
Study of a Fine Grained Threaded Framework Design

C D Jones
Fermilab, P.O.Box 500, Batavia, IL 60510-5011, USA

E-mail: cdj@fnal.gov

Abstract. Traditionally, HEP experiments exploit the multiple cores in a CPU by having each
core process one event. However, future PC designs are expected to use CPUs which double
the number of processing cores at the same rate as the cost of memory falls by a factor of two.
This effectively means the amount of memory per processing core will remain constant. This is
a major challenge for LHC processing frameworks since the LHC is expected to deliver more
complex events (e.g. greater pileup events) in the coming years while the LHC experiment's
frameworks are already memory constrained. Therefore in the not so distant future we may
need to be able to efficiently use multiple cores to process one event. In this presentation we
will discuss a design for an HEP processing framework which can allow very fine grained
parallelization within one event as well as supporting processing multiple events
simultaneously while minimizing the memory footprint of the job. The design is built around
the libdispatch framework created by Apple Inc. (a port for Linux is available) whose central
concept is the use of task queues. This design also accommodates the reality that not all code
will be thread safe and therefore allows one to easily mark modules or sub parts of modules as
being thread unsafe. In addition, the design efficiently handles the requirement that events in
one run must all be processed before starting to process events from a different run. After
explaining the design we will provide measurements from simulating different processing
scenarios where the processing times used for the simulation are drawn from processing times
measured from actual CMS event processing.

1. Introduction
HEP has been able to transition into the multi-core CPU era by exploiting the fact that batch systems
just treat the additional cores as additional batch slots. However, this style of data processing may not
be possible in the future due to memory limitations in future architectures. Historically, memory per
unit cost has increased at the same rate as the number of transistors in a CPU[1]. Given that the
doubling in transistors is being used to double the number of cores, it means the amount of memory
per core we can afford is now constant at 2GB/core. Unfortunately, the complexity of LHC events is
only increasing due to the larger number of interactions per crossing, i.e. pileup, being delivered by the
accelerator. This complexity leads to more memory usage by our processes which are already near the
2GB resident memory limit. Finally, there are up coming technical limitations on connecting many
cores to shared system memory[2] which could further reduce the memory that can be efficiently
accessed by a core.

One way to deal with increased memory needs while having a constant memory per core is to use
forking[3]. Forking allows the different child processes to each process their own sequence of HEP
events while sharing any memory that was setup by the parent process before the forking. This allows
sharing of configuration and condition information between the children. Unfortunately, we do not
believe this is sufficient in the long run since the greater event complexity leads to greater memory
needed for a single event. Even this year we find the shared memory between forked processes is less

FERMILAB-CONF-12-221-CD-CMS

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

than the private memory used by each child process alone. Our conclusion is we need to be able to use
multiple cores to processes a single event. Such an ability is naturally accommodated by using threads.

In this paper we will first discuss the CMS experiment’s framework design and what parts lend
themselves to parallelization. We will then move on to discussing the libdispatch[4] threading model.
Next we show how the threading module can be used to implement a simplified version of a fine
grained threaded HEP framework. We conclude with performance measurements made using the
simplified framework.

2. Framework Design

The CMS framework[5] uses the following concepts:
Event: The Event holds all data related to a triggered readout of the CMS detector. We use the lower
case ‘event’ when referring to the read-out beam crossing from which the data in the Event is derived.
Source: Decides which events are to be processed.
Module: A Module is the smallest unit of work handled by the framework. There are three different
types of Modules: Processors, Filters and OutputModules. Processors read data from the Event and
create derived data which is placed back into the Event. Filters read data from the Event and decide if
that event is worth processing further. OutputModules read data from the Event and write it out for
long term storage.
Path: A Path holds a sequence of Filters. The Path runs the Filters in order and stops processing an
event if one of the Filters rejects the event or once all Filters have had a chance to process the event.
EndPath: EndPaths hold OutputModules. Each EndPath must wait until all Paths have completed
since the decision to store an event is based on the result of the Paths.

