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When an extrasolar planet passes in front of its star (transits), its radius can be 
measured from the decrease in starlight and its orbital period from the time 
between transits.  Multiple planets transiting the same star reveal more: period 
ratios determine stability and dynamics, mutual gravitational interactions reflect 
planet masses and orbital shapes, and the fraction of transiting planets observed as 
multiples has implications for the planarity of planetary systems.  But few stars have 
more than one known transiting planet, and none has more than three.  Here we 
report Kepler spacecraft observations of a single Sun-like star that reveal six 
transiting planets, five with orbital periods between 10 and 47 days plus a sixth one 
with a longer period. The five inner planets are among the smallest whose masses 
and sizes have both been measured, and these measurements imply substantial 
envelopes of light gases. The degree of coplanarity and proximity of the planetary 
orbits imply energy dissipation near the end of planet formation. 
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Kepler is a 0.95 m aperture space telescope using transit photometry to determine the 
frequency and characteristics of planets and planetary systems1,2,3,4.  The only fully 
validated multiple transiting planet system to appear in the literature to date is Kepler-9, 
with two giant planets5 orbiting exterior to a planet whose radius is only 1.6 times that of 
Earth6.  The Kepler-10 system7 contains one confirmed planet and an additional 
unconfirmed planetary candidate.  Lightcurves of five other Kepler target stars, each with 
two or three (unverified) candidate transiting planets, have also been published8.  A 
catalog of all candidate planets, including targets with multiple candidates, is presented in 
Borucki et al. (in preparation).   
 
We describe below a six-planet system orbiting a star that we name Kepler-11.  First, we 
discuss the spacecraft photometry on which the discovery is based.  Second, we 
summarize stellar properties, primarily constrained using ground-based spectroscopy.  
Then, we show that slight deviations of transit times from exact periodicity due to mutual 
gravitational interactions confirm the planetary nature of the five inner candidates and 
provide mass estimates.  Next, the outer planet candidate is validated by computing an 
upper bound on the probability that it could result from known classes of astrophysical 
false positives.  We then assess the dynamical properties of the system, including long-
term stability, eccentricities, and relative inclinations of the planets' orbital planes.  We 
conclude with a discussion of constraints on the compositions of the planets and the clues 
that the compositions of these planets and their orbital dynamics provide for the structure 
and formation of planetary systems.   
 
Kepler Photometry 
 
The lightcurve of the target star Kepler-11 is shown in Figure 1.  After detrending, six 
sets of periodic dips of depth roughly 1 millimagnitude (0.1%) can be seen.  When the 
curves are phased with these six periods, each set of dips (Figure 2) is consistent with a 
model9 of a dark, circular disk masking out light from the same limb-darkened stellar 
disk; i.e., with the lightcurve revealing multiple planets transiting the same star. We 
denote the planets in order of increasing distance from the star Kepler-11b, Kepler-11c, 
..., Kepler-11g. 
 
Background eclipsing binary stars can mimic the signal of a transiting planet10.  Kepler 
returns data for each target as an array of pixels, enabling post-processing on the ground 
to determine the shift, if any, of location of the target during the apparent transits.  For all 
six planetary candidates of Kepler-11, these locations are coincident, with 3σ 
uncertainties of 0.7 arcsecond or less for the four largest planets and 1.4 arcseconds for 
the two smallest planets; see the Supplementary Information (SI) for details.  This lack of 
displacement during transit substantially restricts the phase space available for 
background eclipsing binary star false positives.  
 
Table S2 (in the SI) lists the measured transit depths and durations for each of the planets.  
The durations of the drops in flux caused by three of the planets are consistent with near-
central transits of the same star by planets on circular orbits. Kepler-11e's transits are 
one-third shorter than that expected, implying an inclination to the plane of the sky of 
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88.8° (the eccentricity needed to explain this duration for a central transit would 
destabilize the system).  The transit durations of planets Kepler-11b and f transits suggest 
somewhat non-central transits.  In sum, the lightcurve shapes imply that the system is not 
perfectly coplanar:  Kepler-11g and e are mutually inclined by at least ~0.6°. 
 
Ground-based Spectroscopy 
 
We performed a standard spectroscopic analysis11,12 of a high resolution spectrum of 
Kepler-11 taken at the Keck I telescope.  We derive an effective temperature, Teff = 
5680±100 K, surface gravity, log g = 4.3±0.2 (cgs), metallicity, [Fe/H] = 0.0±0.1 dex, 
and projected stellar equatorial rotation v sin i = 0.4±0.5 km/s.    Combining these 
measurements with stellar evolutionary tracks13,14 yields estimates of the star's mass, M★ 
= 0.95±0.10 M


, and radius, R★ = 1.1±0.1 R


, where the subscript  signifies solar 

values.   Estimates of the stellar density based upon transit observations are consistent 
with these spectroscopically-determined parameters.  Therefore, we adopt these stellar 
values for the rest of the paper, and note that the planet radii scale linearly with the stellar 
radius.  Additional details on these studies are provided in the SI.  
 
Transit Timing Variations  
 
Transits of a single planet on a Keplerian orbit about its star must be strictly periodic.  In 
contrast, the gravitational interactions among planets in a multiple planet system cause 
orbits to speed up and slow down by small amounts, leading to deviations from exact 
periodicity of transits15,16.  Such variations are strongest when planetary orbital periods 
are commensurate or nearly so, which is the case for the giant planets Kepler-9b and c5, 
or when planets orbit close to one another, which is the case for the inner five transiting 
planets of Kepler-11. 
 
Transit times of all six planets are listed in Table S2.  Deviations of these times from the 
best-fitting linear ephemeris (transit timing variations, or TTVs) are plotted in Figure 3.  
We modeled these deviations with a system of coplanar, gravitationally-interacting 
planets using numerical integrations5,17 (SI).  The TTVs for each planet are dominated by 
the perturbations from its immediate neighbors (Figure S5).  The relative periods and 
phases of each pair of planets, and to a lesser extent the small eccentricities, determine 
the shapes of the curves in Figure 3; the mass of each perturber determines the 
amplitudes.  Thus this TTV analysis allows us to estimate the masses of the inner five 
planets and to place constraints on their eccentricities.  We report the main results in 
Table 1 and detailed fitting statistics in the SI (Figure S5 and associated text).   
 
Perturbations of planets Kepler-11d and f by planet Kepler-11e are clearly observed.  
These variations confirm that all three sets of transits are produced by planets orbiting the 
same star and yield a 4σ detection of the mass of Kepler-11e.  Somewhat weaker 
perturbations are observed in the opposite direction, yielding a 3σ detection of the mass 
of Kepler-11d and a 2σ detection of the mass of Kepler-11f. 
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The inner pair of observed planets, Kepler-11b and c, lie near a 5:4 orbital period 
resonance and strongly interact with one another.  The degree to which they deviate from 
exact resonance determines the frequency at which their TTVs should occur.  Even 
though the precision of individual transit times is low due to small transit depths, transit-
timing periodograms of both planets show peak power at the expected frequency (Figure 
S4).  The TTVs thus confirm that Kepler-11b and c are planets, confirm that they orbit 
the same star, and yield 2σ determinations of their masses.  The outer planet, Kepler-11g, 
does not strongly interact with the others; it would need to be unexpectedly massive (~ 1 
MJupiter) to induce a detectable (Δχ2 = 9) signal on the entire set of transit mid-times. 
 
Validation of Planet Kepler-11g 
 
The outer planetary candidate is well-separated from the inner five in orbital period, and 
its dynamical interactions are not manifested in the data presently available.  Thus, we 
only have a weak upper bound on its mass, and unlike the other five candidates, its 
planetary nature is not confirmed by dynamics.  The signal (bottom panel of Figure 2) has 
the characteristics of a transiting planet and is far too large to have a non-negligible 
chance of being due to noise, but the possibility that it could be an astrophysical false-
positive must be addressed.  In order to obtain a Bayesian estimate of the probability that 
the events seen are due to a sixth planet transiting the star Kepler-11, we must compare 
estimates of the a priori likelihood of such a planet and of a false positive.  This is the 
same basic methodology as was used to validate planet Kepler-9d6. 
 
We begin by using the BLENDER code6 to explore the wide range of false positives that 
might mimic the Kepler-11g signal, by modeling the light curve directly in terms of a 
blend scenario.  The overwhelming majority of such configurations are excluded by 
BLENDER.  We then use all other observational constraints to further rule out blends, 
and we assess the a priori likelihood of the remaining false positives.  Two classes of 
false positives were considered: (1) The probability of an eclipsing pair of objects that is 
physically-associated with Kepler-11 providing as good a fit to the Kepler data as 
provided by a planet transiting the primary star was found to be 0.31 × 10-6. (2) The 
probability that a background eclipsing binary or star+planet pair yielding a signal of 
appropriate period, depth, and shape could be present and not have been detected as a 
result of a centroid shift in the in-transit data, or other constraints from spectroscopy and 
photometry, was found to be 0.58 × 10-6.  Thus the total a priori probability of a signal 
mimicking a planetary transit is 0.89 × 10-6.  There is a 0.5 × 10-3 a priori probability of a 
transiting sixth planet in the mass-period domain.  This value was conservatively 
estimated (not accounting for the coplanarity of the system; the value would increase by 
an order of magnitude if we were to assume an inclination distribution consistent with 
seeing transits of the five inner planets) using the observed distribution of extrasolar 
planets18,19.  Details on these calculations are presented in the SI.  Taking the ratio of 
these probabilities yields a total false alarm probability of 1.8 × 10-3, which is small 
enough for us to consider Kepler-11g to be a validated planet. 
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Long-Term Stability and Coplanarity 
  
One of the most striking features about the Kepler-11 system is how close the orbits of 
the planets are to one another.  From suites of numerical integrations20, dynamical 
survival of systems with more than three comparably-spaced planets for at least 1010 
orbits has been shown only if the relative spacing between orbital semi-major axes (ao – 
ai)/ao exceeds a critical number (Δcrit >~ 9) of mutual Hill-spheres ((Mi + Mo)/3M★)1/3, 
where the a's and M's refer to the semi-major axes and masses of the inner (i) and outer 
(o) planets, respectively.  All of the observed pairs of planets satisfy this criterion, apart 
from the inner pair, Kepler-11b and c.  These two planets are far enough from one 
another to be Hill stable in the absence of other bodies21 (i.e., the three body problem), 
and they are distant enough from the other planets that interactions between the 
subsystems are likely to be weak.  Thus stability is possible, although by no means 
assured.  So we integrated several systems that fit the data (given in Table S4) for 2.5 × 
108 years, as detailed in the SI.  Weak chaos is evident both in the mean motions and the 
eccentricities, but the variations are at a low enough level to be consistent with long-term 
stability.  
 
