
Fermilab multicore and GPU-accelerated clusters for

lattice QCD

D Holmgren, N Seenu, J Simone, A Singh

Fermi National Accelerator Laboratory, Batavia, Illinois, USA

E-mail: djholm@fnal.gov, nirmal@fnal.gov, simone@fnal.gov, amitoj@fnal.gov

Abstract. As part of the DOE LQCD-ext project, Fermilab designs, deploys, and operates
dedicated high performance clusters for lattice QCD (LQCD) computations. We describe the
design of these clusters, as well as their performance and the benchmarking processes that were
used to select the hardware and the techniques used to handle their NUMA architecture. We
discuss the design and performance of a GPU-accelerated cluster that Fermilab deployed in
January 2012. On these clusters, the use of multicore processors with increasing numbers of
cores has contributed to the steady decrease in price/performance for these calculations over
the last decade. In the last several years, GPU acceleration has led to further decreases in
price/performance for ported applications.

1. Introduction
Lattice QCD (LQCD) uses large scale numerical simulations to study the strong interactions
between quarks mediated by gluons (quantum chromodynamics, or QCD). In the United States,
most lattice QCD theorists are members of the USQCD collaboration. Members of USQCD
study Standard Model QCD problems in high energy and nuclear physics, as well as various
theories beyond the standard model.

The Office of Science of the U.S. Department of Energy, through the Office of High Energy
Physics and the Office of Nuclear Physics, has strongly supported LQCD through the SC
LQCD (FY06-FY09), SC LQCD-ext (FY10-FY14) and LQCD ARRA (FY09-FY13) hardware
projects. These projects have funded the purchase and operations of clusters dedicated to LQCD
computations. Time on these cluster resources is allocated by USQCD. Together with the Office
of Advanced Scientific Computing Research, the high energy and nuclear physics program offices
have also supported LQCD software development through the SciDAC (Scientific Discovery
through Advanced Computing) [1] and SciDAC-2 [2] programs.

Fermilab currently operates four LQCD clusters. Three of these are conventional Infiniband
clusters based on multicore processors, and the fourth is a GPU-accelerated cluster. Both
multicore and GPU architectures have improved the price/performance of LQCD clusters.

2. Computational Requirements
Inversion of the Dirac operator (Dslash) is the most computationally intensive task of LQCD
codes.[3] Using the improved staggered action (asqtad) as an example, during each iteration of
the asqtad Dslash inverter, eight sets of SU(3) matrix-vector multiplies occur using nearest and
next-next-nearest neighbor spinors. The 3x3 matrices describe gluons, and the 3x1 spinors

FERMILAB-CONF-12-120-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

describe quarks. For a calculation using multiple computers, ideally these floating point
operations overlap with the communications of the hyper-surfaces of the sub-lattices held on
neighboring nodes. The low ratio of floating point operations to bytes of memory read or written
during Dslash execution (in single precision, an SU(3) matrix-vector multiply requires 66 floating
point operations and has input and output operands totaling 120 bytes) results in a strong
demand for memory bandwidth. Effective parallel machine designs for LQCD calculations must
balance floating point performance, memory and network bandwidths, and network latency. On
any cluster, one of these will be the limiting factor determining performance for a given problem
size.

Inversion of the Dslash operator is computationally equivalent to inverting a very large, very
sparse matrix. For example, a 483

× 144 problem using the improved staggered action, typical
of the size of current simulations, results in a complex matrix with 47.8 million × 47.8 million
elements, of which 1.15 billion are non-zero (about one in every 2 million). Iterative techniques
such as “conjugate gradient” are used to perform these inversions. Specific LQCD simulations,
such as the computation of a decay constant, require many TFlop/sec-years of calculations using
large-scale parallel machines. LQCD codes employ MPI or other message passing libraries for
communications. Networks such as Infiniband provide the required high bandwidth and low
latency.