A

B

C

F2

D

F1 F3

O

Figure 1. The figure shows an example of the dependencies
between the different framework concepts. Filters are shown
as red octagons and are placed in Paths represented by the
white octagons. The OutputModule is represented by the
grey cylinder and is placed in an EndPath shown by the white
octagon. The four Producers are represented by the four
squares. The solid lines show data dependencies. E.g. F1
depends on data from B and C and both B and C depend on
data from A. The dashed lines show processing order
dependencies. So F1 must run before F3 while both Paths
must run before the EndPath.

The amount of parallelization we can gain is constrained by the dependencies between instances of the
concepts. Given that events are independent of each other, we are able to run multiple events in
parallel. Paths are also independent of each other and therefore lend themselves to processing the same
event in parallel. Like Paths, EndPaths are independent of each other, however they cannot be run
simultaneously until all Paths have finished processing a given event. However, if the same Filter
appears on multiple Paths we want to guarantee that the Filter is run only once per event. Unlike
Filters on a Path which must be run in sequence for a given event, the OutputModules in an EndPath
can be run in parallel for a given event since they are independent. The final amount of parallelization
that can be exploited is Producers can be run in parallel for a given event as long as the data they need
from other Producers can be made available to them when they need it. In addition, we’d prefer not to

run a Producer if its data is never needed because neither a Filter nor an OutputModule asked for its
data nor did they ask for data which was derived from the Producer’s data. Figure 1 shows an example
of the dependencies we’ve just discussed.

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Figure 2. Example timing diagram. The vertical axis contains the different Modules which need
to do work while the horizontal axis represents time. Each box represents some time used by a
core to do work on behalf of a given Module. The circles with numbers represent outstanding
dependencies. When the dependency goes to 0 the waiting task can do work.

Figure 2 uses the same example from Figure 1 and illustrates how the processing would progress over
time. At the beginning of time, the two Paths and the EndPath, all shown as white octagons, start
(represented by the black squares). The EndPath is dependent on the two Paths (shown by the circle
with the number 2). The Paths each start their first respective Filters (F1 and F2) and are dependent on
that Filter finishing. Filter F1 is dependent on B and C running while F2 is only dependent on C. B and
C are both dependent on A so it is Producer A which is the first module to run. Once A finishes, the
dependency for both B and C are satisfied so they run concurrently. C finishes early which allow F2 to
start running (F1 is still waiting on B). When B finishes, F1 has all of its dependencies so F1 start to
run concurrently with F2. F1 then finishes and since it accepts the event, the Path moves on to Filter
F3. F3 depends on Producer D so D is started. The long running F2 finally finishes which also finishes
that Path thereby reducing the EndPath’s dependency to 1. With D now finished, F3 runs and once
completed finishes the last Path. With both Paths now finished, the EndPath begins processing of the
OutputModule O. O is dependent on C but since C is already done O can start processing immediately.
Once O finishes, the whole process is started again with a new event.

3. Threading Model

For this work we chose the libdispatch framework which was developed by Apple Inc. Although
libdispatch was built specifically for Apple Inc’s operating systems, the code is also distributed as an
open source product. The open source community has ported this code to Linux and Windows.

libdispatch is a task based queue system. A task is a C/C++ function plus a context, where a context is
a pointer to any arbitrary user data structure. Tasks are placed into the back of thread safe queues.
libdispatch pulls tasks from the front of the queues and executes them in a thread from its thread pool.

libdispatch supports two types of queues. The first type is a global concurrent queue. There is only
one of these queues per process (on OS X and iOS there is only one concurrent queue for the entire
operating system). As its name implies, the concurrent queue allows multiple tasks to be pulled from it
and run simultaneously. The number of tasks run concurrently is dependent on the number of available
free cores in the system. The second type of queue is a private serial queue. This queue is very
lightweight (both in terms of memory and CPU) so the system can easily accommodate millions of
queues per process. The serial queue guarantees that only one task from a given queue will be run at a
time. Therefore one can use a serial queue to guarantee sequential behaviour without using system
level thread synchronization primitives. Given that the queues are built using lock free constructs, the
use of a serial queue can be faster than using a system lock when protecting a critical section or a
concurrently accessed and updated data structure.