It is also of interest to determine whether this planetary system truly is as nearly coplanar 
as the Solar System, or perhaps even more so.  Given that the planets all transit the star, 
they individually must have nearly edge-on orbits.  As discussed above, the duration of 
planet Kepler-11e's transit implies an inclination to the plane of the sky of 88.8°, those of 
the two innermost planets suggest a comparable inclination, whereas those of the three 
other planets indicate smaller values. But even though the inclinations to the line of sight 
of all six planetary orbits are small, they could be rotated around the line of sight and 
mutually inclined to each other.  The more mutually inclined a given pair of planets is, 
the smaller the probability that multiple planets transit22,23.  We therefore ran Monte 
Carlo simulations to assess the probability of a randomly-positioned observer viewing 
transits of all five inner planets assuming that relative planetary inclinations were drawn 
from a Rayleigh distribution about a randomly selected plane.  Results, displayed in 
Figure 4 and Table S6, suggest a mean mutual inclination of 1-2°. Details on these 
calculations are provided in the SI. 
 
Mutual inclinations around the line of sight give rise to inclination changes, which would 
manifest themselves as transit duration changes24.  We notice no such changes. The short 
baseline, small signal to noise, and small planet masses, render these dynamical 
constraints weak at the present time for all planets but Kepler-11e.  Planet Kepler-11e has 
the only measured inclination, and we find that the transit duration does not change by 
more than 2% over the time span of the light curve.  If planet Kepler-11e's orbit were 
rotated around the line of sight by just 2° compared to all the other components of the 
system, then with the masses listed in Table 1 the other planets would exert sufficient 
torque its orbit to violate this limit.   
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Planet Compositions and Formation 
 
Although the Kepler-11 planetary system is extraordinary, it also tells us much about the 
ordinary.  Measuring the both the radii and masses of small planets is extremely difficult, 
especially for cooler worlds farther from their star that are not heated above 1000 K. 
(Very high temperatures can physically alter planets, producing anomalous properties.) 
The planetary sizes obtained from transit depths and planetary masses from dynamical 
interactions together yield insight into planetary composition.   
 
Figure 5 plots radius as a function of mass for the five newly-discovered planets whose 
masses have been measured.  Compared to Earth, each of these planets is large for its 
mass.  Most of the volume of each of the planets Kepler-11c-f is occupied by low-density 
material. It is often useful to think of three classes of planetary materials, from relatively 
high to low density:  rocks/metals, “ices” dominated by H2O, CH4, and NH3, and H/He 
gas.  All of these components could have been accumulated directly from the 
protoplanetary disk during planet formation. Hydrogen and steam envelopes can also be 
the product of chemical reactions and out-gassing of rocky planets, but only up to 6%  
and 20% by mass, respectively25.  In the Kepler-11 system, the largest planets with 
measured masses, d and e, must contain large volumes of H, as must low-mass planet f.   
Planets Kepler-11b and c could either be rich in “ices” (likely in the fluid state, as in 
Uranus and Neptune) and/or a H/He mixture.  (The error bars on mass and radius for 
Kepler-11b allow for the possibility of an iron-depleted nearly pure silicate composition, 
but we view this as highly unlikely on cosmogonic grounds.) In terms of mass, all five of 
these planets must be primarily composed of elements heavier than helium. Future 
atmospheric characterization to decipher between H-dominated or steam atmospheres 
would tell us more about the planets’ bulk composition and atmospheric stability26. 
 
Planets Kepler-11b and c have the largest bulk densities and would need the smallest 
mass fraction of hydrogen to fit their radii.  Using an energy-limited escape model27, we 
estimate a hydrogen mass-loss rate of several × 109 g/s for each of the five inner planets, 
leading to the loss of ~0.1 M⊕, where ⊕  signifies the Earth, of hydrogen over 10 Gyr.  
This is less than a factor of 10 away from total atmosphere loss for several of the planets.  
The modeling of hydrogen escape for strongly irradiated exoplanets is not yet well-
constrained by observations28,29, so larger escape rates are possible.  This suggests the 
scenario that planets Kepler-11b and c had larger H-dominated atmospheres in the past 
and lost these atmospheres during an earlier era when the planets had larger radii, lower 
bulk density, and a more active primary star, which would all favor higher mass-loss 
rates.  The comparative planetary science allowed by the planets in Kepler-11 system 
may allow for advances in understanding these mass-loss processes. 
 
The inner five observed planets of the Kepler-11 planetary system are quite densely-
packed dynamically, in that significantly closer orbits would not be stable for the billions 
of years that the star has resided on the main sequence.  The eccentricities of these 
planets are small, and the inclinations very small.  The planets are not locked into low-
order mean motion resonances.   
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Kepler-11 is a remarkable planetary system whose architecture and dynamics provide 
clues to its formation. The significant light gas component of planets Kepler-11d, e and f 
imply that at least these three bodies formed before the gaseous component of their 
protoplanetary disk dispersed, probably taking no longer than a few million years to grow 
to near their present masses.  The small eccentricities and inclinations of all five inner 
planets imply dissipation during the late stages of the formation/migration process, which 
means that gas and/or numerous bodies much less massive than the current planets were 
present.  The lack of strong orbital resonances argues against slow, convergent migration 
of the planets, which would lead to trapping in such configurations, although dissipative 
forces could have moved the inner pair of planets out from the nearby 5:4 resonance30.  In 
situ formation would require a massive protoplanetary disk of solids near the star and/or 
trapping of small solid bodies whose orbits were decaying towards the star as a result of 
gas drag; it would also require accretion of significant amounts of gas by hot small rocky 
cores, which has not been demonstrated.  (The temperature this close to the growing star 
would have been too high for ices to have condensed.)   The Kepler spacecraft is 
scheduled to continue to return data on the Kepler-11 planetary system for the remainder 
of its mission, and the longer temporal baseline afforded by these data will allow for 
more accurate measurements of the planets and their interactions. 
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Table 

Table 1 Planet Properties 

Planet	   Period	   Epoch	  

Semi-major	  

Axis	   Inclination	  

Transit	  

Duration	  

Transit	  

Depth	   Radius	   Mass	   Density	  

	  	   (days)	   (BJD)	  

	  	  

	  	  	  	  (AU)	  

	  

(degrees)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (hrs)	   (mmag)	   (R⊕)	   (M⊕)	   	  	  	  (g/cm3)	  

b 
10.30375  
± 0.00016 

2454971.5052 
± 0.0077 

0.091 
± 0.003 

88.5 
+1.0,-0.6 

4.02 
± 0.08 

0.31 
± 0.01 

1.97 
± 0.19 

4.3   
+2.2,-2.0 

 
 