Figure 1 below represents a typical LQCD cluster. A cascaded Infiniband network is used,
with a large “spine” switch connected to “leaf” switches. All of the Fermilab LQCD clusters
described here implement this design. On accelerated clusters, each of the nodes shown contains
one to four GPUs. As the Infiniband fabric contributes greatly to the cost of these clusters,
when tolerated, over-subscription is used to reduce the total number of Infiniband switch ports
and cables. The over-subscription of such a fabric equals the total number of network links
connecting leaf to spine switches, divided into the number of worker nodes. Currently available
leaf switches have 36 switch ports. On a fabric with 2:1 over-subscription, such a switch will
have 8 uplinks to the spine switch, and 24 connections to work nodes. Since many simulations
may require 24 or fewer worker nodes, a substantial fraction of jobs run on such a cluster will
have all Infiniband communications “local” to one of the leaf switches.

Public

Private

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Router
PC

Infini-
Band
Spine
Switch

E
thernetE

th
er

ne
t

Internet

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

Head
Node

Gig Ethernet
Switch

Figure 1. Typical LQCD Infiniband cluster schematic. Infiniband spine and leaf switches are
shown in red. LQCD parallel codes execute on the worker nodes (labeled “PC”), under the
direction of a batch scheduler running on the head node.

3. LQCD Clusters at Fermilab
Table 1 lists the currently operational Fermilab LQCD clusters. The Kaon, JPsi, Ds, and Dsg
clusters were installed, respectively, in 2006, 2008, 2010, and 2012. The performance values
listed are sustained GFlops per worker node on LQCD parallel applications using 128 cores,
where the figure gives the performance average of improved staggered and domain wall fermion
actions. For the Dsg cluster, in addition to the performance of the worker nodes when using
only the Intel E5630 conventional processors, the performance of GPU-accelerated code is given
in italics. In general, GPU performance varies widely across LQCD applications, with observed
acceleration compared to conventional nodes of two to fifteen on LQCD codes; the value shown
for the Dsg cluster corresponds to isotropic clover code that utilizes four GPUs in parallel using
two Dsg worker nodes (each Dsg worker node contains two GPUs).

Table 1. Fermilab LQCD clusters
Name CPU Nodes Cores Performance

Kaon Dual 2.0 GHz Dual-Core Opteron 240 300 1200 4.3 GF/node
JPsi Dual 2.1 GHz Quad-Core Opteron 2352 856 6848 9.8 GF/node
Ds Quad 2.0 GHz 8-Core Opteron 6128 421 13472 50.9 GF/node
Dsg Dual 2.53 GHz Quad-Core Intel E5630 76 608 23.1 GF/node

Dual NVIDIA M2050 152 68096 93.4 GF/GPU

4. Multicore Processors and LQCD
LQCD codes scale very well on multicore processor clusters. Most implementations rely on
assigning an MPI rank to each core of a worker node, rather than using a hybrid approach such
as a mixture of OpenMP threading and MPI message passing. All currently available multi-
socket multicore commodity computers have NUMA architectures. Since memory bandwidth
limits LQCD application performance, binaries should either be built using NUMA-aware MPI
libraries, or invoked with NUMA controls. Figure 2 shows the performance degradation that
occurs on LQCD codes that use non-local memory. In this example, the performance of the
conjugate gradient inverter of both scalar (one process) and parallel (four process) versions
of LQCD code is shown as a function of the local lattice size. In both cases the red curve
corresponds to the execution of the code using non-local memory, and the blue curve corresponds
to the correct use of local memory. Fermilab provides all users with numactl-based shims that
force non-NUMA-aware MPI launchers to bind MPI ranks to cores and to set strict local memory
allocation policies.

As core counts per node have increased, LQCD code efficiencies have risen as well. This
is a consequence of having multiple MPI ranks per worker node. Any communications among
these local ranks has higher bandwidth and lower latency than similar communications between
MPI ranks running on different nodes. “Weak scaling” describes the relative performance of
simulations as the number of MPI ranks are increased for problems of proportionally greater
lattice sizes, keeping the local volume per rank constant. Figure 3 shows the ratio of the
performance per rank on a 128-rank problem to the performance per rank of the problem that
uses exactly the number of cores contained in a single node. These data were measured on a
sequence of LQCD clusters from 2005 until 2011 at Fermilab and at Jefferson Lab. The single
and dual core per node clusters were Intel-based, and the quad core, eight core, and thirty-two
cores per node clusters were AMD-based. An additional bonus from the increase in core counts
per node has been that, for fixed problem sizes, newer clusters with higher core counts per node
require fewer Infiniband switch ports and network interfaces.

