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Abstract

A measurement of the angular correlations between beauty and anti-beauty hadrons
(BB) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC
is presented, probing for the first time the region of small angular separation. The B
hadrons are identified by the presence of displaced secondary vertices from their de-
cays. The B hadron angular separation is reconstructed from the decay vertices and
the primary-interaction vertex. The differential BB production cross section, mea-
sured from a data sample collected by CMS and corresponding to an integrated lu-
minosity of 3.1 pb−1, shows that a sizable fraction of the BB pairs are produced with
small opening angles. These studies provide a test of QCD and further insight into
the dynamics of bb production.
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2 2 The CMS Detector

1 Introduction
Beauty quarks are abundantly produced through strong interactions in pp collisions at the
CERN Large Hadron Collider (LHC). The hadroproduction of bb pairs is measured to have a
large cross section (of the order of 100 µb) at a centre-of-mass energy of 7 TeV [1–3]. Detailed
b quark production studies provide substantial information about the dynamics of the under-
lying hard scattering subprocesses within perturbative Quantum Chromodynamics (pQCD).
In lowest order pQCD, i.e. in 2→ 2 parton interaction subprocesses, momentum conservation
requires the b and b quarks to be emitted in a back-to-back topology. However, higher order
2 → 2 + n (n ≥ 1) subprocesses with additional partons (notably gluons) emitted, give rise to
different topologies of the final state b quarks. Consequently, measurements of bb angular and
momentum correlations provide information about the underlying production subprocesses
and allow for a sensitive test of pQCD leading-order (LO) and next-to-leading order (NLO)
cross sections and their evolution with event energy scales. Studies of b quark production at
the LHC may provide insight into the hadronisation properties of heavy quarks at these new
energy scales, as well as better knowledge of the heavy quark content of the proton. In ad-
dition, identification of b quarks and precision measurements of their properties are crucial
ingredients for new physics searches in which bb hadroproduction is expected to be one of the
main backgrounds.

In this paper, angular correlations between pairs of beauty hadrons, hereafter referred to as “B
hadrons”, are studied with the Compact Muon Solenoid (CMS) detector, probing for the first
time the region of very small angular separation at

√
s = 7 TeV. Measurements of BB-pair

production are presented differentially as a function of the opening angle for different event
scales, characterised by the leading jet transverse momentum. The extrapolation back to the
angular separation of the b quarks, which requires modeling of heavy quark fragmentation and
hadronisation, is not considered in this analysis. The results are given for the visible kinematic
range defined by the phase space at the hadron level.

Measurements of the full range of BB angular separation demand good angular resolution and
require the ability to resolve small opening angles when the two B hadrons are inside a single
reconstructed jet. The kinematic properties of B hadrons can be reconstructed using jets, leptons
from semileptonic decays of B hadrons or secondary vertices (SV) originating from the decay
of long-lived B hadrons. In this analysis, a method based on an iterative inclusive secondary
vertex finder that exploits the excellent tracking capabilities of the CMS detector is introduced.
One advantage of this method is the unique capability to detect BB pairs even at small opening
angles, in which case the decay products of the B hadrons tend to be merged into a single jet and
the standard B jet tagging techniques [4] are not applicable. Previously, studies of azimuthal
bb correlations using vertexing have been done at lower energy in pp collisions [5, 6].

In Section 2, a brief overview of the subdetectors relevant for this analysis is given. Section
3 describes the Monte Carlo (MC) simulations and the programs used for QCD predictions.
The event selection, the analysis details, and the determination of efficiencies and systematic
uncertainties are described in Section 4. In Section 5 we present the results and compare the
data with theoretical predictions.

2 The CMS Detector
A detailed description of the CMS detector can be found in Ref. [7]. The central feature of
the CMS apparatus is a superconducting solenoid of 6 m internal diameter, with a 3.8 T ax-
ial magnetic field. The subdetectors used in the present analysis are tracking detectors and
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calorimeters, located within the field volume. The tracker consists of a silicon pixel and silicon
strip tracker covering the pseudorapidity range |η| < 2.5. The pixel tracker consists of three
barrel layers and two endcap disks at each barrel end. The strip tracker has 10 barrel layers and
12 endcap disks. The barrel and endcap calorimeters (|η| < 3) consist of a lead-tungstate crystal
electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL). The
ECAL and HCAL cells are grouped into towers, projecting radially outward from the interac-
tion region, for triggering purposes and to facilitate jet reconstruction. The CMS experiment
uses a right-handed coordinate system, with the origin at the nominal proton-proton collision
point, the x-axis pointing towards the centre of the LHC ring, the y-axis pointing upwards (per-
pendicular to the LHC plane), and the z-axis pointing along the anticlockwise beam direction.
The polar angle θ is measured from the positive z-axis and the azimuthal angle φ is measured
from the positive x-axis in the xy plane. The radius r denotes the distance from the z-axis and
the pseudorapidity is defined by η = − ln(tan(θ/2)).