3.1  
+2.1,-1.5 

c 
13.02502  
± 0.00008 

2454971.1748 
± 0.0031 

0.106 
± 0.004 

89.0 
+1.0,-0.6 

4.62 
± 0.04 

0.82 
± 0.01 

3.15 
± 0.30 

13.5 
+4.8,-6.1 

 
2.3 

+1.3,-1.1 

d 
22.68719  
± 0.00021 

2454981.4550 
± 0.0044 

0.159 
± 0.005 

89.3 
+0.6,-0.4 

5.58 
± 0.06 

0.80 
± 0.02 

3.43 
± 0.32 

6.1  
+3.1,-1.7 

 
0.9 

+0.5,-0.3 

e 
31.99590  
± 0.00028 

2454987.1590 
± 0.0037 

0.194 
± 0.007 

88.8 
+0.2,-0.2 

4.33 
± 0.07 

1.40 
± 0.02 

4.52 
± 0.43 

8.4  
+2.5,-1.9 

0.5 
+0.2,-0.2 

f 
46.68876  
± 0.00074 

2454964.6487 
± 0.0059 

0.250 
± 0.009 

89.4 
+0.3,-0.2 

6.54 
± 0.14 

0.55 
± 0.02 

2.61 
± 0.25 

2.3  
+2.2,-1.2 

0.7 
+0.7,-0.4 

g 
118.37774  
± 0.00112 

2455120.2901 
± 0.0022 

0.462 
± 0.016 

89.8 
+0.2,-0.2 

9.60 
± 0.13 

1.15 
± 0.03 

3.66 
± 0.35 < 300 

- 
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Planetary periods and transit epochs are the best-fitting linear ephemerides.  Uncertainty in epoch is median absolute deviation of transit 
times from this ephemeris; uncertainty in period is this quantity divided by number of orbits between first and last observed transits. 
Radii are from Table S2; uncertainties represent 1σ ranges, and are dominated by uncertainties in the radius of the star. The mass 
estimates are the uncertainty-weighted means of the three dynamical fits (Table S4) to TTV observations (Table S2) and the quoted 
ranges cover the union of 1σ ranges of these three fits.  One of these fits constrains all of the planets to be on circular orbits, the second 
one allows only planets Kepler-11b and c to have eccentric orbits, and the third solves for the eccentricities of all five planets b-f; see SI.  
Stability considerations may preclude masses near the upper ends of the quoted ranges for the closely-spaced inner pair of planets.  
Inclinations are with respect to the plane of the sky. 
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Figure 1:  
Lightcurves of Kepler-11, raw and detrended. Kepler-11 is a G dwarf star with Kepler 
magnitude Kp = 13.7, visual magnitude V = 14.2 mag, and celestial coordinates RA = 
19h 48m 27.62s, Dec = +41° 54' 32.9"; alternate designations used in catalogs are KIC 
6541920 and KOI-157.  Kepler-11 is ~ 2000 light-years from Earth.  Variations in the 
brightness of Kepler-11 have been monitored with an effective duty cycle of 91% over 
the time interval barycentric Julian date (BJD) 2454964.511- 2455462.296, with data 
returned to Earth at a cadence of 29.426 minutes (long cadence, LC).  Shown above are 
Kepler photometric data in 30-minute intervals, raw from the spacecraft with each quarter 
normalized to its median (top) and after detrending with a polynomial filter31 (Rowe et al. 
2010). These data are available from the MAST archive at http://archive.stsci.edu/kepler/ 
. Note the difference in vertical scales between the two panels.  The six sets of periodic 
transits are indicated with dots of differing colors. Four photometric datapoints 
representing the triply concurrent transit of planets Kepler-11b, d and e at BJD 2455435.2  
(Figure S6) are not shown as their values lie below the plotted range.  Data have also 
been returned for this target star at a cadence of 58.85 seconds since BJD 2455093.215, 
but our analysis is based exclusively on the LC data.   
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Figure 2:  
Detrended data of Figure 1 shown phased at the period of each transit signal and zoomed 
to an 18-hour region around mid-transit.  Overlapping transits are not shown, nor were 
they used in the model.  Each panel has an identical vertical scale, to show the relative 
depths, and identical horizontal scale, to show the relative durations.  The color of each 
planet's model lightcurve matches the color of the dots marking its transits in Figure 1.   
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Figure 3: 
Transit timing variations and dynamical fits.  Observed (O) mid-times of planetary 
transits (see the SI for transit-fitting method) minus a Calculated (C) linear ephemeris, are 
plotted as dots with 1σ error bars; colors correspond to the planetary transit signals in 
Figures 1 and 2.  The times derived from the "circular fit" model described in Table S4 
are given by the open diamonds.  Contributions of individual planets to these variations 
are shown in Figure S5. 
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Figure 4:  
Transit probabilities as a function of relative orbital inclinations of planets orbiting 
Kepler-11.  Results of Monte Carlo simulations to assess the probability of a randomly-
positioned observer viewing transits of various combinations of observed and 
hypothesized planets around the star Kepler-11, assuming that relative planetary 
inclinations were drawn from a Rayleigh distribution about a randomly selected plane.  
The solid blue curve shows probabilities the five inner planets (Kepler-11b-f) transiting.  
The solid pink curve shows probabilities all six inner planets to be seen transiting.  The 
ratio of the orbital period of planet Kepler-11g to that of Kepler-11f is substantially larger 
than that for any other neighboring pair of transiting planets in the system.  If we 
hypothesize that a seventh planet orbits between these objects with a period equal to the 
geometric mean of planets Kepler-11f and g, then the probability of observing transits of 
any combination totaling six of these seven planets is shown in the dashed golden curve. 
The dashed green curve shows the probability for the specific observed six to transit.  
Details on these calculations are provided in the SI.  
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Figure 5:  
Mass-radius relationship of small transiting planets, with Solar System planets shown for 
comparison.  Planets Kepler-11b-f are represented by filled circles with 1σ error bars, 
with letters written above; values and ranges are as given in Table 1.  Other transiting 
extrasolar planets in this size range are shown as open squares, representing in order of 
ascending radius Kepler-10b, CoRoT-7b, GJ 1214b, Kepler-4b, GJ 436b, and HAT-P-
11b. The triangles (labeled V, E, U and N) correspond to Venus, Earth, Neptune and 
Uranus, respectively.  The colors of the points show planetary temperatures (measured 
for planets in our Solar System, computed mean planet-wide equilibrium temperatures for 
Bond albedo = 0.2 for the extrasolar planets), with values shown in the color bar at the 
right.  Using previously implemented planetary structure and evolution models32,33, we 
plot mass-radius curves for 8 Gyr-old planets, assuming Teff = 700 K.  The solid black 
curve corresponds to models of planets with Earth-like rock-iron composition.  The 
higher dashed curve corresponds to 100% H2O.  All other curves use a water or H2/He 
envelope atop the rock-iron core.  The lower dashed curve is 50% H2O by mass, while 
the dotted curves are H2/He envelopes that make up 2%, 6%, 10%, and 20% of the total 
mass.  There is significant degeneracy in composition from only a mass and radius 
measurement34.  Planet Kepler-11d, e, and f appear to require a H2/He envelope, much 
like Uranus and Neptune, while Kepler-11b and c may have H2O and/or H2/He 
envelopes.  We note that multi-component and mixed compositions (not shown above), 
including rock/iron, H2O, and H2/He, are expected and lead to even greater degeneracy in 
determining composition from mass and radius alone. 
 



Supplemental Information

1. Kepler Photometry and Centroid Analysis

Since background eclipsing binaries (BGEB) are a common false positive for transiting planet

searches, we conducted a careful analysis of the target star centroid both in and out of transit. This

analysis is a useful tool to reject BGEBs since they tend to cause a significant displacement of the

centroid during the transit events. Using the transit ephemeris for each planet, non-overlapping

transits were selected from the Quarter 3 data (BJD 2,455,093.215–2,455,182.495). For each planet

a direct image composed of exposures within its transit(s) was formed, as well as a control direct

image with symmetrically chosen points outside of transit with widths equal to the transit on each

side. A difference image was formed by subtracting the in-transit image from the out-of-transit

control. A mean direct image was formed from the in- and out-of-transit direct images.

Pixel response function (PRF)35 fits were then performed separately to the direct and difference

images for each planet, with the resulting radial offset tabulated. Errors were established via a

Monte Carlo study by using the PRF to generate a large number of synthetic direct and difference

image realizations. The transit strength on each simulated transit source was set by the requirement

that the resulting transit depth in the simulated flux time series match the observed transit depth.

The offset of each trial transit source from the target position and the resulting centroid errors

from the known target location were tabulated, producing a distribution of the centroid error vs.

transit offset. The 3σ point in this distribution was then chosen to represent the circle of confusion

in which false positives cannot be found. This was augmented by a 0.12 arcsec 1σ error to account

for systematics. The resulting table of offsets, and corresponding significance, is shown in Table S1.

The centroids are consistent for all planets with the true source of the transit being spatially

coincident with the target star (none of the deviations exceeds 2σ). Moreover, BGEBs beyond a

radius of 1.4 arc seconds are excluded at 3σ for the two smallest planets, Kepler-11b and f, and

beyond a radius of only 0.7 arc seconds for all of the other planets.

Contamination of the flux light curves (the ratio of flux in the photometric aperture from all

sources excluding the target star to the flux from all sources) is computed36 using synthetic images

based on the PRF model and the Kepler Input Catalog (KIC37). The contamination estimate is

approximate, with uncertainties mainly due to inaccuracies of the PSF model and catalog errors

(primarily the omission of dim stars). The contamination value varies from quarter to quarter

because the photometric aperture varies from quarter to quarter. When using stars listed in the

KIC, the contamination is as large as 7.2% of the total flux. If no stars are missing from the

KIC, then the contamination error uncertainties are less than 1% of the target star flux. The

KIC is complete only to about Kp = 17, however. Observations from the United Kingdom Infrared

Telescope (UKIRT) indicate two stars which are in or near the photometric aperture that are not in

the KIC, with Kp = 18.83± 0.64 and Kp = 19.53± 0.79. A conservative estimate, which takes the

bright value of these star’s magnitude uncertainties and slightly over-estimates the contributions of
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these star’s flux to the photometric aperture, increases the largest contamination value from 7.2%

to 9.1% of the total flux. In other quarters, which have lower contamination values, these two stars

are farther from the photometric aperture and thus increase the contamination by smaller amounts.

Therefore we expect that stars missing from the KIC increase the contamination by no more than

1% to 2% of the total flux. The contamination value of 12.3% given in the MAST archive (in the

Kepler Target Search summary) is larger than the values we find here, and can be taken as a firm

upper limit.

2. Properties of the Star Kepler-11

An accurate assessment of the stellar radius and its associated uncertainty is essential for

constraining the nature of the planets. We performed a standard LTE spectroscopic analysis

of a high-resolution template spectrum of Kepler-11 from Keck/HIRES using the SME package

(“Spectroscopy Made Easy”11,12) and derived an effective temperature Teff = 5680 ± 100 K, a

surface gravity log g = 4.3 ± 0.2 (cgs), a metallicity [Fe/H] = 0.00 ± 0.10 dex, and a projected

equatorial rotational velocity of v sin i = 0.4 ± 0.5 km s−1. A comparison of these parameters with

stellar evolution models14,13 yields an estimate of the star’s mass, M? = 0.95 ± 0.10 M�, and

its radius, R? = 1.10 ± 0.10 R�. The stellar isochrones in this part of the HR diagram are not

intersecting, so they provide unique solutions. According to these models, the star appears slightly

evolved and relatively old (6–10 Gyr).

The above radius, however, is essentially set by log g, which is a notoriously difficult quantity

to measure accurately. Since we do not have a parallax (and hence a luminosity) or asteroseismic

constraint on the mean stellar density, this raises concerns about correlations with Teff and [Fe/H],

as well as possible systematic errors. Fortunately, we are able to place bounds on the stellar

radius independent of log g. The transit duration is inversely proportional to the stellar density.

Although the impact parameters are poorly constrained, the maximum duration occurs for a central

transit and a low stellar density. Thus, the transit durations provide an independent lower limit

on the stellar radius that is similar to the 1σ lower limit based on the spectroscopy/isochrone

analysis. The main sequence provides yet a third independent lower limit for the stellar radius,

which is comparable to the 2σ lower limit for the radius based on the spectroscopy/isochrone

analysis. While our current estimate of the stellar radius is not particularly precise, using multiple

independent methods allows us to gain confidence in its accuracy.

We obtained five spectra with the HIRES spectrometer on the Keck 1 telescope with a resolving

power of R = 50,000 and a signal-to-noise ratio of 30, with exposures taking 20 min. A simple

Doppler analysis made use of the telluric A and B bands to set the wavelength calibration zero-

point, and a cross correlation was done in four spectral segments from 700–800 nm, avoiding telluric

lines. Figure S1 shows the resulting velocity measurements. The mean velocity of −57.16 km s−1

is measured relative to the Solar System barycenter; compared to the local velocity dispersion of

∼ 30 km s−1, this Galactic velocity suggests that Kepler-11 is a member of the thick disk of the
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Milky Way. The standard deviation of 0.34 kms−1 is consistent with fluctuations from the internal

errors of 0.28 km s−1. The visually apparent downward trend is not statistically significant, but

more spectra over a year time scale would be helpful to continue hunting for any sign of another

star located within 1 arcsec. Clearly these constant RVs rule out the presence of another star

within 2 magnitudes of Kepler-11 orbiting within 1 AU, as such a companion would cause the

composite velocity to change by more than 1 km s−1. To be sensitive to the planets themselves,

a much longer integrations or a bigger telescope would be needed: the largest K-amplitude we

anticipate is 5.3 m s−1, which comes from the one-σ upper bound on the mass of planet Kepler-11c

from Table 1 of the main text.

With six prospective planets, Kepler-11 raises the possibility of multiple stars within the Kepler

pixel, with transits (or eclipses) occurring for each of those stars. We have searched for additional,

unresolved stars near Kepler-11 by cross-correlating the Keck-HIRES spectrum against the solar

spectrum, looking for multiple peaks in the cross-correlation function (CCF). We found no other

peaks. The CCF, shown in Figure S2, exhibits a single narrow peak. The small ripples in the wings

of the CCF are due to stochastic overlaps of spectral lines as one spectrum is Doppler shifted past

the other. We simulated a stellar companion by constructing mock spectra of Kepler-11 as a blend

of two stars by adding to the Kepler-11 spectrum an additional G-type spectrum having a fraction

of the intensity of, and a Doppler shift relative to, Kepler-11. Figure S3 shows that we would have

detected the spectral signature of such a star if it had a separation of 30 kms−1 (∼1 AU) and was

no more than 3 magnitudes fainter than Kepler-11 (3σ). Doppler separations of less than 20 km s−1

would be difficult to detect as the spectral lines overlap too much.