 0

 1000

 2000

 3000

 4000

 5000

 0.1 1 10 100 1000

In
ve

rt
er

 P
er

fo
rm

an
ce

 (
A

gg
re

ga
te

),
 M

F
lo

p/
se

c

Local (aggregate) Lattice Size, MBytes

Opteron asqtad Inverter Performance on Fermilab Kaon Cluster

Four core aggregate, local memory
Four core aggregate, non-local memory

One core, local memory
One core, non-local memory

Figure 2. Performance of NUMA-aware (“local memory”) and non-aware (“non-local memory”)
binary invocations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 32

R
el

at
iv

e
P

er
fo

rm
an

ce

Core Count per Node

Weak Scaling

Figure 3. Weak scaling as a function of the number of cores per worker node

5. Benchmarking
Fermilab awards purchase contracts to computer vendors according to a best value process.
Price/performance, in dollars per sustained MFlop, is a key component in determining the value

of a vendor’s proposed system. For each of the JPsi[4], Ds[5], and Dsg[6] purchases, vendors were
provided with benchmark packages that reported aggregate single-node performance using all
available cores of LQCD applications and micro-benchmarks. The benchmark package for the
Dsg cluster included both GPU-accelerated and non-accelerated applications. The benchmarks
can be run on systems with a wide range of processor sockets per node and cores per socket.
The included MPI launcher automatically tailors execution to match the NUMA design.

6. GPU-Accelerated LQCD
An early use of GPU acceleration on an LQCD application was published in 2005[7], in which
the authors described coding in OpenGL with Cg. More recently, Barros et al. at Boston
University implemented a Wilson-Dirac operator in 2007 using NVIDIA’s CUDA programming
model[8], and reported[9] about a ten-fold speedup over contemporary conventional x86
processors. The work at Boston University evolved under the SciDAC-2 program into the
QUDA framework. Initially[10] this framework included Wilson-Dirac code that ran on a single
GPU, with performance optimizations that included mixed-precision algorithms and reduced
representations of SU(3) matrices. Reduced representations exploit symmetry in these data
structures such that fewer operands are stored and moved, thus lowering the required memory
bandwidth during parts of the calculation.

Further refinements to QUDA have included support for the clover, twisted-mass, asqtad,
HISQ, and domain wall fermion actions[11], and support for running codes across many GPUs
in parallel[12]. Parallel GPU capabilities are required to support large problems and to exploit
strong scaling to minimize wall clock times for gauge configuration generation.

7. The Dsg GPU-Accelerated Cluster
In 2011, Fermilab designed and purchased a GPU-accelerated cluster with optimal strong-
scaling performance on calculations that require many GPUs operating in parallel. To meet
this requirement, vendor-proposed host systems were restricted to those that provided sufficient
PCI Express bandwidth to support the installed GPUs (sixteen PCIe gen2 lanes per GPU) and
quad-data-rate Infiniband (eight PCIe gen2 lanes per Infiniband host channel adapter, with one
host channel adapter per par of GPUs).

The purchase of the Dsg cluster was awarded to Hewlett-Packard. The GPU host machines
are model SL390s G7 blade servers; each server has two conventional processor sockets, populated
with Intel “Westmere” E5630 4-core processors. The hosts contain 48 GBytes of system memory.
Each host houses a pair of NVIDIA Tesla M2050 GPUs; each M2050 has 448 cores, and has
1 TFlop/sec peak single precision performance and supports hardware double precision. The
M2050 GPUs each have 3 GBytes of ECC-capable memory. Dsg consists of a total of 76 hosts,
with a total of 152 GPUs. A full bisection bandwidth quad data rate Infiniband fabric connects
all hosts.