3 Monte Carlo Simulation and QCD Predictions
Different simulation programs at the LO and the NLO level have been utilized to describe the
b production process within perturbative QCD. Within the LO picture, three parton level pro-
duction subprocesses can be defined [8, 9], conventionally denoted by flavour creation (FCR),
flavour excitation (FEX) and gluon splitting (GSP), and are implemented in Monte Carlo event
generators like PYTHIA [10] and HERWIG [11]. These subprocesses are related to different final
state topologies. Notably, in FCR processes the bb pairs are expected to be emitted in a back-
to-back topology, which corresponds to a large angular separation between the b and b quarks,
whereas in GSP the pair emission follows a more collinear topology, i.e. a small angular sepa-
ration between the b and b quarks. At higher orders in QCD, the FCR, FEX and GSP separation
of production subprocesses becomes meaningless and only the combination of the 2 → 2 and
2 → 2 + n (n ≥ 1) subprocesses is relevant. Calculations of such processes are implemented
in MC@NLO [12–14] or FONLL [15]. The MADGRAPH/MADEVENT [16, 17] generator provides
the possibility to simulate 2 → 2, 3 subprocesses at tree-level, providing a hybrid solution be-
tween 2 → 2 at LO and the NLO simulations. We use also the CASCADE [18] generator, which
is based on off-shell LO matrix elements using high-energy factorization [19] convolved with
unintegrated parton distributions.

The basic Monte Carlo event generator applied in this analysis is the LO PYTHIA program (ver-
sion 6.422 [10]), which is used to determine selection efficiencies and to optimise the vertexing
algorithm for B hadron reconstruction. The event samples are generated applying the standard
PYTHIA settings [10] with tune D6T [20] for the underlying event and with the CTEQ6L1 [21]
proton parton distribution functions (PDF). All events generated by the PYTHIA program are
processed with a detailed simulation of the CMS detector response based on the GEANT4 pack-
age [22].

For comparison with theoretical predictions, events with two and three partons in the final
state are generated by means of the MADGRAPH/MADEVENT4 program, where the shower-
ing is performed with PYTHIA, and the jet matching scheme used is “kT-MLM” [23]. The
CTEQ6L1 [21] parton distribution functions are used, and the mass of the b quark is set to
mb = 4.75 GeV.

For the events produced with the CASCADE generator, the CCFM set A [24] of parton distribu-
tions is used. The calculations include the processes g∗g∗ → bb̄ and g∗q → gq → bb̄X. The
matrix element of g∗g∗ → bb̄ already includes a large fraction of the process g∗g → gg →
bb̄X [19, 25], therefore g∗g→ gg→ bb̄X is not added to avoid double counting.
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A further set of QCD events is produced by means of the MC@NLO generator (version 3.4 [14]
with standard scale settings and b-quark mass mb = 4.75 GeV), which matches NLO QCD
matrix element calculations with parton shower simulations as implemented in HERWIG (ver-
sion 6.510) [11]. The proton PDF set used is CTEQ6M [21]. For the NLO generated events, no
full CMS detector simulation is done. Subsequent to the parton showering and hadronisation
process, the generated stable particles in the events are clustered into jets with the anti-kT jet
algorithm [26].

4 Event Selection and Data Analysis
The data sample used in this analysis was collected by the CMS experiment during 2010 at a
centre-of-mass energy of

√
s = 7 TeV and corresponds to an integrated luminosity of 3.1 ±

0.3 pb−1. Only data from runs when the CMS detector components relevant for this analysis
were fully functional and when stable beam conditions were present are used. Events from
non-collision processes are rejected by requiring a primary (“collision”) vertex (PV) [27, 28]
with at least four well reconstructed tracks. Background from beam-wall and beam halo events,
and events faking high energy deposits in the HCAL, are filtered out based on pulse shape, hit
multiplicity and timing criteria.

4.1 Analysis Overview

The analysis relies on the single-jet trigger in both the hardware-level (L1) and the software
high-level (HLT) components of the CMS trigger system [7]. We require at least one HLT
jet with uncorrected transverse calorimetric energy EU

T above a trigger threshold of 15, 30 or
50 GeV. Figure 1 shows the leading jet transverse momentum (pT) spectra with particle flow
jets [29] and the corresponding trigger efficiency dependence on pT. The efficiencies, also
shown in Figure 1, are determined using events selected with a lower EU

T (prescaled) trigger.

The event sample is then divided into three energy scale bins corresponding to the pT ranges
where the different jet triggers are over 99% efficient. These correspond to samples where
the transverse momenta of the leading jet, using corrected jet energies [30], exceed 56, 84
and 120 GeV, respectively. The effective integrated luminosity, taking into account the trigger
prescale factors, corresponds to 0.031, 0.313 and 3.069 pb−1, respectively, for the three samples,
including some overlap.

The visible kinematic range for the measurements is defined at the B hadron level by the re-
quirements |η(B)| < 2.0 and pT(B) > 15 GeV for both of the B hadrons. The leading jet used to
define the minimum energy scale is required to be within |η(jet)| < 3.0.