3. Transit Fits, Times, and Durations

3.1. Transit Times

We fit a standard transit model9 to the light curve for each planet to measure the transit time,

planet-star radius ratio, transit duration, and impact parameter, as well as the flux normalization

and a local linear slope. We numerically average the model over the 30 minute integration duration.

First, we fit a single model to each of the transits of each planet individually, assuming a constant

orbital period. Second, we hold the radius ratio, transit duration, and impact parameter fixed,

and fit a small segment of the lightcurve around each transit for the remaining parameters. We

exclude data points with concurrent transits (i.e., when more than one planet transited at the same

time). Third, we align the light curve using each measured transit time, and refit for the transit

parameters (aside from period and epoch). We iterate the second and third steps to converge on a

model.

We adopt a 4th order non-linear limb darkening law9 and hold the limb darkening parameters

fixed based on the spectroscopic parameters. The impact parameter affects the duration of ingress

and egress relative to the overall transit duration. While most of the transit parameters are well-
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measured, the impact parameter is only weakly constrained with the present data, due to the

combination of long cadence integration time, limb darkening, and noise. Once further Kepler data

and/or transit follow-up observations at longer wavelengths provide precise measurement of the

impact parameters, it will be possible to measure the orbital inclinations, as well as to increase

precision of stellar and planetary parameters (e.g., radius, density).

The resulting linear ephemeris and transit times are listed in Table S2 (a–g). We omitted times

when there are overlapping transits, because we were unable to measure their times accurately.

Furthermore, because of the small signal from planet Kepler-11b, we noticed problems with five

transits and omitted their times. For four of these (N = 8, 20, 26, 27) the χ2-surface for that

transit time was clearly bimodal and the results depended on smoothing length; a final transit

(N = 41) was the biggest outlier from a linear ephemeris and had an O−C value 80 minutes above

the transits adjacent to it. Lastly, data gaps also caused loss of some transits.

3.2. Mean Profiles, Transit Durations and Depths

Mean transit profiles for each planet were made by phasing the individual transits using the

transit times and mean periods determined above. Overlapping transits from other planets were

masked out in this process. The transit profiles were modeled using the ELC code38 and its various

optimizers, in particular its genetic code39, its Monte Carlo Markov chain code40, and its “grid

search” routine. Given the low masses and long periods, the star can be treated as a limb-darkened

circular disk and the planets as opaque circular disks, so ELC’s “analytic” mode41, was used. For

each planet, the free parameters are the inclination i, the ratio of radii Rp/R?, the stellar mass

M?, the stellar radius R?, and a small phase shift to account for uncertainties in the ephemerides.

A quadratic limb darkening law of the form

I(µ)/I0 = 1 − a(1 − µ) − b(1 − µ)2 (1)

was used, in which µ = cos θ (where θ is the angle from the center of the stellar disk), I(µ) is the

specific intensity at the angle µ, and I0 is the specific intensity normal to a surface element. Initial

fits showed that there was no sensitivity to the values of the coefficients. We therefore adopted

the coefficients interpolated from the tables computed by Prša42, namely a = 0.495 and b = 0.178.

The models were computed at intervals of one minute, then binned to 30 minutes to mimic the

sampling of the Kepler data.

The normalized light curves were corrected for the contamination fraction k using the equation

Fnew(t) =
Fold(t) − k

1 − k
. (2)

We performed fits using three scenarios for the contamination:



– 5 –

(i) quarter-by-quarter contamination values discussed above, where

kQ1 = 0.0662,

kQ2 = 0.0290,

kQ3 = 0.0318,

kQ4 = 0.0722,

kQ5 = 0.0656,

kQ6 = 0.0290;

(ii) no contamination (e.g., k = 0 for all quarters); and (iii) k = 0.10 for all quarters. For each case,

the various optimizers were run to find the minimum χ2. Once that was found, the χ2/d.o.f. of each

planet ranges from 1.08–1.17, indicating that the measurement uncertainties are unlikely to have

been underestimated by 4–8%. The uncertainties on the individual photometric measurements

were scaled to give χ2
min/d.o.f. ≈ 1. The optimizers were run again, accumulating more than

50,000 models with heavy sampling in the parameter space near the χ2 minumum. Based on the

spectroscopic analysis discussed in Section 2, we adopt a stellar mass of M? = 0.95 ± 0.10 M� and

a stellar radius of R? = 1.10 ± 0.10 R�. Since the optimizer codes generally work better when a

uniform distribution of parameters is initially adopted, the adopted stellar mass and radius and

their uncertainties were folded into the process by adding additional terms to the χ2:

χ2
total = χ2

phot +

(

M?/M� − 0.95

0.10

)2

+

(

R?/R� − 1.10

0.10

)2

. (3)

The 1σ confidence limits on the fitting parameters and other derived parameters were computed by

collapsing the χ2 surface on each parameter of interest and finding the range where χ2 ≤ χ2
min + 1.

Table S3 gives the results of the model fits. We give the transit depths and durations (defined

as the time between first and fourth contacts), the radius ratios, the impact parameters, where b =

a/R? cos i and a is the orbital separation, the derived planetary radii, and the median photometric

uncertainty after the scaling. The top section gives the parameters using the quarter-by-quarter

contamination values (our adopted model). The middle and bottom sections give the results when

no contamination is used and when 10% contamination is used, respectively. As expected, when

no contamination is used, the true transit depths are shallower, and when the maximum plausible

contamination is used, the true transit depths are deeper. Likewise, when no contamination is

used, the radius ratios are smaller compared to when the maximal contamination is used, where

the change is generally less than ≈ 2σ for each planet. The planetary radii in physical units (e.g.,

Earth radii where R⊕ = R�/109.1) depend on the adopted stellar parameters, and in this case the

uncertanties on the planetary radii are dominated by the uncertainty in the stellar radius. Thus

over the entire range of contamination values considered, the planetary radii change by less then

1σ.

Planet Kepler-11e is the only planet whose observations enabled us to tightly limit the impact
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parameter: be = 0.79+0.04
−0.05. The Kepler-11b & f solutions mildly prefer a non-zero impact parameter,

but are consistent with zero, as are planets Kepler-11c, d, and g — see Figure S4.

4. Dynamical Confirmation of the Inner Five Planets

Here we describe the transit timing data and dynamical fits in more detail, showing how

aspects of the signals led us to the conclusions of the main text, in particular that the transiting

objects have planetary masses. First, the transits are not strictly periodic. That is, constant orbital

periods are not sufficient to explain the timing data. Using the 106 transit times of Table S2 (b

through g), and fitting P and T0 for each of the six transit signals (Table S2a), we find χ2 = 191.51

for 94 degrees of freedom (106 data points − 6 fitted periods − 6 fitted epochs). In principle, the

error bars on individual transit times may be underestimated, accounting for this. Inflating the

errors as suggested by the photometric fits (maximum 8%; Section 3.2) would give χ2 ≈ 164 for the

constant-period model, which is still formally unacceptable. In the following, we take the error bars

of Table S2a at face value and interpret the excess variation in the transit times as a dynamical

signal.

Owing to their short orbital periods, planets Kepler-11b and c have the most transits in our

data set. But their small radii render the uncertainties on each transit time large, so that their

transit timing variations are not obvious by eye (Figure 3, main text). From sample integrations,

as well as analytic theory16, we expect their timing curves to be dominated by their proximity to

the 4:5 mean motion resonance. In particular, the frequency of the oscillations should be:

fO−C = 4/Pb − 5/Pc = 1/(231 days). (4)

We plot the periodograms43 of the O − C data for these two planets in Figure S5. The peak

frequency for each of these planets is at this expected frequency, which we interpret as robust and

conclusive evidence for their interaction and motivates more detailed dynamical modeling.

From this example, we find that the O−C signals of the inner two transiting planets have the

same shape, but are of opposite sign and have different amplitude5. In the case of the Kepler-11b/c

pair, the period of those signals is a straightforward function of their transit periods. Similarly,

we may expect that the shapes of the O − C signal for all the planets depend chiefly on their

periods. Therefore we numerically integrated the orbits of the planets on circular orbits, to find

the functional form of the O − C that they induce on each other. The signal of each transiting

planet is expected to be linearly proportional to the mass of the perturbing planet5,16,44, so we

began by fitting a linear combination of these signals to the data. But the proximity of the Kepler-

11b/c pair to the 4:5 resonance caused moderate non-linearity. Therefore, to fit the transit times, we

used the Levenberg-Marquardt non-linear minimization algorithm to drive 6-planet integrations, an

extension of a previous method5. The fit parameters were osculating Jacobi orbital elements defined

at dynamical epoch 2,455,190.0 (BJD): period P , the closest transit epoch E0, the eccentricity

vector components e cos ω and e sin ω, and planetary mass Mp. These fits assumed zero mutual



– 7 –

inclination and zero inclination to the line of sight, and they should be qualitatively valid for the

small values expected (see SI Section 6). We found that Kepler-11g interacted very little with the

other planets, consistent with its small transit timing deviations (∼ 0.5 min). At a nominal mass

of a Neptune mass, it produces similarly small deviations in the other planets, so we abandoned

hope of identifying the mass of Kepler-11g and fixed it, and its eccentricity, to zero in the fits.

Our first dynamical fit considered all the planets on circular orbits, so it had only 5 free

parameters beyond the linear-ephemeris fits: the masses of the 5 inner planets. We found that all

of the inner 5 planets have significantly detected masses. The resulting χ2 = 110.34 for 89 degrees

of freedom (now 5 less for the five fitted planet masses; see Table S5 for the contributions from each

planet), a formally acceptable fit to the data (p-value 6.2%). We use an F-test45 to decide whether

the new free parameters on the whole are justified. If the new free parameters are not statistically

justified, the χ2
i of the initial fit should follow a χ2 distribution of νi degrees of freedom (νi = 94),

and the χ2
f of the final fit should follow a χ2 distribution of νf degrees of freedom (νf = 89). Now

we use the linearity property of χ2 distributions; the difference ∆χ2 ≡ χ2
i − χ2

f should follow a χ2

distribution of ∆d.o.f. ≡ νi − νf degrees of freedom. We define the F-ratio is the ratio of (a) the

improvement in χ2, normalized to the number of new free parameters:

∆χ2/∆d.o.f. = (191.51 − 110.34)/(94 − 89) = 16.23,

to (b) the final reduced χ2:

χ2
f/νf = 110.34/89 = 1.23.

The F-ratio, a random variable composed of two random variables (∆χ2 and χ2
f ), follows its own

distribution. The F-test gives the probability (p-value) that the F-ratio is as high as it is by chance.