In addition, libdispatch offers an additional synchronization mechanism: task groups. A series of tasks
can be associated with a ‘dispatch_group_t’ object. It is then possible to either tell the system to have
the present thread wait until all tasks of that group have finished or, better yet, to associate a new task
to add to a specified queue once all the grouped tasks have finished. Multiple tasks can be associated
to one task group. Task groups can also be handled manually by calling ‘dispatch_group_enter’ and
‘dispatch_group_leave’ directly. Once as many ‘leaves’ have occurred as ‘enters’ the group will send
its notification. The existence of task groups is critical to the way the test framework is implemented.

3. Framework Implementation

The test framework1 processes N Event instances simultaneously, where N is configurable in the
JSON formatted configuration file read by the program. Each Event instance is used to contain
information from one triggered beam crossing at a time, although an Event instance and its
associated data structures are reused repeatedly. In a real application, the number of Events used
simultaneously would depend on the total amount of memory available on the node as well as the
number of cores available. NOTE: in this paper we will distinguish between the C++ class Event and
the abstract concept of an HEP event by capitalization and choice of font.

The base class for the Modules contains a list of all data products the module instance will request
from the Event. This is used to do parallel prefetching of the data before the Module instance is run.
The implementation also allows Modules to request data from the Event synchronously, however
that ability was not used in the measurements described in this paper. This implementation has
Module instances shared between all Event instances. Sharing was chosen over cloning Module
instances for each Event instance since the goal was to minimize the total amount of memory used.

1 Source code available at http://cdcvs.fnal.gov/projects/toy-mt-framework/

However, if later studies show sharing leads to poor parallelization (due to synchronization issues) it
would be easy to change the implementation to also allow cloning.

The per Event meta-data needed for each Module instance is contained in a ModuleWrapper
instance. There is one ModuleWrapper instance per Module per Event. The ModuleWrapper
holds a serial queue used to guarantee a module is run only once per event. It also holds a task group
which is used to notify when the data products needed by the Module have all been prefetched so the
Module’s running task can then be placed in the serial queue held by the ModuleWrapper. Each
of the Module types have additional per event meta-data they must store and that information is held
by a class that inherits from ModuleWrapper.

The extra per Event meta-data needed by a Producer is held by the ProducerWrapper. The
ProducerWrapper has a task group which is used to notify other Modules when a Producer
has made its data product for that event. The ProducerWrapper also holds a Boolean which states
if the Producer has already been run for that particular event.

The extra per Event meta-data needed by a Filter is held by the FilterWrapper. This meta-
data is made up of two Booleans. The first Boolean states whether the Filter has already been run
for this event while the second Boolean records if the event passed the Filter’s criteria. Since the
same instance of a Filter is allowed to be on multiple Paths we use a FilterOnPathWrapper
to handle the task of calling the FilterWrapper. Then once the Filter has completed the
FilterOnPathWrapper decides if the Path should end or if we should advance to the next
Filter (or more accurately the next FilterOnPathWrapper). To do its job, the
FilterOnPathWrapper holds the index of the Filter with respect to the start of the Path as
well as which Path and FilterWrapper it is operating on.

To simplify the implementation of the test framework, OutputModules were not added. Instead, the
use of an OutputModule was modelled by a Filter which always passes an Event. Similarly,
no distinct EndPaths were created and instead we studied configuration which had no Paths , i.e.
only EndPaths. For those cases, a Path can be used as a substitute to an EndPath.