In this analysis, the HLT triggered events are required to have at least one reconstructed jet
with a minimum corrected pT, a reconstructed PV, and in addition at least two reconstructed
secondary vertices (SV). For the offline jet reconstruction, particle flow objects [29] are clus-
tered with the anti-kT jet algorithm [26, 31] with a distance parameter RkT = 0.5. For further
BB angular analysis, these generic secondary vertices are required to originate from B hadron
decays, as described in the following paragraphs.

The flight direction of the original B hadron is approximated by the vector
−→
SV, joining the PV

(position of B hadron production) and the SV (position of the B hadron decay). The length
|−→SV| is the three-dimensional flight distance (D3D) and its significance is given by S3D =
D3D/σ(D3D), where σ(D3D) is the uncertainty of D3D.

In an event with two SVs, which are considered to originate from a bb pair, the angular correla-
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Figure 1: The measured transverse momentum distributions of the leading jet in the event
(left) and measured efficiency to trigger an event on the high-level trigger as a function of jet
pT (right), for three different trigger thresholds.

tion variables between the B and B hadrons are calculated using their flight directions. Typical
variables used for the characterization of the angular correlations between the two hadrons are
the difference in azimuthal angles (∆φ) and the difference in polar angles, usually expressed in
terms of pseudorapidity (∆η), or the combined separation variable ∆R =

√
∆η2 + ∆φ2.

The kinematic regions with ∆R < 0.8 and with ∆R > 2.4 are used for comparisons or normali-
sations of the simulation. The cross sections integrated over these two regions will be denoted
by σ∆R<0.8 and by σ∆R>2.4, and the ratio by ρ∆R = σ∆R<0.8/σ∆R>2.4. This is inspired by the theo-
retical predictions, since at low ∆R values the gluon splitting process is expected to contribute
significantly, whereas at high ∆R values flavour creation prevails.

4.2 Vertex Reconstruction and B Candidate Identification

The primary vertex is reconstructed from tracks of low impact parameter with respect to the
nominal interaction region. In cases of multiple interactions in the same bunch crossing (pile-
up events), the primary interaction vertex is chosen to be the one with the largest squared
transverse momentum sum ST = ∑ p2

Ti, where the sum runs over all tracks associated with the
vertex. Residual effects from pile-up events are found to be negligible.

Next, the events are required to have at least two reconstructed secondary vertices. An inclu-
sive secondary vertex finding (IVF) technique, completely independent of jet reconstruction, is
applied for this purpose. This technique reconstructs secondary vertices by clustering tracks
around the so-called seeding tracks characterized by high three-dimensional impact parameter
significance Sd = d/σ(d), where d and σ(d) are the impact parameter and its uncertainty at
the PV, respectively. The tracks are clustered to a seed track based on their compatibility given
their separation distance in three dimensions, the separation distance significance (distance
normalised to its uncertainty), and the angular separation. The clustered tracks are then fit-
ted to a common vertex with an outlier-resistant fitter [32, 33]. The vertices sharing more than
70% of the tracks compatible within the uncertainties are merged. As a final step, all tracks are
assigned to either the primary or the secondary vertices on the basis of the significance of the
track to vertex distance.

In this analysis, a SV is required to be made up of at least three tracks, to have a maximal two-
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dimensional flight distance Dxy = |−→SVxy| < 2.5 cm, a minimal two-dimensional flight distance
significance S2D = Dxy/σ(Dxy) > 3, and to possess a vertex mass mSV < 6.5 GeV. Here, σ(Dxy)
is the uncertainty on Dxy. The four-momentum of the vertex pSV = (ESV ,~pSV) is calculated
as the sum pSV = ∑ pi over all tracks fitted to that vertex, with pi = (Ei,~pi), using the pion
mass hypothesis for every track to obtain its energy Ei. The vertex mass mSV is calculated
as m2

SV = E2
SV − ~p2

SV . The four-momentum of the reconstructed B hadron candidate is then
identified with the SV four–momentum, and thus the variables pT(B), η(B) for the B hadron
candidates are readily calculated from pSV .

Events with at least two secondary vertices may originate from any of the following processes:
a) true ’signal’ BB events; b) true BB events where at least one B hadron is not correctly recon-
structed (SV from other sources); c) QCD events with light quark and gluon jets, which enter
through misidentification of vertices not originating from B decay; d) direct cc production with
long lived D hadrons; e) sequential B → D → X decay chains, where B hadrons decay to long
lived D hadrons, and both B and D vertices are reconstructed. The BB signal events contain a
fraction from top quark pair production of less than 1% [34, 35].

Often, both the B and D decay vertices are reconstructed by the IVF. Such topologies need to
be distinguished from events with two quasi-collinear B hadrons. To achieve this, an iterative
merging procedure is applied to vertices with ∆R < 0.4. The procedure is optimised to yield
a single B candidate associated with a decay chain B → D → X, while successfully retaining
two B candidates also in events where two real B hadrons are emitted nearly collinearly. The
vertices are merged into a single B candidate if the invariant mass of the sum over all tracks
is below 5.5 GeV and cos β > 0.99, where β is the angle between the line connecting the two
vertices and the sum of the momenta of the tracks associated to the vertex at largest distance
from the PV.