In our case, the ratio of 13.20 has a p-value of 1× 10−9. Since the F-test compares the ratio of two

reduced χ2 values, this calculation would have been the same if we had chosen to inflate the error

bars at the beginning of the analysis, as both reduced χ2 values would decrease by an identical

factor in response.

Since this dynamical fit was the simplest possible test of dynamical interactions being statisti-

cally present in the data, we regard it as a demonstration that dynamically significant transit time

variations are actually present. The dynamical interactions are shown graphically in Figure S6a,

and the fitted parameters are in Table S4. The F-test does not guarantee that any particular val-

ues of the 5 new free parameters are significant, but the associated formal errors suggest that each

one is significant. The variation in each of the planets is linearly composed of perturbations by

other planets (right hand panel of Figure S6a). The statistical reduction of each transiting planet’s

contribution to χ2 is given in Table S5.

One may wonder whether any signal of planetary orbital eccentricity may be extracted from

the transit times. The first place to look is the inner two planets (Kepler-11b and c), as they have

the most measured transit times and the closest relative spacing. We allowed their eccentricities

to float, fitting e sin ω and e cos ω, an additional 4 free parameters. These additional parameters

resulted in a ∆χ2 = 13.41 relative to the circular fit (Table S5). The p-value of an F-ratio of
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13.41/4 compared to the final reduced χ2 of 96.93/85 is 2.5%, so the improvement is marginally

significant. The fitted parameters are in Table S4.

We also found several distinct solutions in which planets all five of the closely-spaced planets

Kepler-11b-f were allowed eccentric orbits; the Levenberg-Marquardt algorithm apparently did not

find a unique, global minimum in this high-dimension space. The best χ2 was 85.48 for 79 degrees

of freedom, which is not significantly better than the b/c eccentric Fit of Table S4 (F-test p-value

of 12%). In the next subsection, we investigate stability. We found we needed to compromise

between long-term stability and a good fit to the data. One solution that had all five inner planets

eccentric — although only slightly eccentric, which is good for stability — is given in Table S4.

Its χ2 = 89.64 (see Table S5), and the transit-timing model is shown in Figure S6b. The values of

eccentricity for the outer planets, and the uniqueness of the solutions, will be subjects for follow-up

work using (a) the short cadence data, (b) all observed transits including overlapping ones, and —

most importantly — (c) more transits spanning a longer time baseline from Kepler.

All of these fits are statistically acceptable fits to the data, with quite Gaussian residuals.

They, however, give slightly different best-fit masses. Therefore to derive masses in the main text,

we compute the weighted mean mass from these three fits and adopt a generous error bar that

spans the union of the 1σ intervals of all the fits.

4.1. Long-term stability of these solutions

We investigated long-term stability of the three solutions given in Table S4 using the hybrid

integrator within the Mercury package46, run on the supercomputer Pleiades at University of

California, Santa Cruz. We set the switchover at 3 Hill radii, but in practice we aborted simulations

that violated this limit, so for the bulk of the simulation the Mixed-Variable Symplectic method47

was used, with a time step of 0.65124450 days. The simplest implementation48 of general relativistic

precession was used, an additional potential UGR = −3(GM?/cr)
2, where G is Newton’s constant, c

is the speed of light, and r is the instantaneous distance from the star. More sophisticated methods49

are not yet required, due to the uncertainties of the fits. These integrations used a stellar mass of

1.0 M�. With respect to the best-fitting stellar mass of 0.95± 0.10 M�, this choice implies slightly

too fast precession due to relativity. We neglected precession due to tides or rotational flattening.

The simulations were run for a total of 250 Myr, a span for which the all-circular and all-

eccentric fits survived. The b/c-eccentric solution became unstable at 169 Myr: after weakly

chaotic jostling of eccentricities, a close encounter occurred between planets Kepler-11e and f (see

Figure S7). However, we also ran an integration with very nearby initial conditions: one spatial

coordinate displaced by only 1.5 meters. That system survived at least 250 Myr, despite showing

similar weak chaos. Similar sensitivity of stability to initial conditions has been seen in other

planetary systems with a high number of low-mass planets50, and calculating stability maps of

Kepler-11 would be useful future work.
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The masses quoted in Table 1 of the main text can be used to calculate the number of mutual

Hill sphere separations between pairs of planets. For the pairs (b–c, c–d, d–e, e–f), those separations

are (7.0, 15.9, 10.9, 13.3), respectively. The criterion ∆ & 9 applies only in situations in which all

the separations between pairs equals the same ∆. Therefore our integrations that show long-term

stability are not in contradiction with previous work20 on the stability of 3-or-more-planet systems.

The orbital eccentricity of Kepler-11b is expected to tidally damp on a timescale30 of ∼ 0.5 −

5 Gyr; the timescale for Kepler-11c is ∼ 0.2 − 20 Gyr. The semi-major axis tidal decay rate could

be non-zero for planets b and c, depending on tidal parameters. However, the ratio of semi-major

axes and masses of these bodies are such that it is not clear (due to uncertainty in relative damping

rates and errors in masses) whether these planets would have converging or diverging period ratios,

which affects whether they will be caught into various mean-motion resonances as a result of tides

in the planets.

5. Validation of Planet Kepler-11g

In the absence of dynamical confirmation (radial velocity variations or transit timing varia-

tions), validating the Kepler-11g signal as being of true planetary nature requires us to explore the

enormous range of false positives that could mimic the signal. For this we use BLENDER, a technique6

that models the Kepler light curve directly as a blend. Because of the extremely high precision of

the Kepler photometry, BLENDER is able to place very tight constraints on the scenarios that can

precisely reproduce the detailed shape of the transit signal. Further constraints are provided by

our spectroscopic observations, by the photometry (color indices), and by the astrometry (centroid

motion analysis). As described below, the combination of these allows us to rule out the vast

majority of the possible contaminants for Kepler-11g. The remaining scenarios must be evaluated

statistically.

In the BLENDER modeling, we refer to the target itself as the ‘primary’, and the contaminating

pair of objects is composed of the ‘secondary’ and ‘tertiary’. The intrinsic brightness of the pri-

mary needed for these simulations is based on the stellar parameters described previously, and the

properties of the secondary and tertiary are derived from model isochrones13,6. We explore both

hierarchical triple scenarios (an eclipsing star+star or star+planet pair physically associated with

the target) and chance alignments (a spatially unresolved background or foreground pair of objects

eclipsing each other).

We find that no hierarchical triple system with the tertiary being a star more massive than

0.1 M� can mimic the observed light curve. When the tertiary is allowed to be a smaller object

such as a planet, we do find one case of a hierarchical triple blend that cannot be ruled out,

as it involves a secondary star that is faint enough that it would go undetected in our spectra.

Based on the spectroscopic simulations described earlier in the Supplemental Information, and

considering the signal-to-noise ratios of our spectra, for these simulations we adopt a simplified
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constraint such that any companions within 1 magnitude of the target are assumed to be detectable

in our spectra. We consider this limit to be very conservative, as there are more sensitive ways of

detecting spectroscopic companions than visual inspection of the cross-correlation functions, such

as examination of the quality of the fit (χ2 statistic) of the spectral modeling with SME.

The blend scenarios involving star+planet pairs that are allowed by BLENDER contain a sec-

ondary star that can be significantly redder than Kepler-11, with a mass constrained to be between

about 0.55 and 0.91 M� (see Figure S8). Secondaries below 0.55 M� (which are fainter than the

target by 3.5 magnitudes or more) do not result in acceptable fits to the light curve, and com-

panions over 0.91 M� would be bright enough (∆Kp < 1 mag) that we would usually see them

in our spectra (green hatched region in the figure). Viable blends with secondaries in this range

are orbited by a giant planetary companion (or a brown dwarf, or an extremely small star) in an

eccentric orbit, with the transit occurring near apastron. In those cases, the slower orbital speed of

the planet close to apastron (longer transit durations compared to a circular orbit; see Figure S9)

allows for transits of a star smaller than Kepler-11 to reproduce the observed shape of the signal,

within 3σ of the best Neptune-size transiting planet fit.

A large fraction of these hierarchical triple blends can be discriminated by comparing the

predicted color of the blend with the observed color index of the Kepler target, which is r − Ks =

1.473±0.036 [ref. 37]. Any blends differing from this value by more than 0.11 mag are considered to

be ruled out, at the 3σ level. This effectively excludes secondary masses between 0.58 and 0.85 M�

(blue hatched region in Figure S8 and Figure S9), and further restricts the range of eccentricities and

orientations allowed. Two narrow regions remain for secondaries between 0.55 and 0.58 M�, and

between 0.85 and 0.91 M�. Blends with such secondaries orbited by a giant planet transiting near

apastron could mimic the signal that we see, and would go undetected in our follow-up observations.

The frequency of this type of blend may be estimated by first calculating the fraction of stars

in this portion of the Kepler field that have a binary companion with a secondary in the proper

mass range, and then the fraction of those that are orbited by a giant planet (the fraction of stars

with brown dwarf and very small stellar companions is much less) in a suitably eccentric orbit

transiting near apastron. In order to compute this estimate, we simulated one million objects,

assigning them a random orbital period and eccentricity drawn (with repetition) from the actual

distributions seen in ground-based surveys51. With a random longitude of periastron drawn from

a uniform distribution, we computed how many of them fall in the identified range of durations,

and finally how many of them would be expected to transit. For a sampling of 106 stars, we

find that 11,094 have a binary companion in the proper mass range (assuming binary frequencies

and a mass ratio distribution52). A total of 23.2 of those are expected to have a giant transiting

planet (using a rate of occurrence from radial velocity studies18, and accounting for the geometric

transit probability), and in only 1.06 of these cases does the transit occur with eccentricities and

orientations in the range allowed by BLENDER. Finally, 0.31 of these scenarios correspond to orbital

periods between 47 days (the period of the neighboring planet interior to Kepler-11g) and 500 days

(the approximate time span of the photometric observations). Thus, the expected frequency of
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blends due to hierarchical triples that are able to mimic the signal of Kepler-11g is 0.31 × 10−6.

Next we considered blend scenarios involving chance alignments (background eclipsing bina-

ries), with the eclipsing object being another star. As before, starting with 106 simulated back-

ground stars, approximately 460,000 of them are expected to have a stellar companion52. Of these,

38,829 would have binary orbital periods between 47 and 500 days. On the other hand, only 4112

out of the 460,000 are expected to have orbits oriented such that the stars undergo eclipses. Com-

bining the two constraints, we find that only 344 stars in the background of Kepler-11 would have

an eclipsing companion in the period range considered. The constraints from BLENDER for this case

are illustrated in Figure S10, where the relative distance between the binary and the Kepler target

is parameterized in terms of the difference in distance modulus, for convenience. BLENDER places

strong limits not only on the range of relative distances between the background binary and the

target, but also on the mass of the secondary star (which in this case can be of solar type, or larger).