The performance of Dsg GPUs varies with the specific LQCD application. In production
running, users have reported application-dependent speed-ups of between 2.1 and 13.3,
comparing Ds node-hours to Dsg node-hours for performing equivalent calculations. Large-
scale (963

× 192 and 643
× 96) gauge configuration generation has been demonstrated on this

cluster using parallel runs on 128 GPUs. The Dsg cluster has been in production since March
1, 2012.

8. Decreases in Price/Performance for LQCD Clusters
Fermilab has tracked LQCD price/performance data since 1995. Figure 4 shows the
price/performance observed on production Infiniband clusters deployed since 2005. The fit uses
data points between 2005 and 2010 and has a halving time of 1.613 years. Between 1995 and
2004, clusters based on Myrinet switched networks, on gigabit Ethernet toroidal mesh networks,

Figure 4. Price/performance, in dollars per sustained LQCD TFlop/sec. The blue diamonds
are clusters purchased at Fermilab or Jefferson Lab; the left two are clusters based on single
core computers, and the others are clusters based, respectively, on 2, 4, 8, 8, 8, and 8 cores per
node. The black star is the Ds cluster with 32 cores per node. The pink range shows the cluster
equivalent price/performance for codes running on Dsg that achieve speed-ups of between 2.1
and 13.3.

and on switched fast Ethernet networks exhibited a faster halving time of 1.25 years; these were
much smaller clusters with consequently less expensive network fabrics. Higher core counts per
node have compensated for the cessation of increasing processor clock speeds that occurred in the
middle of the last decade. Based on data from Dsg, the use of GPUs results in price/performance
that significantly surpasses the long term trend.

9. Summary
Fermilab operates a number of conventional and GPU-accelerated clusters based on Infiniband
interconnects dedicated to lattice QCD computations. Historically, the emergence of multicore
platforms with increasing core counts per node has benefited LQCD codes in terms of cost per
unit of performance. Since the performance of parallel computations depends on the slowest
processing element, control of NUMA-related run time behaviors, such as locking processes to
cores and enforcing local memory allocation policies, is critical to achieving both consistent
performance as well as the highest possible performance. For those LQCD applications that
have been ported to use GPUs, significant improvement in cost effectiveness has been observed
on the latest accelerated cluster at Fermilab.

The Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC
under Contract No. De-AC02-07CH11359 with the United States Department of Energy. This
contribution is FERMILAB-CONF-12-120-CD.

[1] National infrastructure for lattice gauge computing URL http://www.scidac.gov/HENP/HENP QCD.html

[2] Studying the theory of quarks and gluons formulated on a space-time lattice using lattice quantum
chromodynamics URL http://www.scidac.gov/physics/quarks.html

[3] Holmgren D J 2005 Nuclear Physics B (Proc. Suppl.) 140 183 (Preprint arXiv:hep-lat/0410049)
[4] Benchmark package for the jpsi cluster URL http://www.usqcd.org/fnal/fermi bench.tar.bz2

[5] Benchmark package for the ds cluster URL http://www.usqcd.org/fnal/fermi bench fy10.tar.bz2

[6] Benchmark package for the dsg cluster URL http://lqcd.fnal.gov/fermi bench fy11.tar.bz2

[7] Egri G I, Fodor Z, Hoelbling C, Katz S D, Nogradi D and Szabo K K 2007 Comput. Phys. Commun. 177

631 (Preprint arXiv:hep-lat/0611022)
[8] NVIDIA CUDA web page URL http://www.nvidia.com/object/cuda home new.html

[9] Barros K, Babich R, Brower R, Clark M A and Rebbi C 2008 PoS (Lattice2008) 045 (Preprint
arXiv:hep-lat/0810.5365)

[10] Clark M A, Babich R, Barros K, Brower R C and Rebbi C 2010 Comput. Phys. Commun. 181 1517 (Preprint
arXiv:hep-lat/0911.3191)

[11] Babich R, Clark M A and Joo B 2010 Proceedings of Supercomputing’10 (Preprint
arXiv:hep-lat/1011.0024)

[12] Babich R, Clark M A, Joo B, Shi G, Brower R C and Gottlieb S 2011 Proceedings of Supercomputing’11
(Preprint arXiv:hep-lat/1109.2935)