All B candidates are retained if they have a minimal 3D flight distance significance S3D > 5,
a pseudorapidity |η(SV)| < 2, a transverse momentum pT(SV) > 8 GeV, and a vertex mass
mSV > 1.4 GeV. The quality of the B candidate reconstruction technique is illustrated in Fig. 2
for events with a leading jet having pT > 84 GeV (all selection cuts apart from those on the
shown quantities are applied). The simulation describes the data very well in terms of vertex
mass and 3D decay length significance distribution.

Only those events which have exactly two B hadron candidates and which have a vertex mass
sum m1 + m2 > 4.5 GeV are retained. A total of 160, 380 and 1038 events pass all these require-
ments for the three leading jet pT bins, respectively from the lowest to the highest. The overall
contributions from events with three or more B candidates is found to be negligible (less than
1%).

4.3 Efficiency and Resolution

This analysis uses selection efficiency corrections as a function of the leading jet pT and the
∆R between the two SVs. The corrections are determined from the simulated PYTHIA event
samples. They extrapolate from the measured vertex momenta to the visible phase space of
true B hadrons, defined by |η(B)| < 2.0, and pT(B) > 15 GeV. The momentum measured
by the vertex candidate represents of the order of 50% of the true B hadron momentum. The
overall event reconstruction efficiencies (including both B hadron decays) are found to be 7.4%,
9.3% and 10.7%, on average, for the three jet pT bins, respectively from the lowest to the highest.

The validity of the ∆R-dependence of the efficiencies obtained from simulation is checked using
a data driven method based on event mixing, as illustrated below. It is found that the ∆R-
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Figure 2: Properties of the reconstructed B candidates: vertex mass distribution (left) and flight
distance significance distribution (right). The inset in the right plot shows a zoom of the flight
distance significance distribution with narrower bins and linear scale. The data are shown by
the solid points. The decomposition into the different sources, beauty, charm and light quarks,
is shown for the PYTHIA Monte Carlo simulation. The simulated distributions are normalised
to the total number of data events. All selection cuts apart from those on the shown quantities
are applied.

dependence is well described by the simulation, justifying this approach. The differences are
used to estimate the systematic uncertainties.

The resolution achieved in the ∆R reconstruction is estimated from simulation. The compari-
son of the ∆R values reconstructed between the two vertices ∆RVV with the values calculated
between the original true B hadrons ∆RBB, determines the resolution. This is illustrated in
Fig. 3, which shows the two-dimensional distribution ∆RVV versus ∆RBB and its projection
onto the diagonal (∆RVV − ∆RBB). A fit to this projection directly yields an average resolution
better than 0.02 in ∆R for the core region, a value much smaller than the ∆R bin width of 0.4.

In order to calculate differential cross sections, a ∆R-dependent purity correction is applied.
The contributions to purity due to migration are illustrated in Fig. 3a. The total number of
event entries off the diagonal is found to be about 3%. The largest impurity occurs close to
∆RVV ≈ 3 as can be seen in the 2D plot. These events are due to misreconstructed collinear
events where only one B hadron is reconstructed, while a fake vertex is found in the recoiling
light quark jet. The largest effect on a single bin is below 10% and this is taken into account in
the purity correction. The uncertainty arising from this correction is included in the systematic
uncertainties. The average BB purity is found to be 84%, with a variation within about ±10%
over the full ∆R range in the visible region for the three leading jet pT bins.

4.4 Systematic Uncertainties

Uncertainties relevant to the shape of the differential distributions are crucial for this paper.
The consistency in shape between the data and the simulation is assessed and the systematic
uncertainties are estimated by data driven methods. The systematic uncertainties related to the
absolute normalisation are much larger than the shape dependent ones. They sum up to a total
of 47%, but do not affect the shape analysis (see below). The dominant contribution originates
from the B hadron reconstruction efficiency (±20%, estimated in [4]), which amounts to a total
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Figure 3: Resolution of the ∆R reconstruction, obtained using simulation for the leading jet
pT > 84 GeV sample. Left: ∆R values reconstructed between the two secondary vertices ∆RVV
versus the values between the original B hadrons ∆RBB, in the visible B hadron phase space (see
text). Right: projection onto the diagonal (∆RVV − ∆RBB). The numbers in the boxes represent
the number of events reconstructed in that particular bin.

of 44% for reconstructing two B hadrons.

In the following the shape dependent systematic uncertainties for the ∆R distributions are dis-
cussed. The values are quoted in terms of the relative change of the integrated cross section
ratio ρ∆R = σ∆R<0.8/σ∆R>2.4. Very similar systematic uncertainties arise for the ∆φ distribu-
tions and, hence, they are not quoted separately.