The implementation uses two recurring patterns. The first pattern is as one task ends, that task creates
and queues a new task or tasks. The new task is the next action in the workflow. This is done either
because the multiple tasks can be run in parallel or the new task uses a different queue and therefore
has different concurrency requirements compared to the original task. The second pattern is using a
task group where the task group is managed manually via ‘dispatch_group_enter’ and
‘dispatch_group_leave’. This is done since the first task associated with the task group may itself
launch other tasks and it is the entire task hierarchy which must be waited upon. Manually controlling
the task group is needed if multiple task groups are waiting for the same tasks.

We will use a simple example to illustrate how an event is processed in the test framework. The
example will use one Path containing one Filter (F) and two Producers (P1 and P2). The
processing of an event happens through the following steps.

• A task containing a pointer to an Event is added to the global concurrent queue.
• When run, the task resets the Event and all Wrappers associated with the Event. At the end

the task creates a new task containing a pointer to an Event and adds the task to the
Source’s serial queue.

• The task fetches the new event info from the Source and updates the Event. Since the task
is from the Source’s serial queue, no other thread will be advancing the Source to the next
event in the file at the same time.

• The Source task then creates a new task to start the Paths. The Path management task is
queued to the global concurrent queue.

• When the Path management task is run, it resets all Paths and creates a new task for each
Path and places those tasks in the global concurrent queue. The global concurrent queue is
used since multiple Paths are allowed to run simultaneously. In our example, only one task is
made since we only have one Path. In addition, it calls dispatch_group_enter on its
own ‘wait for paths’ task group. As its final step, the Path manager sets a notification on its
‘wait for paths’ task group to add a ‘do next event’ task to the global concurrent queue once all
Paths have finished processing this event.

• The Path task sees that we are at the beginning of the Path so it tells the
FilterOnPathWrapper associated to Filter F to start processing.

• The FilterOnPathWrapper sees that the FilterWrapper hasn’t yet been run for this
event and data needs to be prefetched. So for each data product it calls a method of Event to
get the data asynchronously. As part of the call it passes in its own prefetch task group as well
as the identifier saying which data item is being requested.

• Once the calls to the Event have finished, the FilterOnPathWrapper sets up an
asynchronous notification on its prefetch task group to add a ‘do work’ task to the
FilterWrapper’s serial queue once the two prefetches have finished.

• The calls to the Event to get data do the following work.
o The Event retrieves which ProducerWrapper is associated with the requested

data.
o The Event checks to see if the ProducerWrapper has already made the data. In

this case it has not.
o The Event calls dispatch_group_enter on the prefetch task group which was

passed in as an argument. This will make the task group wait until the data has been
obtained.

o The Event then tells the ProducerWrapper to produce its data asynchronously.
In addition, it gets the ‘data done’ task group from the ProducerWrapper.

o The Event then sets up a notification on the ‘data done’ task group which will add a
callback task to the global concurrent queue. The only thing this callback task does is
call dispatch_group_leave on the prefetch task group, therefore informing the
FilterWrapper that this one data item it was waiting on has now been obtained.

• The calls to the ProducerWrapper to produce its data asynchronously do the following
work.

o First it checks to see if the Producer was already run for this event. In this case it
has not been.

o Second it checks if data needs to be prefetched. In this case Producers P1 and P2
do not depend on any other data so no prefetch has to be done.

o Third it calls dispatch_group_enter on its own ‘data done’ task group.
o Finally, it sets a notification task on its prefetch task group which will add a ‘do work’

task to the ProducerWrapper’s serial queue. Since there are no prefetches, this
notification goes off immediately.

• At this point in the sequence, the only tasks in any queues are the ‘do work’ tasks associated
with the two ProducerWrappers. Since there are no other tasks in their respective queues,
both tasks are run concurrently. These tasks

o run their respective Producers;
o take the created data and add it to the Event;
o call dispatch_group_leave on its own ‘data done‘ task group. This triggers the

notification setup in the Event calls which leads to the task that call
dispatch_group_leave on the FilterWrapper’s prefetch task group.

• Once both Producers have been run, the FilterWrapper’s prefetch task group will
send its notification. That notification will add the ‘do work’ task of the
FilterOnPathWrapper on the FilterWrapper’s serial queue. Since no other task is
running on that queue, the ‘do work’ task is run immediately.

