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Abstract
Transverse beam diffusion for the Tevatron machine has

been calculated using the Lifetrac code. The following
effects were included: random noise (representing resid-
ual gas scattering, voltage noise in the accelerating cavi-
ties) lattice nonlinearities and beam-beam interactions. The
time evolution of particle distributions with different initial
amplitudes in Hamiltonian action has been simulated for 6
million turns, corresponding to a machine time of about 2
minutes. For each particle distribution, several cases have
been considered: a single beam in storage ring mode, the
collider case, and the effects of a hollow electron beam col-
limator.

INTRODUCTION
The aim of this work is to evaluate the diffusion coeffi-

cient for the tevatron antiproton beam with the use of the
tracking code Lifetrac [1], and compare it with the exper-
imental results. The diffusion equation, introduced in the
first section, is the foundation for the analysis of both the
experimental data [2] and the simulation data. The limita-
tions of this approach are investigated, and the diffusion co-
efficient results are presented and compared with the exper-
imental results previously published [3]. In the last section
the results of frequency map analysis for the beam beam
case, with and without electron lens, are presented.

THE DIFFUSIVE MODEL
The time evolution of the particle distribution function

ρ, both for beam core particles and beam tails, can be inter-
preted with the well-known diffusion equation:

δρ

δt
= ∇ · (D ∇(ρ)) (1)

The diffusion equation is derived from the continuity equa-
tion, which requires that the change in particle population
δρ
δt is equal to the flux φ of incoming particles

δρ

δt
= −∇ · φ (2)

and from the semi-empirical Flick’s law

φ = −D ∇ρ (3)

which states that the flux is proportional to the gradient
of the population itself via a proportionality factor D. In
order to understand the physical meaning of the diffusion
coefficient D it is important to define the space in which

the density function ρ is considered. In literature differ-
ent approaches have been explored. The obvious choice
to consider ρ = ρ(x, y, z), i.e. the density function in the
physical space, has been analyzed in detail in [4] In a single
dimension, the diffusion equation reads as:

δρ(W )

δt
=

δ

δW

(
4Dph(W )

β
W

δρ

δW

)
(4)

where the Courant Snyder invariant (single particle emit-
tance) W = (x2 + p2x)/β = (x2 + (βx′ + αx)2)/β has
been introduced. In the given formulation the general case
ofDph = Dph(W ) has been taken into account, however it
has been shown that, in case of a purely brownian motion,
the diffusion coefficient in the physical space is indepen-
dent on the particle emittance W .

It can also be convenient to consider the diffusion equa-
tion in the action space, where the Hamiltonian action J in
the plane z for a single particle is defined as:

J =
z2max
4βz

(5)

for the generic z direction. This approach is particularly
useful when analyzing experimental data, where only the
particle maximum displacement zmax is known [2]. For
linear machines it is straightforward to show the relation
between the single particle emittance and the action, i.e.
W = 4J . In this case Equation 4 becomes:

δρ

δt
=

δ

δJ

(
Dph

β
J
δρ

δJ

)
=

δ

δJ

(
DJ(J)

δρ

δJ

)
(6)

where the diffusion function DJ in the action space is
introduced. It follows that, in case of brownian motion in
the physical space, DJ(J) is expected to be linear in J, and
inversey proportional to the local beta function.
For a thin particle distribution in the range J0 − δ < J0 <
J0 + δ, the function DJ can be considered constant, and
the local diffusion equation becomes:

δρ

δt
= DJ

δ2ρ

δ2J
(7)

where the diffusion coefficientDJ can be calculated as [5]:

DJ =
∆J2

2∆t
(8)

The analysis of both the experimental results (see [Stan-
cari]) and the simulation data are based on Equation 7.
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WORKING IN A COUPLED MACHINE
It is worth noticing that the Tevatron is a coupled ma-

chine, therefore it is not possible to treat the vertical, hor-
izontal and longitudinal motion independently. However,
for a linear machine, it is still possible to define three un-
coupled planes, i.e. the eigenmodes of the one turn matrix,
where the three normalized particle amplitudes A1, A2, A3

[6] are invariants of the motion.
When a strong non linearity (e.g. beam-beam effect) is

included in the simulation, it generates a beating of the par-
ticle amplitudes. To compensate for the beating, the aver-
age amplitude over a large number of turn is considered. It
has been verified that 50K turns are an appropriate value.

From sake of simplicity in the following we will focus
only on the transverse modes, even though in the simulation
the full 6D treatment is implemented.

SIMULATION PARAMETERS
The code Lifetrac[1] has been used to calculate the dif-

fusion coefficient for anti protons in the Tevatron. Narrow
bi-Gaussian distributions in the average amplitude space
have been used as an input. The initial distribution width
is about .02 σ in both planes and its center is (nσ1, nσ2),
for n between 1 and 8. The population is of 1000 particles
per distribution, tracked (with fulll 6D treatment) for a total
number of turns of 6 106 (equivalent to about 2 minutes).
Different machine configurations has been considered:

• single beam: purely random noise (brownian motion);

• collider mode: random noise and beam beam, with
and without electron lens.

For amplitudes larger than 8σ it has been observed that, in
collision case, the particles gain large amplitudes (above
50σ) within few turns. This sudden particle loss is in good
agreement with the experimental observation of the dy-
namic aperture [7]. It has been verified that the observed
aperture limitation disappear when removing the parasitic
IPs from the simulation, thus proving that the Tevatron dy-
namic aperture is defined by the presence of parasitic IPs.
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Figure 1: Evolution in time of a narrow gaussian distribu-
tion in the J2 space, case with beam beam, no electron lens.