• Algorithmic effects. The shape of the ∆R dependence of the efficiency α(∆R) is checked
by means of an event mixing method. This event mixing technique mimics an event
with two genuine SVs by merging two independent events, where each has at least
one reconstructed SV. The positions of the two PVs are required to be within 20 µm
in three-dimensional space. This mixed event is then analysed and the fraction of
cases where both original SVs are again properly reconstructed is used to determine
the ∆R dependence of the efficiency to find two genuine SVs in an event which had
the SVs already reconstructed. The shape of this efficiency α(∆R) is determined for
the data and for the simulated samples independently in bins of ∆R. The vertex
reconstruction efficiency as a function of ∆R for data and for simulation, and their
ratio are shown in Fig. 4. Since in this analysis the shape is the most relevant prop-
erty, the values in Fig. 4b have been rescaled to the mean value. This ratio exhibits
good consistency in shape between simulation and data over the full ∆R range, in-
cluding the region of small ∆R. The differences are found to be within 2% and are
taken as systematic uncertainties.

• B hadron momenta. The mean reconstruction efficiency for an observed ∆R value
strongly depends on the kinematic properties of the B hadron pair. It depends on
the pT of each B hadron and predominantly on the softer of the two. Since all effi-
ciency corrections are taken from the MC simulation, it is important to verify that
the kinematic behaviour of the BB pairs is also properly modelled by the simulation.
Confidence in the Monte Carlo modelling is provided by comparing the transverse
momentum distributions of the reconstructed B candidates derived from data and
from Monte Carlo simulation. The distributions of the reconstructed pT of the harder
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Figure 4: Study of the vertex reconstruction efficiency by the event mixing method. Shown as
a function of ∆R are the relative vertex reconstruction efficiency (left) α(∆R) (see text), and the
ratio (right) between the quantities α(∆R) determined from the data and from the simulation.
The simulated α(∆R) distribution (left) is shown for two energy scales, characterized by p̂T,
the PYTHIA parameter describing the transverse momentum in the hard subprocess. The ratio
(right) is rescaled to unity to estimate the accuracy of the simulated shape.

and of the softer of the two hadrons, their asymmetry, as well as the ∆R dependence
of the average reconstructed pT of the softer hadron for the three leading jet pT re-
gions, are shown in Fig. 5. The differences between the data and the simulation,
convolved with the pT-dependent efficiency, are found to have an effect on the fi-
nal result of between 4% and 8%. These values are used to estimate the systematic
uncertainties reported in Table 1 as “B hadron kinematics”.

• Uncertainty on the Jet Energy Scale (JES). The JES influences the ∆R shape of the two
B hadrons. Its effect on the pT of the leading jet is estimated assuming a linear rise
of the pT dependency of the relative cross section ratio (see below). Given that the
higher pT scales exhibit a larger relative contribution to the cross section at low ∆R,
the actual ∆R shape is distorted by this effect. The uncertainty on the JES is deter-
mined by assuming a±3% [30] uncertainty on average for the energy region relevant
for this analysis. An additional ±5% is added to take into account the differences
in the jet energy corrections between b and light jets as estimated in the simulation.
This yields a variation in the ∆R shape within 6%, which is taken as systematic un-
certainty.

• Phase space correction. The measurements of vertices are corrected to the visible phase
space of the B hadrons defined by |η(B)| < 2.0 and pT(B) > 15 GeV, using the
PYTHIA Monte Carlo simulation. In the analysis only reconstructed B hadrons above
a pT of 8 GeV are considered. The uncertainty arising from this choice has been es-
timated by varying the pT cut on the reconstructed vertex from 8 to 10 GeV, recom-
puting the MC correction and repeating the final measurement. The uncertainty is
found to be 2.8%.

• Migration. The bin-to-bin migrations in the sample are small because, as shown in
Fig. 3, the core of the vertex resolution in ∆R (0.02) is much smaller than the cho-
sen bin width (0.4). The migrations are taken into account through the efficiency
corrections. The off-diagonal contributions (predominantly at ∆RVV ≈ π from mis-
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Figure 5: Distributions of the reconstructed pT of the two B hadrons: pT of the harder B hadron
(top left); pT of the softer B hadron (top right); asymmetry (bottom left) of the pT of the harder
and the softer B hadron; average pT (bottom right) of the softer B hadron as a function of ∆R
for data (solid dots) and PYTHIA simulation (green bars) for the three leading jet pT regions.

reconstructed collinear gluon splitting events, with one vertex from the recoiling jet)
are subtracted on a bin-to-bin basis. An uncertainty of up to 2.1% on this purity
correction is obtained by increasing the small angle ∆R < 0.8 contribution by 50%
(compatible with the measured results, as presented below).

• Monte Carlo statistics. An additional bin-to-bin systematic uncertainty results from
the limited number of simulated events. An uncertainty of 13% is used, conserva-
tively taking the maximum value of either the statistical uncertainty of the simula-
tion or half of the largest bin-to-bin fluctuation observed in the correction function
between any of the ∆R bins. This uncertainty is mostly relevant for Figs. 6 and 8; its
effect is reduced in Fig. 7.

The shape-dependent systematic uncertainties are calculated and included binwise in the fig-
ures, as indicated by the outer error bars which show statistical and systematic uncertainties
added in quadrature. They are summarised in Table 1. The overall normalisation uncertainties
are not included in the error bars in the figures.