• The ‘do work’ task has the FilterOnPathWrapper ask the FilterWrapper to run the
Filter.

• The FilterWrapper checks that the Filter hasn’t already been run on this event (in this
case it has not) and then tells the Filter to run.

• Once the Filter is done, the FilterWrapper caches the decision made by the Filter.
• The FilterOnPathWrapper takes the Filter’s decision and passes it, along with the

Filter’s index on the Path to the Path’s method which determines what next to do.
• The Path’s ‘what next to do’ method sees that the index it was given is for the last Filter

on the Path and therefore the Path’s work is done. The Path then calls back to Path
management that it has completed its work. This callback calls dispatch_group_leave
on the ‘wait for paths’ task group. Since all Paths are finished, this adds a ‘do next event’
task to the global concurrent queue which causes the entire processes to happen over for the
next available event.

The use of serial queues to manage when the work of a Module is to be done provides a convenient
mechanism for controlling thread safety. The test framework supports three types of thread safety for a
Module: fully re-entrant, one-event-at-a-time and thread-unsafe. In the fully re-entrant case, the
implementation of the Module is such that the same Module can be run on multiple events
simultaneously. In that case we assign a unique serial queue to each ModuleWrapper instance. For
the one-event-at-a-time case, a Module instance can be run at the same time as different Module
instance but does not support being called simultaneously itself. In this case, all ModuleWrappers
which work with that Module instance share the same serial queue. Finally, a thread-unsafe Module
cannot be run at the same time as any other thread-unsafe Module. In this case, ModuleWrapper’s
associate with a thread-unsafe Module share the same serial queue.

3. Measurements

We want to know the performance benefits possible from the use of a fine-grained threaded framework
as well as any scaling limits inherit in the use of libdispatch. To achieve those goals we decided to
configure the test framework in such a way as to mimic the timing characteristics of CMS’
reconstruction program running on ‘high-pileup’ data.

The characteristics of the reconstruction were obtained by extracting the inter-module dependencies as
well as measuring the per module per event timing of the program. The inter-module dependencies,
that is for each module finding which other modules make the data it needs, are stored automatically
by the full CMS processing framework and are easily obtained from the resultant output file. The per
module per event timing was recorded for 100 events of a reconstruction job using CMS’ most recent
software version (CMSSW_5_2_0) and data recorded during the ‘high pileup’ LHC runs recorded at
the end of 2011. This ‘high pileup’ data averages around 30 interactions per recorded event so is a
reasonable approximation for the data to be taken during the 2012 LHC run. The reconstruction job

consists of 489 modules and processing for each event is triggered by two OutputModules who are
each on their own EndPath. No event filtering is applied.

We developed two special module classes for the measurements. Both modules take a list of modules
to which they were dependent upon and a list of the amount of time they should wait for each of the
100 events seen in the data. The two module classes differ on how they wait. The first module waits by
doing a numerical integration where the number of integration steps per second has been calibrated to
the machine being used for the study. This way of waiting utilizes an entire core and approximates the
CPU utilization of the actual reconstruction program. The second module type waits by calling usleep.
While sleeping, a module does not use a core and therefore additional work can be scheduled. This
allows one to explore how the program scales for a system which would have a very large number of
cores. Measurements made using configurations for which use of the two module types should show
the same performance have shown that the two modules agree to within 1%.

Besides the multi-threaded test framework, we also developed an optimized single-threaded
framework. The single-threaded framework supports the same concepts as the multi-threaded
framework and reads the same configuration files. In this way we can compare the relative timing
between the single-threaded and multi-threaded framework to determine any inherent overhead caused
by using libdispatch.

The system used to do the measurements was a virtual machine running on an Intel(R) Xeon(R) CPU
E5620. The machine has 16 physical cores (4 cores/socket with 4 sockets) with each core running at
2.40GHz. The virtual machine runs Scientific Linux 6 and was configured to use all 16 cores but only
allowed access to 16GB of the system’s 47 GB of RAM.