Further constraints are provided by the centroid motion analysis described earlier, which rules out

any stellar companions separated by more than 0.70 arc seconds from the target (Table S1). Ad-

ditionally, the lack of double lines in our Keck spectra makes it unlikely that we have missed stars

angularly closer than this within ∼1 magnitude of the target brightness. The combined constraints

from BLENDER, centroid motion analysis, and spectroscopy imply that only a fraction 0.00078 of

each background binary would be able to mimic the signal. Thus, we estimate the blend frequency

for background eclipsing binaries to be 0.00078 × 344 × 10−6 = 0.27 × 10−6.

Chance alignments with a star orbited by a transiting giant planet (as opposed to another

smaller star) can also mimic the signal. Based on a recently determined occurrence rate18, we

expect that out of 106 simulated stars, some 105,000 will be orbited by a giant planet, of which

30,059 will have periods between 47 and 500 days. On the other hand, only 2070 of the 105,000 are

expected to transit their parent stars. When both effects are considered, we find that 153 out of

the initial million stars will have a transiting giant planet in the proper period range. The BLENDER

constraints for this case are illustrated in Figure S11. Both background and foreground blends are

able to reproduce the transit light curve for this signal, and allowance for eccentric orbits leads to

a wide range of spectral types (or masses) permitted for the secondary stars. But most of these

scenarios are ruled out by other observations. In addition to the brightness limit from spectroscopy,

the overall color of the blend is a strong discriminant, and is found to be inconsistent with the

measured color of Kepler-11 in many of these cases, as shown in the figure. Folding together these

constraints from BLENDER, spectroscopy, color information, as well as the angular separation limits

mentioned earlier from the centroid motion analysis, we find that for every foreground/background

star with a 47–500 day transiting giant planet, only 0.00205 are not excluded by any other type of

observation. The blend frequency is therefore 0.00205 × 153 × 10−6 = 0.31 × 10−6.

Adding together the blend frequencies for the three types of scenarios discussed above (hierar-

chical triples, and chance alignments with a star+star or star+planet pair), we find a total blend

frequency of (0.31 + 0.27 + 0.31) × 10−6 = 0.89 × 10−6.
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Extrapolation is required to estimate the a priori probability of an outer planetary companion

to Kepler-11, since observations do not directly constrain the frequency of companions as small

and distant as the candidate that we are seeking to validate. We choose a nominal mass value of

10 M⊕, based upon the candidate’s size and the size vs. mass relationship of the inner planets in

the system (Table 1 of the main text). We estimate18 that 1.9% of sunlike stars have a giant planet

(0.3 MJ < M sin i < 10 MJ) with period between 80 days (to exclude planets that might well be

too close to Kepler-11f to be dynamically-stable) and 250 days (to give a high probability of there

being at least two transits in our data set). Note that this period range is significantly narrower

than the range we allowed for in our calculation of the a priori likelihood of false positives.

We are interested in the fraction with smaller planets, 10–100 M⊕, i.e., large enough to have

transits likely detected, in this period range. That number has not been directly measured, but

for periods shorter than 50 days, the mass dependence is df/d log M ∝ M−0.48 over a range in

masses that encompasses both giant planets and the intermediate planets of interest here19, and

we have no reason to think that this mass dependence is not approximately valid for the period

range of relevance here. We find that 4.7% of stars should have a planet in the size-period range.

For a random inclination distribution, the chance that a planet with period 118 days would transit

Kepler-11 is 1.14%, yielding an overall a priori chance of a transiting planet in the mass and period

range considered of 0.5×10−3. If the inclination is not assumed to be random but is instead drawn

from a Rayleigh distribution of mean 4◦ (based on the inner planets), the a priori probability of a

transiting planet is an order of magnitude larger.

5.1. The Possibility of Multiple Planetary Systems

As in the case of Kepler-9 [ref. 5], mutual dynamical interactions show that planets b and c are

in the same system and that planets Kepler-11d, e, and f are in the same system. The photometric

analysis in combination with the BLENDER results certainly show no indication contrary to the

hypothesis that all six of these planets are orbiting the same star. By considering qualitatively the

alternative hypotheses, we reject them as simply too contrived compared to the much more likely

case that all six planets simply orbit the same star.

Based on all the information available, the best alternative hypothesis is the blend of a wide

binary in which each component is orbited by an edge-on planetary system. The component stars

must have nearly the same spectrum, such that it is indistinguishable from a single star. For equal

stars, all planetary transits would be diluted by a factor of two, indicating that the true planetary

densities much less than the low densities we determined: 2−3/2 ≈ 0.35 times as large as the

estimates given in Table 1 of the main text. For unequal stars, the planets orbiting the smaller star

are diluted even more; and furthermore from the transit durations a denser secondary star would

require near apocentric transits of multiple planets, which would raise additional probabilistic and

stability concerns. Though extremely low planetary densities are not astrophysically impossible,

they would considerably stretch our understanding of planet formation.
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6. Mutual Inclination and Coplanarity

The observability of multiple transiting planets depends upon the individual on-sky inclinations

of the component planets, which can be related in a probabilistic manner to the (much more

physically interesting) mutual inclinations of their orbital planes with respect to one another23. In

order to constrain the coplanarity of the planets in the Kepler-11 system, we performed several

suites of Monte Carlo simulations over a range of differing mean mutual inclinations (MMI) and

various configurations of the system: 1) the five inner planets only, 2) all six planets, and 3) all

six observed planets plus a hypothetical planet with a period of 74.35 days, which is the geometric

mean of the periods of Kepler-11f and g. We began each Monte Carlo realization by drawing a

spherically isotropic on-sky inclination i, where i = 90◦ is directly aligned with the observer’s line

of sight, therefore defining an arbitrary reference plane. We then populated the system with the

planets of the observed Kepler-11 periods on circular orbits around a Sun-like star. For each planet

we drew a mutual inclination with respect to the reference plane from a Rayleigh distribution

with a Rayleigh parameter ζ, such that the MMI = ζ(π/2)1/2. To determine if a given planet

will transit with those orbital parameters it is necessary to transform the mutual inclination to an

on-sky inclination. We accomplished this23 by applying the spherical law of cosines:

cos ip = cos iref cos φ + sin iref sin φ cos δ (5)

where ip, iref are the on-sky inclinations of the planet and reference plane, respectively, and φ is

the mutual inclination between the planes. δ is a random angle that corresponds to the node of

the planet’s orbit on the reference plane. For each configuration of planets we also simulated the

exactly coplanar case where iref = ip for all the planets in the system.

Using the on-sky inclinations for each planet, we then calculated the separation between the

center of the stellar disk and the center of the planet in the plane of the sky to determine whether

the planet would transit for a given ip [ref. 53]. The planet was considered to transit if the value

of this separation was less than one stellar radius when the planet was aligned on the observer’s

line of sight, i.e., the planet crossed the stellar disk. We then counted the number of planets seen

to transit in each realization. To ensure high statistical precision we performed 5× 105 realizations

for each combination of planet configuration and MMI. The resulting transit probabilities of these

simulations are presented in Table S6.

For circular orbits that are exactly coplanar, the probability of N planets transiting is just

the geometric probability of the N th planet transiting given by the ratio of the star’s radius and

the semimajor axis of the N th planet, i.e., if the outermost planet transits, then all the interior

planets must also transit. This gives an upper limit of 2.0% to the transit probability for the five

inner planets and 1.1% for all six planets, which is in very good agreement with the results from

the coplanar simulations and the trials with the MMI set to 0.001◦. If the actual transit duration

(D(b)) of a particular planet had to be at least Xmin times as long as a central transit (D(b = 0))

in order for it to have been detected from existing data, then the probability of detecting that

planet decreases. It is as if the effective star of the size is reduced from R? to bmax × R?. For
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Xmin = 0.5, bmax = 0.86. If a small planet resided between Kepler-11f and g, then the probability

that its transits and would have been detected from the present data set is less than indicated in

Table S6. Of course, the minimum detectable duration depends on the planet size, complicating

the interpretation of Monte Carlo simulations.

All of the planet configurations explored demonstrate that, within the statistical error, the

coplanar case maximizes the probability for multiple transits, as one would expect, except when

there is a hypothetical planet between Kepler-11f and g. In these configurations, the seventh planet

significantly decreases the probability of observing only six planets when the orbits are very nearly

coplanar. Conversely, to duplicate the observed planets of Kepler-11, it requires at least some spread

in ip in order for the seventh planet to transit without also observing the sixth. The probability for

both these cases is highest with a MMI of ∼ 0.8◦. When considering only the five inner planets or

all six planets without additional unseen planets, they have relatively high transit probabilities of

∼1.0% for similar MMIs. In all cases, however, the probability of observing six transiting planets

becomes small by a MMI of 3.0◦, and for observing the inner five planets the probability drops off

by 4.0◦. Thus the results of these simulations strongly suggest a MMI for the Kepler-11 system of

∼ 1.0◦, which is somewhat smaller than the mean inclination for the planets of the Solar System

of 2.32◦ with respect to the ecliptic plane.

Mutual inclinations could also be determined from exoplanet mutual events, where one planet

crosses over another in the plane of the sky23. During the course of these observations, several

doubly-concurrent transits are seen with one triply-concurrent transit (Figure S12). In none of

these cases is there evidence for a mutual event (i.e., an overlapping double transit); in any case,

the mutual event signal would be quite small.
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[41] Giménez, A. Equations for the analysis of the light curves of extra-solar planetary transits.

Astron. Astrophys. 450, 1231–1237 (2006).

[42] http://astro4.ast.villanova.edu/aprsa/?q=node/8

[43] Zechmeister, M. & Kürster, M. The generalised Lomb-Scargle periodogram. A new formalism

for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).
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Table S1. Results of the centroid analysis.

Planet Offset

(arc seconds)

b 0.41 ± 0.46

c 0.27 ± 0.21

d 0.08 ± 0.22

e 0.36 ± 0.18

f 0.40 ± 0.43

g 0.10 ± 0.23

Table S2a. Linear ephemerides for planets in the Kepler-11 system.

Planet Period Epoch

(days) (BJD)

b 10.30375 ± 0.00016 2,454,971.5052 ± 0.0077

c 13.02502 ± 0.00008 2,454,971.1748 ± 0.0031

d 22.68719 ± 0.00021 2,454,981.4550 ± 0.0044

e 31.99590 ± 0.00028 2,454,987.1590 ± 0.0037

f 46.68876 ± 0.00074 2,454,964.6487 ± 0.0059

g 118.37774 ± 0.00112 2,455,120.2901 ± 0.0022

Note. — This ephemeris establishes the calculated (“C”)

times from which transit timing measurements are refer-

enced below. Uncertainty in epoch is median absolute de-

viation of transit times from this ephemeris; uncertainty in

period is this quantity divided by number of orbits between

first and last observed transits.
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Table S2b. Transit times for Kepler-11b.