11

Table 1: Systematic uncertainties affecting the shape of the differential cross section as a func-
tion of ∆R, for the three leading jet pT regions. The values are quoted in terms of percentage
changes of the integrated cross section ratio ρ∆R. In the figures, these values are included for
each bin. Very similar systematic uncertainties are assumed for the ∆φ distributions.

Source of uncertainty in shape Change in ρ∆R = σ∆R<0.8/σ∆R>2.4 (%)

Leading jet pT bin (GeV)

> 56 > 84 > 120

Algorithmic effects (data mixing) 2.0 2.0 2.0

B hadron kinematics (pT of softer B) 8.0 7.0 4.0

Jet energy scale 6.0 6.0 6.0

Phase space correction 2.8 2.8 2.8

Bin migration from resolution 0.6 1.3 2.1

Subtotal shape uncertainty 10.6 9.9 8.3

MC statistical uncertainty 13.0 13.0 13.0

Total shape uncertainty 16.8 16.4 15.4

5 Results
5.1 Differential Distributions in ∆R and ∆φ

The differential cross section of BB -pair production is measured as a function of the angular
separation variables ∆R and ∆φ between the two reconstructed B hadrons for three different
energy scales. The results are presented for the visible kinematic phase space of the B hadrons
and the leading jet pT ranges as defined in Section 4.1. The cross sections are determined by
applying efficiency corrections and normalising to the total integrated luminosity, according to

(
dσvisible(pp→ BB X)

dA

)
i
=

Ni(data) · fi

∆Ai · L · εi
, (1)

where Ni(data) denotes the number of selected signal BB events in bin i, L the integrated
luminosity, εi the total efficiency, fi the purity correction factor, and ∆Ai the width of bin i in
variable A, with A being ∆R or ∆φ.

The measured cross sections are shown in Fig. 6 as a function of ∆R and ∆φ for the three
leading jet pT regions. The error bars on the data points include statistical and uncorrelated
systematic uncertainties. An uncertainty of 47% common to all data points due to the absolute
normalisation is not shown in the figure. The bars shown for the PYTHIA simulation in Fig. 6
are normalised to the region ∆R > 2.4 or ∆φ > 2.4, where the theory calculations are expected
to be more reliable, since the cross section is anticipated to be dominated by leading order
diagrams (flavour creation).

It is interesting to note that the cross sections at small values of ∆R or ∆φ are found to be
substantial. They exceed the cross sections observed at large angular separation values, the
configuration where the two B hadrons are emitted in opposite directions.

The scale dependence is illustrated in Table 2 and Fig. 7, where the left panel shows the ratio
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Figure 6: Differential BB production cross sections as a function of ∆R (left) and ∆φ (right)
for the three leading jet pT regions. For clarity, the pT > 56 and 84 GeV bins are offset by a
factor 4 and 2, respectively. For the data points, the error bars show the statistical (inner bars)
and the total (outer bars) uncertainties. A common uncertainty of 47% due to the absolute
normalisation on the data points is not included. The symbols denote the values averaged over
the bins and are plotted at the bin centres. The PYTHIA simulation (shaded bars) is normalised
to the region ∆R > 2.4 or ∆φ > 2.4, as indicated by the shaded normalisation regions. The
widths of the shaded bands indicate the statistical uncertainties of the predictions.

ρ∆R as a function of the leading jet pT, a measure of the hard interaction scale. The right panel
shows the asymmetry of the cross section contributions between small and large ∆R values,
(σ∆R<0.8 − σ∆R>2.4) / (σ∆R<0.8 + σ∆R>2.4). The measured data clearly indicate that the relative
contributions of σ∆R<0.8 significantly exceed those of σ∆R>2.4. In addition, the data show that
this excess depends on the energy scale, increasing towards larger leading jet pT values.

Table 2: pT cut of the leading jet, average jet pT, cross sections in the two ∆R regions (includ-
ing the 47% uncertainty on the absolute normalisation), average efficiency, average purity, and
cross section ratio for the data, as well as for the PYTHIA and MADGRAPH simulations. Statis-
tical and systematic uncertainties are included for the data, while for the simulations only the
statistical uncertainties are given.

Jet pT ρ∆R = σ∆R<0.8 / σ∆R>2.4
Cut 〈pT〉 σ∆R<0.8 σ∆R>2.4 〈ε〉 〈P〉 Data PYTHIA MADGRAPH

(GeV) (GeV) (nb) (nb) (%) (%) (stat+sys) (stat) (stat)
> 56 72 37± 26 26± 16 7.4 84.9 1.42± 0.29 0.89± 0.02 1.53± 0.07
> 84 106 10± 4 5.6± 4.0 9.3 84.6 1.77± 0.26 1.51± 0.05 2.60± 0.09
> 120 150 2.8± 1.0 1.0± 1.2 10.7 83.2 2.74± 0.32 2.13± 0.07 3.64± 0.11

5.2 Comparisons with Theoretical Predictions

The measured distributions are compared with various theoretical predictions, based on per-
turbative QCD calculations, both at LO and NLO.