Figure 3 shows the throughput when using the Producers which do numeric integration while waiting
their appropriate amount of time. Figure 3a shows the raw throughput and figure 3b shows the
throughput relative to the single-threaded throughput. The three curves show three different
configurations. The blue cross curve was for the single-threaded framework. The yellow-orange boxes
are for the case where all modules say they are thread-unsafe and therefore the framework can only
run one module at a time. The final green circle curve is for the case where the modules say they are
fully re-entrant. In these measurements, we systematically increased either the total number of
processes run simultaneously (for the single-threaded and thread-unsafe cases) or the total number of

0

0.1

0.2

0.3

0.4

0.5

0 4 8 12 16 20

a) Throughput

Ev
en

ts
/S

ec
on

d

Number of Simultaneous Events

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 4 8 12 16 20

b) Relative to Single Threaded

Re
la

tiv
e

Th
ro

ug
hp

ut

Number of Simultaneous Events
Figure 3. Throughput a) and throughput relative to single thread throughput b) measurements for 16
core machine with Producers doing numeric integration.

Single Threaded
Fully Re-entrant
Thread-Unsafe

events run in parallel in one process (for the fully re-entrant case). As one should expect, all of these
cases level out their throughput once we are processing as many events simultaneously as there are
cores on the machine. In addition we found that at worse the thread-unsafe case is only 5% slower
than the optimized single-threaded framework. This implies the overhead of libdispatch is small for
the reconstruction job. Comparing the fully re-entrant case to the single threaded case at 16
simultaneous events we see only a 2% drop in throughput. However, as we decrease the number of
simultaneous events being processed in a job we see the throughput increase relative to the single-
threaded case since more than one core can work on an event at the same time. The maximum speedup
was 30%. The reason for this limit is discussed later in this paper.

Figure 4 shows the throughput for configurations using Producers which utilize usleep to wait the
appropriate amount of time. As explained earlier, these measurements let us see how well the
technology is likely to scale with very large numbers of cores. Figure 4a shows the standard
throughput plot while figure 4b shows throughput which has been scaled based on the number of
simultaneous events being processed. In figure 4b, a flat horizontal line corresponds to perfect scaling
since adding an additional event to process has no affect on how quickly any other event gets
processed. The reason scaled throughput was chosen for the y axis of figure 4b rather than the relative
throughput plotted in figure 3b is because the single threaded measurements (blue crosses) had to stop
at 800 simultaneous events because at that point we ran out of memory on the virtual machine while
we could still run the multi-threaded framework well beyond that point. The green circle curve shows
the case where modules can only process one event at a time. That case causes the events to form a
pipeline where the first event is being processed by the Nth module, the second event by the (N-1)th
module and so forth. As you can see, pipelining does not scale for this case and runs slower than the
single-threaded case once we exceed two simultaneous events. The reason is all the events get stuck
waiting to get a chance to run on the slowest module or behind a very complex event which in general
takes longer to process. The yellow-orange box curve shows the case where all the modules that
produce data are re-entrant but where both the reading and writing of the data can only process one
event at a time. In that case we see the system diverges from perfect scaling at about 25 simultaneous
events and then flattens out its throughput at 44 simultaneous events. This implies a need for a thread
safe I/O layer sooner rather than later since 32 core machines are already available on the market.

0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50

a) Throughput

Ev
en

ts
/S

ec
on

d

Number of Simultaneous Events

Single Threaded
1 Event per Module
1 Event I/O
Fully Re-entrant

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000

b) Scaled Througput

Ev
en

ts
/S

ec
/S

im
ul

ta
ne

ou
s

Ev
en

t

Number of Simultaneous Events

Figure 4. Throughput a) and throughput divided by number of simultaneous events b) measurements
for configurations with Producers using usleep.