N Observed O − C Uncertainty

(BJD − 2,455,000) (days) (days)

0 −28.4971 −0.0023 0.0070

1 −18.1754 +0.0156 0.0088

2 −7.8849 +0.0024 0.0079

4 12.7234 +0.0032 0.0109

5 23.0214 −0.0026 0.0099

6 33.3342 +0.0065 0.0081

7 43.6414 +0.0100 0.0098

10 74.5570 +0.0143 0.0115

11 84.8410 −0.0054 0.0102

12 95.1267 −0.0235 0.0089

13 105.4402 −0.0137 0.0084

14 115.7453 −0.0123 0.0075

15 126.0537 −0.0077 0.0104

16 136.3701 +0.0050 0.0115

17 146.6638 −0.0051 0.0109

18 156.9669 −0.0058 0.0121

19 167.2670 −0.0094 0.0092

21 187.8976 +0.0137 0.0112

25 229.1093 +0.0105 0.0105

28 260.0409 +0.0308 0.0083

29 270.3241 +0.0102 0.0106

30 280.6209 +0.0033 0.0079

31 290.9219 +0.0006 0.0104

32 301.2332 +0.0081 0.0071

33 311.5136 −0.0152 0.0096

35 332.1403 +0.0040 0.0101

36 342.4343 −0.0058 0.0071

37 352.7263 −0.0175 0.0077

38 363.0409 −0.0067 0.0109

39 373.3537 +0.0024 0.0168

40 383.6558 +0.0007 0.0170

42 404.2598 −0.0027 0.0157

43 414.5443 −0.0220 0.0153

44 424.8755 +0.0055 0.0157

46 445.4921 +0.0146 0.0168

47 455.7985 +0.0173 0.0112
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Table S2c. Transit times for Kepler-11c.

N Observed O − C Uncertainty

(BJD − 2,455,000) (days) (days)

0 −28.8280 −0.0028 0.0052

1 −15.7977 +0.0025 0.0036

2 −2.7768 −0.0017 0.0047

3 10.2396 −0.0103 0.0040

4 23.2713 −0.0035 0.0038

5 36.2991 −0.0008 0.0050

7 62.3541 +0.0041 0.0036

8 75.3781 +0.0031 0.0036

10 101.4359 +0.0109 0.0042

12 127.4731 −0.0019 0.0044

14 153.5287 +0.0037 0.0041

15 166.5509 +0.0008 0.0040

16 179.5659 −0.0092 0.0042

17 192.5998 −0.0003 0.0042

18 205.6148 −0.0103 0.0073

22 257.7202 −0.0051 0.0038

23 270.7516 +0.0014 0.0040

24 283.7789 +0.0036 0.0034

25 296.8069 +0.0066 0.0033

26 309.8308 +0.0055 0.0043

27 322.8503 −0.0001 0.0039

28 335.8780 +0.0026 0.0031

29 348.9022 +0.0018 0.0034

30 361.9203 −0.0051 0.0039

31 374.9493 −0.0011 0.0058

32 387.9698 −0.0057 0.0057

33 400.9995 −0.0009 0.0069

34 414.0261 +0.0006 0.0066

35 427.0378 −0.0127 0.0062

36 440.0669 −0.0086 0.0090

37 453.0987 −0.0019 0.0069
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Table S2d. Transit times for Kepler-11d.

N Observed O − C Uncertainty

(BJD − 2,455,000) (days) (days)

0 −18.5423 +0.0027 0.0034

1 4.1417 −0.0004 0.0030

2 26.8291 −0.0002 0.0034

4 72.2067 +0.0030 0.0037

6 117.5731 −0.0049 0.0038

8 162.9474 −0.0050 0.0039

9 185.6353 −0.0044 0.0035

12 253.7130 +0.0118 0.0029

14 299.0691 −0.0065 0.0038

15 321.7581 −0.0046 0.0047

16 344.4405 −0.0095 0.0032

17 367.1425 +0.0054 0.0036

18 389.8269 +0.0026 0.0050

19 412.5134 +0.0019 0.0054

21 457.8903 +0.0044 0.0051

Table S2e. Transit times for Kepler-11e.

N Observed O − C Uncertainty

(BJD − 2,455,000) (days) (days)

0 −12.8460 −0.0049 0.0021

1 19.1520 −0.0029 0.0020

2 51.1543 +0.0035 0.0020

3 83.1484 +0.0017 0.0022

4 115.1465 +0.0039 0.0019

5 147.1421 +0.0037 0.0023

6 179.1359 +0.0016 0.0029

7 211.1275 −0.0027 0.0025

8 243.1200 −0.0061 0.0024

10 307.1167 −0.0012 0.0024

11 339.1200 +0.0062 0.0024

13 403.0945 −0.0111 0.0040
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Table S2f. Transit times for Kepler-11f.

N Observed O − C Uncertainty

(BJD − 2,455,000) (days) (days)

1 11.3450 +0.0075 0.0071

2 58.0266 +0.0004 0.0050

3 104.7189 +0.0040 0.0056

4 151.3967 −0.0070 0.0069

5 198.0769 −0.0156 0.0076

6 244.7754 −0.0059 0.0112

7 291.4669 −0.0031 0.0072

8 338.1590 +0.0003 0.0078

9 384.8713 +0.0238 0.0102

Table S2g. Transit times for Kepler-11g.

N Observed O − C Uncertainty

(BJD − 2,455,000) (days) (days)

0 120.2884 −0.0017 0.0031

1 238.6714 +0.0036 0.0032

2 357.0433 −0.0022 0.0036
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Table S3. Transit Model Fits.

Planet b c d e f g

Transit depth (percent) 0.031 ± 0.001 0.082 ± 0.001 0.098 ± 0.002 0.140 ± 0.002 0.055 ± 0.002 0.115 ± 0.003

Transit duration (hr) 4.02 ± 0.08 4.62 ± 0.05 5.58 ± 0.06 4.33 ± 0.08 6.54 ± 0.14 9.60 ± 0.16

Rp/R? 0.01638 ± 0.00054 0.02615 ± 0.00064 0.02861 ± 0.00070 0.03791 ± 0.00095 0.02171 ± 0.00069 0.03087 ± 0.00080

Impact parameter b 0.46+0.14
−0.28 0.36+0.16

−0.36 0.35+0.18
−0.35 0.79+0.04

−0.05 0.49+0.12
−0.21 0.35+0.17

−0.34

Rp (R⊕) 1.97 ± 0.19 3.15 ± 0.30 3.43 ± 0.32 4.52 ± 0.43 2.61 ± 0.25 3.66 ± 0.35

median uncertainty (mag) 0.0002072 0.0002014 0.0002028 0.0002117 0.0002000 0.0001956

No contamination assumed

Transit depth (percent) 0.030 ± 0.001 0.078 ± 0.001 0.093 ± 0.002 0.133 ± 0.002 0.052 ± 0.002 0.108 ± 0.002

Transit duration (hr) 4.01 ± 0.09 4.61 ± 0.05 5.57 ± 0.06 4.32 ± 0.08 6.53 ± 0.15 9.60 ± 0.13

Rp/R? 0.01595 ± 0.00052 0.02556 ± 0.00063 0.02787 ± 0.00065 0.03701 ± 0.00088 0.02121 ± 0.00069 0.03011 ± 0.00077

Impact parameter b 0.46+0.14
−0.29 0.39+0.13

−0.39 0.35+0.18
−0.35 0.79+0.04

−0.06 0.49+0.12
−0.22 0.40+0.14

−0.40

Rp (R⊕) 1.91 ± 0.18 3.12 ± 0.29 3.36 ± 0.32 4.42 ± 0.42 2.54 ± 0.25 3.65 ± 0.34

median uncertainty (mag) 0.0001956 0.0001918 0.0001931 0.0002021 0.0001909 0.0001840

10% contamination assumed

Transit depth (percent) 0.033 ± 0.001 0.086 ± 0.001 0.104 ± 0.002 0.147 ± 0.003 0.058 ± 0.002 0.120 ± 0.003

Transit duration (hr) 4.02 ± 0.09 4.62 ± 0.05 5.58 ± 0.06 4.34 ± 0.08 6.54 ± 0.15 9.65 ± 0.14

Rp/R? 0.01682 ± 0.00058 0.02681 ± 0.00067 0.02937 ± 0.00070 0.03893 ± 0.00098 0.02235 ± 0.00074 0.03174 ± 0.00087

Impact parameter b 0.46+0.13
−0.29 0.34+0.18

−0.34 0.33+0.20
−0.33 0.79+0.04

−0.06 0.49+0.12
−0.23 0.39+0.14

−0.39

Rp (R⊕) 2.02 ± 0.20 3.21 ± 0.30 3.50 ± 0.33 4.62 ± 0.44 2.67 ± 0.26 3.86 ± 0.37

median uncertainty (mag) 0.0002195 0.0002131 0.0002146 0.0002245 0.0002122 0.0002044
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Table S4. Dynamical Fits.

Circular Fit

Planet P (days) T0 e cos ω e sinω Mp/M? (×10−6)

b 10.3045 187.8971 0 0 16

±0.0003 ±0.0024 · · · · · · ±3

c 13.0247 192.5953 0 0 50

±0.0002 ±0.0013 · · · · · · ±7

d 22.6849 185.6366 0 0 18

±0.0007 ±0.0011 · · · · · · ±4

e 32.0001 179.1365 0 0 26

±0.0008 ±0.0009 · · · · · · ±5

f 46.6908 198.0844 0 0 6

±0.0010 ±0.0030 · · · · · · ±3

g 118.3808 238.6688 0 0 0

±0.0025 ±0.0019 · · · · · · · · ·

b/c Eccentric Fit

Planet P (days) T0 e cos ω e sin ω Mp/M? (×10−6)

b 10.3063 187.8927 0.0534 −0.0039 11

±0.0007 ±0.0028 ±0.0383 ±0.0072 ±4

c 13.0241 192.5971 0.0416 −0.0007 34

±0.0004 ±0.0014 ±0.0332 ±0.0060 ±11

d 22.6829 185.6365 0 0 18

±0.0017 ±0.0012 · · · · · · ±4

e 32.0001 179.1363 0 0 26

±0.0009 ±0.0010 · · · · · · ±5

f 46.6909 198.0844 0 0 7

±0.0010 ±0.0030 · · · · · · ±3

g 118.3805 238.6687 0 0 0

±0.0025 ±0.0019 · · · · · · · · ·

All-Eccentric Fit

Planet P (days) T0 e cos ω e sinω (*) Mp/M? (×10−6)

b 10.3062 187.8939 0.0030 −0.0009 12

±0.0007 ±0.0039 ±0.0088 ±0.0026 ±5

c 13.0240 192.5968 −0.0026 0.0011 36

±0.0004 ±0.0017 ±0.0078 ±0.0022 ±11

d 22.6823 185.6367 −0.0127 0.0148 23

±0.0014 ±0.0020 ±0.0261 ±0.0064 ±6

e 32.0027 179.1368 −0.0161 0.000005 28

±0.0021 ±0.0014 ±0.0200 ±0.000020 ±7

f 46.6908 198.0837 −0.0119 −0.0037 10

±0.0033 ±0.0038 ±0.0203 ±0.0090 ±5

g 118.3812 238.6690 0 0 0

±0.0029 ±0.0023 · · · · · · · · ·

Note. — Osculating Jacobian orbital elements at dynamical epoch 2,455,190 (BJD).