Within pQCD, a back-to-back configuration for the production of the BB pair (i.e. large values
of ∆R and/or ∆φ) is expected for the LO processes, while the region of phase space with small
opening angles between the B and B hadrons provides strong sensitivity to collinear emission
processes. The higher-order processes, such as gluon radiation which splits into bb pairs, are



13

 (GeV)
T

leading jet p
70 80 90 100 110 120 130 140 150

R
 >

 2
.4

∆σ
 / 

R
 <

 0
.8

∆σ

0

0.5

1

1.5

2

2.5

3

3.5

4

PYTHIA
MadGraph
Data 

-1 = 7 TeV, L = 3.1 pbsCMS    

 
| < 3.0Jetη|

| < 2.0Bη > 15 GeV, |B
T

p

 (GeV)
T

leading jet p
70 80 90 100 110 120 130 140 150

R
 >

 2
.4

∆σ
 +

 
R

 <
 0

.8
∆σ

R
 >

 2
.4

∆σ
 -

 
R

 <
 0

.8
∆σ

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PYTHIA
MadGraph
Data 

-1 = 7 TeV, L = 3.1 pbsCMS    

 
| < 3.0Jetη|

| < 2.0Bη > 15 GeV, |B
T

p

Figure 7: Left: ratio between the BB production cross sections in ∆R < 0.8 and ∆R > 2.4,
ρ∆R = σ∆R<0.8 / σ∆R>2.4, as a function of the leading jet pT. Right: asymmetry between the
two regions, (σ∆R<0.8 − σ∆R>2.4) / (σ∆R<0.8 + σ∆R>2.4). The symbols denote the data averaged
over the bins and are plotted at the mean leading jet pT of the bins. For the data points, the
error bars show the statistical (inner bars) and the total (outer bars) errors. Also shown are
the predictions from the PYTHIA and MADGRAPH simulations, where the widths of the bands
indicate the uncertainties arising from the limited number of simulated events.

anticipated to have a smaller angular separation between the b quarks. Naively, the flavour
creation contribution is expected to be dominant in most regions of the phase space, whereas
the gluon splitting contributions should be relatively small.

The measurements show that the BB production cross section ratio ρ∆R increases as a function
of the leading jet pT in the event (see Fig. 7). Larger pT values lead to more gluon radiation
and, hence, are expected to produce more gluon splitting into BB pairs. This general trend is
described by the theoretical calculations.

In order to provide a detailed comparison between the data and the theory predictions in terms
of shape, Fig. 8 presents the ratios, of the data as well as of the MADGRAPH, MC@NLO and CAS-
CADE models, with respect to the PYTHIA predictions, for the three different scales in leading jet
pT. The values for the PYTHIA simulation are normalised in the region ∆R > 2.4 (or ∆φ > 2.4).

It is observed that none of the predictions describes the data very well. The data lie between
the MADGRAPH and the PYTHIA curves. The MC@NLO calculations do not describe the shape
of the observed ∆R distribution. In particular, at small values of ∆R, where higher-order pro-
cesses, notably gluon splitting, are expected to be large, the MC@NLO predictions are substan-
tially below the data. The ∆φ distribution is more adequately reproduced by MC@NLO. The
CASCADE predictions are significantly below the data in all regions, both in the ∆R and ∆φ
distributions.

6 Summary
A first measurement of the angular correlations between BB pairs produced in pp collisions at a
centre-of-mass energy of 7 TeV is presented. The measurements are based on data correspond-
ing to an integrated luminosity of 3.1 ± 0.3 pb−1 recorded by the CMS experiment during 2010.
The detection of the B hadrons is based on the reconstruction of the secondary vertices from
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Figure 8: Ratio of the differential BB production cross sections, as a function of ∆R (left) and ∆φ
(right), for data, MADGRAPH, MC@NLO and CASCADE, with respect to the PYTHIA predictions,
for the three leading jet pT bins. The simulation is normalised to the region ∆R > 2.4 and
∆φ > 2.4 (FCR region), as indicated by the shaded normalisation region. The widths of the
theory bands indicate the statistical uncertainties of the simulation.

their decays. The results are given in terms of normalised differential production cross sec-
tions as functions of the angular separation variables ∆R and ∆φ between the two B hadrons.
The data exhibit a substantial enhancement of the cross section at small angular separation, ex-
ceeding the values measured at large ∆R and ∆φ. The fraction of cross section in this collinear
region is found to increase with the leading jet pT of the event.

The measurements are compared to predictions, based on LO and NLO perturbative QCD
calculations. Overall, it is found that the data lie between the MADGRAPH and the PYTHIA

predictions. Neither the MC@NLO nor the CASCADE calculations describe the shape of the ∆R
distribution well. In particular the collinear region at small values of ∆R, where the contribu-
tions of gluon splitting processes are expected to be large, is not adequately described by any
of the predictions.
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2008, P. Bartalini and L. Fanó, eds. Perugia, Italy, October, 2009. arXiv:1003.4220.