Finally, we see the fully re-entrant case (red x’s) maintains its 30% speed up relative to the single-
threaded case all the way up to 1600 simultaneous events. The reason the fully re-entrant case stops
scaling at 1600 is that is where the program hits the system limit of 2048 threads allowed in one job.
Even at 2000 simultaneous events the multi-threaded framework only requires 1.1GB of resident
memory and 1/8th of the available CPU.

Figure 4 illustrates why the amount of concurrency is limited to only 30%. The reason for the
limitation is due to the dependencies between modules. In figure 4 we see over the time it takes to
process one typical event how many modules are running concurrently. At the beginning we have a
high level of parallelism for a short time because the modules doing the work are all independent of
each other. Then we reach the first long period where only one or two modules can run concurrently.
This long period is when the modules associated with track finding and fitting are running. Once the
tracks have been found, we get a second short period of high parallelism based on the modules which
were waiting for the tracks. After that we have our second long period where only one module is
running. That lone module is finding photons which were converted into electron-positron pairs inside
the tracking volume. The event processing then ends with a final short burst of parallel activity. It is
the two long periods of one or two module concurrency which limits the average concurrency
achievable in this setting. All is not lost, however. If we are able to parallelize the tasks internal to
these long running modules the average concurrency would be greatly improved. Research has begun
on how we can parallelize within these modules[6].

Previously[3] we calculated the amount of expected parallelism for a multi-threaded framework which
parallelizes processing of modules. Updating that calculation to using the new module dependencies
and timing we estimate a speedup of 29%. Since the calculation does not factor in any overhead for
managing the parallelism we conclude that such overhead is minimal for this reconstruction case.

4. Conclusion

As we have shown, libdispatch can be used to create a fine grained threaded HEP framework. The
technology scales well to thousands of concurrent events. Using serial task queues allows us to
support modules with different levels of thread safety and therefore provides a migration path where

Figure 5. Plot of the number of modules which are running simultaneously at any given
moment in time during the processing of a typical high-pileup event.

0

5

10

15

20

25

30

0 8 16 24 32

Number of Running Modules vs Time for High Pileup RECO

Nu
m

be
r o

f c
on

cu
rre

nt
 m

od
ul

es

Average timeline for processing one event (sec)

we can update modules one at a time. In addition we believe the use of a queuing model is simpler to
explain to physicists than thread primitives, such as locks, and therefore easier to use correctly.
However, we see that parallelizing modules only gave a modest 30% speed improvement due to the
dependencies between modules. We are therefore actively researching how to change the algorithms
internal to our track reconstruction to exploit parallelism within the modules themselves.

Although libdispatch has proven to be an excellent technology, we plan to study other technologies,
specifically OpenMP[7] and Intel Threading Building Blocks[8], before finalizing our choice by the
end of this summer. Once chosen, we will re-engineer CMS’ full framework to use threads.

5. References

[1]	

 http://www.jcmit.com/memoryprice.htm
[2]	

 http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm
[3] 	

 Jones C D, Elmer P, Sexton-Kennedy L, Green C and Baldooci A 2011 Multi-core aware

applications in CMS J. Phys.: Conf. Ser. 331 042012 doi:10.1088/1742-6596/331/4/042012
[4] 	

 http:/ /developer.apple.com/library/ios/#documentation/Performance/Reference/

GCD_libdispatch_Ref/Reference/reference.html
[5] 	

 Jones C D, Paterno M, Kowalkowski J, Sexton-Kennedy L and Tanenbaum W 2006 Proc.

CHEP 2006 vol 1, ed S Banerjee (India: Macmillan) pp 248-251
[6] 	

 Piparo D, Innocente V and Hauth T 2012 Developement and Evaluation of Vectorised and

Multi-Core Event Reconstruction Algorithms within the CMS Software Framework
Proceedings of CHEP 2012

[7] 	

 http://www.openmp.org
[8]	

 http://threadingbuildingblocks.org

Acknowledgements

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the
United States Department of Energy.

http://www.jcmit.com/memoryprice.htm
http://www.jcmit.com/memoryprice.htm
http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm
http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm

