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W/Z properties and V+jets at the Tevatron
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Abstract. We present a summary of recent measurements ofW andZ properties andW/Z production in asso-
ciation with jets inpp̄ collisions at

√
s = 1.96 TeV with the CDF and DØ detectors. Latest measurements ofZ/γ∗

transverse momentum and are presented along with new measurements of the angular distributions of final state
electrons from Drell Yan events as a way to probeZ boson production mechanisms. The mass dependence of the
forward-backward asymmetry inpp̄ → Z/γ∗ → e+e− interactions is measured, the effective weak mixing angle
extracted, and the most precise direct measurement of the vector and axial-vector couplings ofu andd quarks to
the Z boson presented. New measurements of jets produced in association withZ andW bosons for inclusive,
beauty and charm jets are also discussed.

1 Introduction

Precision Tevatron measurements ofW andZ boson prop-
erties andW/Z boson production in association with jets
continue to provide rich legacy for the understanding of
Standard Model processes, both for future precision mea-
surements that are subject to these processes as significant
backgrounds and for searches of physics beyond the Stan-
dard Model that have the same final state signatures.

This contribution presents the latest measurements of
W andZ bosons produced inclusively and in association
with jets, representing world-leading precision measure-
ments of electroweak parameters and tests of perturbative
QCD (pQCD) theory across a wide kinematic range, for
high jet multiplicities and in events with heavy-flavour jet
components.

2 Z/γ∗ transverse momentum

Recent measurement of theZ/γ∗ transverse momentum[1]
made extensive comparison of corrected data against theo-
retical predictions that had varied success in describing the
data. The measurement was dominated at lowpT by un-
certainties arising from corrections for experimental reso-
lution and efficiency that limited the precision of studies
in this region. A new observable,φ∗η (see Ref.[2] for defi-
nition), highly correlated with transverse momentum, was
proposed to allow high precision study of this lowpT re-
gion due to its dependence only on the lepton directions
that are experimentally measured with much higher preci-
sion than lepton momenta.

Using 7.3 fb−1 of integrated luminosity, the normalised
differential production cross section ofZ/γ∗ → ℓ+ℓ− as a
function of φ∗η was measured [2] by DØ. Figure 1 shows
a comparison of the corrected data compared to Monte
Carlo (MC) predictions from ResBos. While the general
shape of the distribution is reproduced, the precision of the
data reveal some some areas of significant discrepancy in
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modelling. The width of theφ∗η distribution becomes nar-
rower with increasing rapidity faster in data than predicted
by ResBos and in particular the small-x broadening model
is seen to have poor agreement with the data.

3 Z/γ∗ angular distributions

CDF measured [3] the angular distributions of final state
electrons frompp̄ → Z/γ∗ → e+e− interactions in the
Collins-Soper frame for the invariant mass interval 66<
Me+e− < 116 GeV using 2.1 fb−1 of integrated luminosity
in order to extract measurement of the angular coefficients
Ai as a function of theZ transverse momentum.

From pQCD, the Lam-Tung relation suggests thatA0
andA2 have a specific dependence onpT (dependent on the
contribution from quark-antiquark annihilation and Comp-
ton scattering processes) but should be equal to each other
up to corrections of orderα2

s .
A strong pT dependence was observed withA0,2. The

results were compared to a variety of Monte Carlo predic-
tions and are used to assess the relative contributions of
Compton and annihilation processes toZ/γ∗ production,
highlighting that at lowpT production dominantly occurs
via annihilation processes, with Compton scattering play-
ing an increasingly large role at higherpT . The average
A0− A2 value across thepT range studied was 0.02± 0.02.
As the Lam-Tung relation is only valid for spin-1 gluons,
this result confirms the vector nature of the gluon. By con-
trast to A0,2, A3 and A4 are expected (and confirmed by
data) to have a value independent ofpT , and fromA4 a
(theory-dependent) determination of the weak mixing an-
gle is extracted to be sin2 θW = 0.2329± 0.0012.

4 Z/γ∗ forward-backward asymmetry

The presence of both vector and axial vector couplings in
Z/γ∗ → ℓ+ℓ− production gives rise to an asymmetry in
the polar angleθ∗ of the negatively-charged lepton rela-
tive to the incoming quark direction in theZ/γ∗ rest frame,
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Fig. 1. Ratio of the corrected distributions of (1/σ) × (dσ/dφ∗η) to ResBos for three rapidity intervals. For the first two rapidity intervals,
both dielectron and dimuon data are presented. Comparison is also made to a variety of ResBos models. Differences between data and
predictions are observed, and in particular ResBos with small-x broadening is disfavoured.

with events having this lepton cosθ∗ > 0 being classi-
fied as ‘forward’ and those with cosθ∗ < 0 being classi-
fied as ‘backward’. The mass dependence of this forward-
backward charge asymmetryAFB was studied [4] by DØ
using pp̄ → Z/γ∗ → e+e− data corresponding to an in-
tegrated luminosity of 5.0 fb−1. Any deviation from pre-
dictions at high mass could be due to the presence of new
physics effects. No such discrepancy was observed. The
unfolded asymmetry measurement as a function of dilep-
ton invariant mass is shown in Figure 2.
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Fig. 2. Unfolded forward-backward asymmetry measurement
(points) compared with predictions frompythia (solid line) and
zgrad2 (dashed line). No significant departure from expectation
is observed across the range 50< Me+e− < 1000 GeV studied.

In the vicinity of theZ pole, AFB is sensitive to the
charged lepton effective mixing angle. This angle is ex-
tracted from the detector-level data before corrections by
comparing the measured background-subtracted distribu-
tion with templates simulated withpythia andzgrad2 us-
ing a variety of sin2 θℓeff inputs. This allows for a precise
measurement of the mixing angle without introducing sys-
tematic uncertainties in the unfolding process. Using events
in the range 70< Me+e− < 130 GeV a measurement of
sin2 θℓeff = 0.2304± 0.0008 (stat.)± 0.0006 (syst.) is ex-
tracted. By comparing the unfoldedAFB spectrum with
templates generated using ResBos for a variety of Z-light
quark couplings the individual measured quark couplings

Fig. 3. The 68% C.L. contours of the measured vector and axial-
vector couplings of the (a) up-quark and (b) down-quark to the
Z boson compared with prior measurements. The DØ data con-
tours are presented for both a two-dimensional fit, fixing theu
(d) couplings to the Standard Model values while fitting thed (u)
couplings, and a simultaneous four-dimensional fit.

can be determined. For this measurement, the mixing angle
is fixed to the global fit value of 0.23153. The results are
summarised in Figure 3 for a two and four-dimensional fit
procedure. These coupling extractions are the most precise
direct measurements to-date.
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5 W+jets production measurements

The production of aW boson in association with jets was
recently studied [5] by the DØ Collaboration with 4.2 fb−1

of data. Measurements of the inclusiveW + n-jet produc-
tion cross sections andR = σn/σn−1 (n = 0− 4) were pro-
duced and differential cross sections as a function of the
nth jet pT were unfolded (shown in Figure 4 as the ratio of
theory over data). These measurements were compared to
NLO pQCD calculations (LO for 4-jet). Reasonable agree-
ment was seen between between unfolded data and theo-
retical predictions, although some tension was observed in
the scaling behaviour between the two and three jet cross
sections in particular.
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Fig. 4. The ratio of pQCD predictions to the measured differential
cross sections for thenth jet pT (n = 1 − 4). The corrected data
and theory predictions are normalised by the measured inclusive
W boson cross section and the predicted inclusiveW boson cross
sections, respectively. The inner (red) bars represent thestatis-
tical uncertainties of the measurement, while the outer (black)
bars represent the statistical and systematic uncertainties added
in quadrature. The shaded areas indicate theoretical uncertainties
due to variations of the factorisation/renormalisation scales.

The CDF Collaboration has measured the production
of W bosons in association withb-jets [6] with 1.9 fb−1 of
data and determined the cross section times branching frac-
tion of W+b-jets to be 2.74±0.27 (stat.)±0.42 (syst.) pb in
significant disagreement with the prediction from MCFM
of 1.22± 0.14 pb.

This discrepancy is only apparent inb-jets however,
as production ofW bosons in association with charm jets
was recently studied [7] by CDF on 4.3 fb−1 of data and
the cross section times branching fraction measured to be
13.3+3.3

−2.9 (stat.+ syst.) pb in comparison to NLO predic-
tions of 11.3± 2.2 pb.

6 Z+jets production measurements

CDF have recently released detailed inclusive and differ-
ential measurements [8] of the kinematics ofZ bosons and
jets in Z+jet associated production, for up to three jets.
Figure 5 shows the inclusive cross sections forZ + (n)jets
for n = 1 − 4 along with comparisons to LO/NLO pQCD
predictions for a variety of scale choices and parton den-
sity functions (pdfs), as well as comparison to the matrix
element-parton shower matched Alpgen+Pythia MC pre-
dictions.

Detailed corrected data comparisons to NLO pQCD
predictions have been made differentially to a range of kine-
matic variables [8], including the inclusive andnth jet pT in
Z+ (n = 1−3)-jet events, inclusive jet rapidities,H jet

T , M j j,
MZ j j, ∆R j j, ∆φ j j, and dijetpT .