[21] J. Pumplin et al., “New Generation of Parton Distributions with Uncertainties from
Global QCD Analysis”, JHEP 07 (2002) 012, arXiv:hep-ph/0201195.

[22] GEANT4 Collaboration, “GEANT4: A Simulation Toolkit”, Nucl. Instrum. Meth. A506
(2003) 250. doi:10.1016/S0168-9002(03)01368-8.

[23] J. Alwall, S. de Visscher, and F. Maltoni, “QCD Radiation in the Production of Heavy
Colored Particles at the LHC”, JHEP 02 (2009) 017, arXiv:0810.5350.
doi:10.1088/1126-6708/2009/02/017.

[24] H. Jung et al., “The CCFM Monte Carlo generator CASCADE 2.2.0”, Eur. Phys. J. C70
(2010) 1237, arXiv:1008.0152. doi:10.1140/epjc/s10052-010-1507-z.

[25] M. Deak, F. Hautmann, H. Jung et al., “Forward Jet Production at the Large Hadron
Collider”, JHEP 09 (2009) 121.

[26] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt Jet Clustering Algorithm”, JHEP 04
(2008) 063, arXiv:0802.1189. doi:10.1088/1126-6708/2008/04/063.

[27] CMS Collaboration, “Tracking and Primary Vertex Results in First 7 TeV Collisions”,
CMS-Note CERN-CMS-PAS-TRK-10-005 (2010).

[28] CMS Collaboration, “CMS Tracking Performance Results from early LHC Operation”,
Eur. Phys. J. C70 (2010) 1165, arXiv:1007.1988.
doi:10.1140/epjc/s10052-010-1491-3.

[29] CMS Collaboration, “Commissioning of the Particle-Flow Reconstruction in
Minimum-Bias and Jet Events from pp Collisions at 7 TeV”, CMS Note
CERN-CMS-PAS-PFT-10-002 (2010).

[30] CMS Collaboration, “Jet Energy Corrections Determination at
√

s = 7 TeV”, CMS Note
CERN-CMS-PAS-JME-10-010 (2010).

[31] CMS Collaboration, “Jet Performance in pp Collisions at
√

s = 7 TeV”, CMS Note
CERN-CMS-PAS-JME-10-003 (2010).
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J. Strauss, A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
L. Benucci, K. Cerny, E.A. De Wolf, X. Janssen, T. Maes, L. Mucibello, S. Ochesanu, B. Roland,
R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Beauceron, F. Blekman, S. Blyweert, J. D’Hondt, O. Devroede, R. Gonzalez Suarez,
A. Kalogeropoulos, J. Maes, M. Maes, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van
Onsem, I. Villella
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INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa ,b, L. Barbonea ,b, C. Calabriaa ,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c,
M. De Palmaa ,b, A. Dimitrova, L. Fiorea, G. Iasellia,c, L. Lusitoa,b,1, G. Maggia ,c, M. Maggia,
N. Mannaa ,b, B. Marangellia ,b, S. Mya,c, S. Nuzzoa ,b, N. Pacificoa,b, G.A. Pierroa, A. Pompilia ,b,
G. Pugliesea,c, F. Romanoa,c, G. Rosellia,b, G. Selvaggia ,b, L. Silvestrisa, R. Trentaduea,
S. Tupputia,b, G. Zitoa

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, A.C. Benvenutia, D. Bonacorsia, S. Braibant-Giacomellia,b, L. Brigliadoria,
P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania ,b, G.M. Dallavallea, F. Fabbria,
A. Fanfania ,b, D. Fasanellaa, P. Giacomellia, M. Giuntaa, C. Grandia, S. Marcellinia,
M. Meneghellia ,b, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,
A.M. Rossia,b, T. Rovellia ,b, G. Sirolia ,b, R. Travaglinia,b

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
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A. Benagliaa,b, F. De Guioa ,b ,1, L. Di Matteoa ,b, A. Ghezzia,b ,1, M. Malbertia,b, S. Malvezzia,
A. Martellia ,b, A. Massironia ,b, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia,
S. Ragazzia ,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b, V. Tancinia ,b
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24 A The CMS Collaboration

T. Lomtadzea, L. Martinia,18, A. Messineoa,b, F. Pallaa, F. Palmonaria, S. Sarkara ,c, G. Segneria,
A.T. Serbana, P. Spagnoloa, R. Tenchinia, G. Tonellia,b,1, A. Venturia ,1, P.G. Verdinia
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40: Also at Institute for Nuclear Research, Moscow, Russia
41: Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH),
Bucharest, Romania
42: Also at Istanbul Technical University, Istanbul, Turkey


	1 Introduction
	2 The CMS Detector
	3 Monte Carlo Simulation and QCD Predictions
	4 Event Selection and Data Analysis
	4.1 Analysis Overview
	4.2 Vertex Reconstruction and B Candidate Identification
	4.3 Efficiency and Resolution
	4.4 Systematic Uncertainties

	5 Results
	5.1 Differential Distributions in R and 
	5.2 Comparisons with Theoretical Predictions

	6 Summary
	A The CMS Collaboration 



