast to respond and improve the implementation, if possible; (2) system configuration is

managed through files, a mechanism that is arguably less easy to manage as compared to a

configuration management server, as for Lustre; in our case, this resulted in some confusion when
setting the number of replicas, a client configuration parameter also set via configuration files.

For OrangeFS, we observe that the fault tolerance model is similar to Lustre, with no replica

management and only a fail-off fault tolerance model. Data is assumed to be redundant on disk

through RAID techniques (rather than through replicas in the system) and there is no tolerance of data
node failures. In addition, to improve performance, data is striped across multiple servers (as

optionally in Lustre), so that even if a single server were down, likely operations over multiple files

would be compromised.
The OrangeFS server is a process in user space over an ext3 file system. Clients access the server

through a kernel module. Arguably, this makes the maintenance for the server easier than for the

clients. We note, however, that as for Hadoop, configuration is managed through files. In addition, we

found limited documentation on the software and, by looking at discussion threads over the internet,
we had the impression of a small user community. As a consequence, some of the error messages

found in the log files, which by themselves were hard to interpret, could not be explained.

For BlueArc, we ran our tests using the dedicated BlueArc hardware infrastructure at Fermilab,
based on RAID 6 arrays. Clients mount the system via NFS. Since we did not have direct access to the

system, we did not simulate server faults. Because the BlueArc at Fermilab is designed to support a

scale of hundreds of clients, as expected we observed better scalability than for the solutions we
deployed on our testbed.

8. Conclusions

We tested the performance of 4 storage systems, Lustre, Hadoop, BlueArc, and OrangeFS, on a

testbed deployed on FermiCloud. We used virtualization to compare the performance of clients

running on the same machines as the server (“on-board” clients) vs. clients running on different hosts
(“external” clients). We assessed the response of the systems using three different benchmarks: to

measure the bandwidth response for general file access, we used IOZone [IOZone]; to measure the

scalability of the metadata servers, we used MDTest [13]; to measure the bandwidth distribution for
the access patterns typical of high-energy physics, we used a skimming application from the NOνA

experiment based on root [12]. Table 1 summarizes the measurements discussed in the sections above.

Table 1: A comparison of the read and write bandwidth among the 4 storage systems considered for

tests of general access (“IOZone”) and of “root-based” access.

In conclusion, Lustre deployed on “bare metal” has the best performance, as an external storage

solution for the use case of the root skimming application (requires fast read with little write). We

observed consistent performance also for general operations (tested via IOZone). When deploying
Lustre, one should consider the potential operational drawbacks of a special kernel for the server and a

kernel module for the clients. Because the Lustre kernel did not support the instantiation and

management of virtual machines, we could test the response of on-board clients by running the Lustre
server on a virtual machine. On our host running SL5, this arrangement resulted in slow write

performance.

Hadoop, OrangeFS, and BlueArc have equivalent performance for the root skimming use case. We

observed that Hadoop has good operational properties (maintenance and fault tolerance) and a fast
name server, but the performance is not better than the other solutions. As a result of this comparison,

we conclude that BlueArc is a good alternative for general operations at Fermilab, since it is a well

known production-quality solution. This study also supports the growing deployment of Lustre at
Fermilab, while maintaining our BlueArc infrastructure.

9. Acknowledgments

We thank Ted Hesselroth and Doug Strain for their help with IOZone performance measurements;
Andrei Maslennikov from the HEPiX storage group; Andrew Norman and Denis Perevalov for their

help with the NOνA framework for the storage benchmarks and their HEPiX work; Robert Hatcher,

Art Kreymer for their help with the Minos framework for the storage benchmarks and their HEPiX

work; Keith Chadwick, Steve Timm, Neha Sharma, amd Hyunwoo Kim for their input and for their
help with the FermiCloud and FermiGrid ITB test bed; Alex Kulyavtsev and Amitoj Singh for their

consulting time. This work is supported by the U.S. Department of Energy under contract No. DE-

AC02-07CH11359

Storage Benchmark Read (MB/s) Write (MB/s) Notes

Lustre IOZone 350 250 (70 on VM)

Root-based 12.6 –

Hadoop IOZone 50 - 240 80 - 300 Varies on number of replicas

Root-based 7.9 –

BlueArc IOZone 300 330 Varies on system conditions

Root-based 8.4 –

OrangeFS IOZone 150-330 220-350 Varies on number of name nodes

Root-based 8.1 –

10. References

[1] G. Garzoglio et al. “Investigation of Storage Options for Scientific Computing on Grid and Cloud

Facilities”, Fermilab white paper http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4665 .

Also published in shortened form at PoS (ISGC 2011 & OGF 31) 047.
[2] Lustre web site. Accessed on Apr 2011. http://www.lustre.org

[3] B. Bockelman, “Using Hadoop as a grid storage element”, 2009 J. Phys.: Conf. Ser. 180 012047

doi: 10.1088/1742-6596/180/1/012047
[4] Blue Arc web site. Accessed on Apr 2011. http://www.bluearc.com/

[5] Orange File System project web site. Accessed on Apr 2011. http://www.orangefs.org

[6] Fuse the Filesystem in User Space. Accessed on Mar 5, 2012. http://fuse.sourceforge.net/

[7] IOzone File System benchmarks web site. Accessed on Apr 2011. http://www.iozone.org/
[8] The NOνA Experiment at Fermilab. Accessed on Apr 2011. http://www-nova.fnal.gov/

[9] The MINOS Experiment at Fermilab. Accessed on Apr 2011. http://www-numi.fnal.gov/

[10] The HEPiX Storage Wokring Group. Accessed on Apr 2011. http://w3.hepix.org/storage/
[11] HEPiX Storage Working Group – Oct 2011, Vancouver - Andrei Maslennikov

[12] R. Brun and F. Rademakers, “ROOT - An Object Oriented Data Analysis Framework”

Proceedings AIHENP'96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A
389 (1997) 81-86. See also http://root.cern.ch/.

[13] mdtest HPC Benchmark web site. Accessed on May 17: http://mdtest.sourceforge.net/