Broadly NLO predictions are found to describe the data
well, although several areas are observed where descrip-
tions could be improved. The Blackhat pQCD prediction
differs from MCFM in the choice of scale and some im-
provement with the Blackhat scale choice is observed in
the description of the highpT tail of jet pT in Z+1jet events.
Alpgen gives a good general agreement within the uncer-
tainties. The use of a newαs-consistent tuning of Alp-
gen+Pythia, Perugia 2011, leads to improved agreement.
Uncertainties on parton density functions are quite small
with respect to the scale uncertainty and in general the
measurement cannot be used to distinguish between dif-
ferent pdfs.

The production ofZ bosons has also been studied in as-
sociation withb-jets, as for theW, both by the DØ Collabo-
ration on 4.2 fb−1 of data, and the CDF Collaboration with
7.86 fb−1 The DØ analysis performed measurement [9] of
the (Z + b)/(Z+jet) production cross-section ratio, combin-
ing not just the secondary vertex invariant mass, but ad-
ditional discriminating information such as B-lifetime and
decay length significance as inputs to a neural network in
order to build discriminant template shapes for light, charm
and beauty jets. These templates were then fit to the data
to extract the (Z + b)/(Z+jet) fraction 1.92± 0.22 (stat.)±
0.15 (syst.)%, the most precise measurement of this quan-
tity to-date.

The new CDF analysis [10] performs a similar discrim-
inant template fit to the data (shown in Figure 6) to ex-
tract both the (Z + b)/(Z+jet) fraction: 2.24± 0.23 (stat.)
±0.32 (syst.)% (in a different phase-space to the DØ anal-
ysis), and also the (Z + b)/Z ratio: 0.293± 0.030 (stat.)
±0.036 (syst.)%, both in good agreement with MCFM NLO
predictions of 1.8 − 2.2% and 0.23− 0.28% respectively
(range of predictions from different scale choices for the
MCFM prediction).

The large dataset analysed has also allowed for mea-
surement of the (Z + b)/Z ratio to be conducted in bins
of jet pT and rapidity for the first time. Doing so leads
to a normalised differential production cross-section mea-



EPJ Web of Conferences

jetsN≥
1 2 3 4

   
  [

fb
]  

  
je

ts
Nσ

1

10

210

310

410

CDF Run II Preliminary

N jets inclusive ≥) + -l+ l→*(γZ/

µl = e, 

 2.1≤| 
jet

 30 GeV/c, |Y≥ jet

T
p

-1 CDF Data  L =  8.23 fb

 Sytematic uncertainties

 LO BLACKHAT+SHERPA

 NLO BLACKHAT+SHERPA

 MSTW2008 PDF

)Z
T + E

T
i piΣ (2

1 = 
I
TH 2

1 = 
0

µ 

jetsN≥
1 2 3 4

1

2

3 /2
0

µ = µ ; 
0

µ = 2µ 
 LO BLACKHAT+SHERPA
 NLO BLACKHAT+SHERPA
 MSTW2008 PDF

)Z
T + E

T
i piΣ (

2
1 = 

I
TH 

2
1 = 

0
µ 

1 2 3 4

1

2

3
/2

0
µ = µ ; 

0
µ = 2µ 

>2
T,jet

 = <p2
0

µ 

 LO MCFM
 NLO MCFM
 CTEQ6.6 PDF

=1.3
sep

(Z), R2
T

 + p2
Z = M2

0
µ 

1 2 3 4

1

2

3
 PDF uncertainties

MSTW2008

NNPDF2.1

 LO MCFM
 NLO MCFM
 CTEQ6.6 PDF

=1.3
sep

(Z), R2
T

 + p2
Z = M2

0
µ 

1 2 3 4

D
at

a 
/ T

he
or

y

1

1.5

2  ALPGEN+PYTHIA Tune BW
(Z) = 251.3 pbσ Normalized to NNLO 

T,i
2 PiΣ + 2

Z = M2
0

µ 

Fig. 5. Measurement of the inclusive production cross sections ofZ + (n)jets for n = 1 − 4. Comparison is made to LO/NLO pQCD
predictions from Blackhat+Sherpa and also presented as a ratio of data/theory in comparison with Alpgen+Pythia predictions and
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surement forZ + b-jets as a function of the leadingb-
jet pT and rapidity, as shown in Figure 7. This measure-
ment is statistically limited, with statistical uncertainties of
around 20%. Comparison is made to NLO MCFM predic-
tions, with and without corrections to the theory for non-
perturbative hadronisation and underlying event effects. The
data show good agreement with the theory predictions, al-
beit with large uncertainties on the measurement.
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