SIMULATION RESULTS

Diffusion coefficients
A typical evolution of the particle distribution distribu-

tion in Hamiltonian action space J2 is shown in Figure 1.
For each distribution the rms width of the distribution is
calculated, and then the local diffusion coefficient D2 is
calculated trough a quadratic fit, accoridng to equation 8.

The summary results for the coefficient D2 versus the
action J2 are presented in Figure 2. The results for the
other direction are similar. For the first curve (single beam
case) the only source of diffusion in the code is a random
noise matrix: in this case the linear dependency of D2(J)
(predicted by equation 6)) is verified. Including the beam
beam effect (second curve) leads to diffusion coefficient
values which are about a factor two to five larger. In the
third curve, finally, the electron lens is activated, and it ef-
fect on the beam diffusion is clearly visible: for amplitudes
lower than 3σ2 the core is untouched, while in the electron
lens range (amplitudes larger than 4σ2) the diffusion coeffi-
cient is greatly enhanced. A moderate increase in diffusion
coefficient for the 3σ2 case is justified by the fact that, as
previously explained, the amplitude indicated on the x axis
is intended to be the average amplitude, meaning that some
of the particles can actually reach a physical aperture larger
than the inner electron lens radius.

Comparison with experimental results
It is worth noticing that the overall diffusion coefficient

Dy perceived by a vertical collimator (such as in the exper-
iment described in [3] ) is determined by the behavior of
all the particle sitting in proximity to the collimator edge.
In the normalized average amplitude space the collimator
edge describes a curve ycoll. The total diffusion coeffi-
cient is a weighted average of the local diffusion coefficient
along ycoll:

Dy =

∫
ycoll

Dy(A1, A2) ρ(A1, A2)dA1dA2 (9)
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Figure 2: Diffusion coefficient D2 versus the Hamiltonian
action in the eigen mode 2.



Figure 3: Frequency map analysis for the tevatron, collision case, without electron lens (left hand side) and with electron
lens (right hand side).

Where ρ(A1, A2) is the particle density function, and
Dy(A1, A2) is an appropriate combination of the local dif-
fusion coefficient D1(A1, A2) and D2(A1, A2), e.g.

Dy(A1, A2) = D1(A1, A2) cos θy +D2(A1, A2) sin θy
(10)

with θy being the angle between the y direction and the
mode 2. In general θy = θy(A1, A2). The proper calcula-
tion would require a full sampling of the amplitude space,
meaning massive computational resources. In this article
we only compare some representative points of the ampli-
tude space with the experimental results presented in [3,
Figure 5]. The experimental data are obtained for the colli-
sion case, with no electron lens, and they are here compered
to the second curve in Figure 2. While the comparison for
the particles in the beam core is encouraging (same order
of magnitude [7]), for amplitude between 4 and 8σy (range
measured with the collimator scan method), the experimen-
tal values are up to a factor 105 larger than the simulated
data. This large difference is not yet understood.

Frequency map analysis

In order to overcome the complexity of performing a full
sampling of the amplitude space, an alternative approach
has been explored, i.e. the frequency map analysis. FMA
is a convenient way to identify the machine resonances ei-
ther in the tune or in the amplitude space. The quality factor
of an fma is the diffusion index id[8], which is equal to the
jitter of the main betatron tune in logaritmic scale. Even
if there is no explicit relation between the diffusion index
and the diffusion coefficient, the fma is still a useful method
for a qualitative evaluation of the diffusive behavior. The
comparison between the fma plots with and without elec-
tron lens (Figure 3) shows clearly the effect of the device,
which generates a dense region of additional resonances in
the beam halo area, leaving the beam core unaffected.

SUMMARY
The diffusion coefficient for some representative points

in the amplitude space has been calculated by fitting the
time evolution of delta-like particle distributions using the
diffusion equation, for different average amplitudes and
different machine conditions. The result successfully re-
produce the diffusion coefficient for the beam core, as mea-
sured in past experiments, but presents a large discrepancy
for halo particles. This difference has not been understood
yet, and it is still under investigation. Frequency map anal-
ysis has also been generated to show the global diffusive
behavior in the amplitude space, showing clearly the effect
of the electron lens on the large amplitude particles.

REFERENCES
[1] D. Shatilov, Y. Alexahin, V. Lebedev, and A. Valishev, “Life-

trac code for the weak-strong simulation of the beam-beam
effects in Tevatron,” Conf.Proc., vol. C0505161, p. 4138,
2005.

[2] G. Stancari, “Diffusion Model for the Time Evolution of Par-
ticle Loss Rates In Collimator Scans: A Method for Measur-
ing Stochastic Transverse Beam Dynamics in Circular Accel-
erators,” arXiv:1108.5010, 2011.

[3] G. Stancari, G. Annala, T. Johnson, D. Still, and A. Valishev,
“Measurements of Transverse Beam Diffusion Rates in the
Fermilab Tevatron Collider,” 2011.

[4] D. Edwards and M. Syphers, “An Introduction to the physics
of high-energy accelerators,” 1993, Wiley, New York, USA.

[5] K. Mess and M. Seidel, “Collimators as diagnostic tools
in the proton machine of HERA,” Nucl.Instrum.Meth., vol.
A351, pp. 279–285, 1994.

[6] V. Lebedev and S. Bogacz, “Betatron motion with coupling
of horizontal and vertical degrees of freedom,” JINST, vol. 5,
p. P10010, 2010.

[7] G. Stancari and A. Valishev, 2012, private communication.
[8] J. Laskar, “The chaotic motion of the solar system: A numer-

ical estimate of the size of the chaotic zones,” Icarus, vol. 88,
no. 2, pp. 266 – 291, 1990.