Transit epoch times T0 are BJD − 2,455,000.

(*) The formal errors the Levenberg-Marquardt algorithm returned are exceedingly

small for this parameter, for unknown reasons.
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Table S5. χ2 per degrees of freedom.

Planet Constant-period All-circular fit b/c Eccentric fit All-eccentric fit

b 54.50 / 34 38.92 / 33 27.67 / 31 28.32 / 31

c 42.52 / 29 29.72 / 28 29.58 / 26 29.63 / 26

d 38.94 / 13 20.16 / 12 18.12 / 12 16.67 / 10

e 40.80 / 10 14.09 / 9 14.08 / 9 8.19 / 7

f 12.83 / 7 5.64 / 6 5.66 / 6 5.10 / 4

g 1.93 / 1 1.80 / 1 1.81 / 1 1.73 / 1

total 191.51 / 94 110.34 / 89 96.93 / 85 89.64 / 79

Note. — The linear ephemeris (constant-period) model is compared here with the

dynamical fits to derive planetary masses: the all-circular fit, the b/c eccentric fit, and

the all-eccentric fit of Table S4. In each cell we list the contribution of each planet

to the total χ2 and to the number of degrees of freedom [number of transit times for

that planet, minus 2 (since period and epoch is always fit), and minus 1 (when mass

alone is fit) or minus 3 (when mass and two eccentricity components are fit)].
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Table S6. Probabilities of multiple planet transits as a function of the mean mutual inclination,

from Monte Carlo simulations.

MMI 5 Planets 6 Planets 6 Planetsa Kepler-11a

(◦) (%) (%) (%) (%)

0.0 2.047 ± 0.039 1.109 ± 0.029 0.419 ± 0.018 0.000

0.0001 2.044 ± 0.039 1.098 ± 0.029 0.397 ± 0.017 0.000

0.05 2.040 ± 0.039 1.085 ± 0.029 0.402 ± 0.018 0.000

0.1 2.055 ± 0.039 1.095 ± 0.029 0.403 ± 0.018 0.002 ± 0.001

0.2 2.022 ± 0.039 1.098 ± 0.029 0.438 ± 0.018 0.029 ± 0.005

0.4 1.933 ± 0.038 1.073 ± 0.029 0.606 ± 0.022 0.131 ± 0.010

0.6 1.800 ± 0.037 0.911 ± 0.026 0.734 ± 0.024 0.194 ± 0.012

0.8 1.535 ± 0.034 0.767 ± 0.024 0.827 ± 0.025 0.232 ± 0.013

1.0 1.368 ± 0.032 0.591 ± 0.021 0.811 ± 0.025 0.225 ± 0.013

1.5 0.843 ± 0.025 0.285 ± 0.015 0.574 ± 0.021 0.151 ± 0.011

2.0 0.502 ± 0.020 0.128 ± 0.010 0.318 ± 0.016 0.085 ± 0.008

2.5 0.279 ± 0.015 0.066 ± 0.007 0.181 ± 0.012 0.040 ± 0.006

3.0 0.169 ± 0.011 0.029 ± 0.005 0.091 ± 0.008 0.024 ± 0.004

3.5 0.103 ± 0.009 0.018 ± 0.004 0.057 ± 0.007 0.012 ± 0.003

4.0 0.071 ± 0.007 0.011 ± 0.003 0.031 ± 0.005 0.006 ± 0.002

4.5 0.047 ± 0.006 0.004 ± 0.002 0.019 ± 0.004 0.005 ± 0.002

5.0 0.028 ± 0.005 0.004 ± 0.002 0.015 ± 0.003 0.004 ± 0.002

5.5 0.022 ± 0.004 0.002 ± 0.001 0.009 ± 0.003 0.002 ± 0.001

6.0 0.014 ± 0.003 0.001 0.004 ± 0.002 0.001

8.0 0.007 ± 0.002 0.000 0.002 ± 0.001 0.000

10.0 0.003 ± 0.001 0.000 0.000 0.000

aIncludes a hypothetical 7th planet at P = 74.35 days.

Note. — Column 1 (MMI) is the mean mutual inclination; column 2 is the

probability of the five inner planets, Kepler-11b–f, being observed to transit

the host star; column 3 is the probability that all six planets transit; columns 4

and 5 are the result of adding a hypothetical planet with P = 74.35 days to

the system. Column 4 corresponds to the probability of observing six transits

in any combination, while column 5 is the probability that Kepler-11 obtains,

i.e., the hypothetical planet is unobserved but we see planets b through g

transit. The quoted error is the 95% confidence interval estimated by normal

approximation where appropriate.
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Fig. S1.— Radial velocities of the star Kepler-11.
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Fig. S2.— Cross-correlation function of the spectrum of Kepler-11 vs. the Sun’s spectrum. The

sharp, symmetric cross-correlation function suggests a single Sun-like star.



– 27 –

Fig. S3.— Simulated cross-correlation function for the spectrum of Kepler-11. The spectrum of

another G star three magnitudes fainter than the target star with a radial velocity differing by

30 km s−1 is added. The original cross-correlation function of the Keck spectrum of Kepler-11

shows no evidence of a “bump” from a stellar companion.
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Fig. S4.— ∆χ2 as a function of the impact parameter b from the model fits performed using a

Monte Carlo Markov Chain. The nominal 1σ confidence limits are taken to be the parameter range

where ∆χ2 < 1. Planet Kepler-11e has a non-zero impact parameter at a high significance. Planets

Kepler-11f and b also have non-zero impact parameters, although in these cases the significance is

less than 2σ. Planets Kepler-11c, d, and g have impact parameters consistent with zero at the 1σ

level.
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Fig. S5.— The spectral power of the O −C data (Figure 3, main text) for planets Kepler-11b and

c. The expected peak frequency caused by the deviation of the planets from the nearby 4:5 mean

motion resonance is shown as a dashed line. Large tick marks on the right sides are the Nyquist

frequency for each planet, beyond which the spectrum holds no additional information.
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Fig. S6a.— Left side: Observed (O) mid-times of planetary transits minus a Calculated (C)

linear ephemeris, plotted as dots with error bars; colors correspond to Figures 1–3 in the main

text. Numerical integration dynamical model, the Circular Fit of Table S4, is given by the open

diamonds. Right side: Contributions of individual planets to these variations. Total variations

from saw ix-planet integrations are given as diamonds (same values but different scale than left

side), and contributions from every other planet is shown by a line with color corresponding to

the perturbing planet, determined by two-planet integrations. The solid black line is the sum

of these integrations, which matches nearly identically with the diamonds; thus we conclude the

perturbations from different planets add up very linearly.
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Fig. S6b.— Same as Figure S6a, but using the all-eccentric fit of Table S4. Most features are

similar. The b/c-eccentric fit of Table S4 produces a figure which is almost visually identical to

this one.
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Fig. S7.— Instability of a system that fits the transit times (b/c-eccentric fit of Table S4). The

eccentricity variations are chaotic, and a system with almost identical initial conditions survived

at least 30% longer.
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Fig. S8.— Map of the χ2 surface (goodness of fit) corresponding to a grid of blend models for Kepler-

11g involving hierarchical triple systems in which the tertiary is a giant planet. The contours shown

represent fixed values of the χ2 difference from the best planet model fit, expressed in units of the

significance level of the difference, σ. Only the 3-σ (white) contour is labeled, for clarity. The green

vertical line is drawn at the largest mass for the secondary (0.91 M�) that would be faint enough

to be missed spectroscopically (∆Kp = 1). Blends to the right (hatched area) are brighter and

are ruled out. The smallest secondary mass that still provides an acceptable fit to the Kepler light

curve (0.55 M�) corresponds to a brightness difference in the Kepler band of about 3.5 magnitudes

relative to the target. The hatched region between the vertical blue lines represents the area of

parameter space for blends that are too red compared to the measured r−Ks color of Kepler-11 (3σ

difference of 0.11 mag), and is therefore excluded. Consequently, the only blends that cannot be

ruled out by any follow-up observations are those within the white 3σ contour that have secondary

masses between 0.55 and 0.58 M�, or between 0.85 and 0.91 M�. The tertiaries in these blends are

roughly 0.5 RJ or ∼1RJ in size, respectively.
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Fig. S9.— Similar to Figure S8 (blends involving hierarchical triple systems in which the tertiary is

a giant planet), showing the duration of the predicted transits relative to the duration for a circular

orbit as a function of secondary mass.



– 35 –

Fig. S10.— Map of the χ2 surface corresponding to a grid of blend models for Kepler-11g for the

case of a background eclipsing binary (star+star). The vertical axis shows the relative distance

between the binary and the main star expressed in terms of the difference in the distance modulus.

The solid green line corresponds to a brightness difference of ∆Kp = 1 between the target and the

background binary. Blends brighter than this (hatched area) are ruled out as they would have been

detected spectroscopically. The faintest viable blends have ∆Kp = 3.5 (dashed green line).
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Fig. S11.— Similar to Figure S10, but for the case of blends consisting of an eclipsing star+planet

pair. Note that many of the configurations that provide good fits to the data are in the foreground

(negative distance modulus differences). The hatched area below the blue line corresponds to blends

that are significantly redder in r − Ks (by 3σ, or 0.11 mag) compared to the measured color of

Kepler-11, and is excluded. The solid green line corresponds to a brightness difference of ∆Kp = 1

between the target and the background/foreground star. Blends brighter than this (hatched area)

are ruled out as they would have been detected spectroscopically. Only blends below the white 3σ

contour in regions that are not hatched are permitted by the constraints placed by the observations.
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Fig. S12.— Planetary configuration during the triple transit seen at BJD 2,455,435.2. The radii of

the points are scaled to the radius of each planet. Orbits are also to scale with one another, but

planetary radii are exaggerated relative to orbital ones for clarity. Planetary colors match Figures 1

and 2 in the main text.




