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Abstract

The integrated and differential cross sections for the production of pairs of isolated
photons is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV
with the CMS detector at the LHC. A data sample corresponding to an integrated
luminosity of 36 pb−1 is analysed. A next-to-leading-order perturbative QCD calcu-
lation is compared to the measurements. A discrepancy is observed for regions of the
phase space where the two photons have an azimuthal angle difference ∆ϕ . 2.8.
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1 Introduction
The production of energetic photon pairs in hadronic collisions is a valuable testing ground
of perturbative quantum chromodynamics (pQCD). The emission of a pair of photons from
hard parton-parton scattering constitutes a particularly clean test of perturbation theory in the
collinear factorisation [1, 2] and kT factorisation [3] approaches, as well as soft-gluon logarith-
mic resummation techniques [4]. A comprehensive understanding of photon pair production
is also important as it represents a major background in certain searches for rare or exotic pro-
cesses, such as the production of a light Higgs boson, extra-dimension gravitons, and some
supersymmetric states.

This paper presents a measurement of the production cross section for isolated photon pairs in
proton-proton collisions at a centre-of-mass energy of 7 TeV, using the Compact Muon Solenoid
(CMS) detector at the Large Hadron Collider (LHC). Isolated photons produced in the hard
scattering of quarks and gluons are henceforth referred to as signal photons and the remaining
photons as background photons. A pair of signal photons will be referred to as a diphoton. The
data sample was collected in 2010 and corresponds to an integrated luminosity of 36.0 pb−1. Re-
cent diphoton cross-section measurements have been performed by the D0 [5] and CDF [6, 7]
Collaborations in proton-antiproton collisions at

√
s = 1.96 TeV, and by the ATLAS Collabora-

tion at the LHC [8].

The CMS detector consists of a silicon pixel and strip tracker surrounded by a crystal electro-
magnetic calorimeter (ECAL) and a brass/scintillator sampling hadron calorimeter (HCAL), all
in an axial 3.8 T magnetic field provided by a superconducting solenoid of 6 m internal diam-
eter. The muon system is composed of gas-ionization detectors embedded in the steel return
yoke of the magnet. In addition to the barrel and endcap detectors, CMS has an extensive
forward calorimetry system. A more detailed description of CMS can be found elsewhere [9].

In the CMS coordinate system, θ and ϕ respectively designate the polar angle with respect to the
counterclockwise beam direction, and the azimuthal angle, expressed in radians throughout
this paper. The pseudorapidity is defined as η = − ln

[
tan θ

2

]
.

Distance in the (η, ϕ) plane is defined as R =
√
(∆η)2 + (∆ϕ)2. The transverse energy ET of

a particle is defined as ET = E sin θ, where E is the energy of the particle, and the transverse
momentum is pT = p sin θ. The rapidity is defined as y = 1

2 ln
[ E+pz

E−pz

]
, with pz being the

longitudinal momentum with respect to the beam axis.

The electromagnetic calorimeter, which plays a major role in this measurement, consists of
nearly 76 000 lead tungstate crystals. It is divided into a central part (barrel) covering the re-
gion |η| < 1.48 and forward parts (endcaps) extending the coverage up to |η| < 3 for a particle
originating from the nominal interaction point. The crystals are arranged in a projective ge-
ometry with a granularity of 0.0174 in both the η and ϕ directions in the barrel, and increasing
with η from 0.021 to 0.050 in the endcaps. A preshower detector, consisting of two planes of
silicon sensors interleaved with 3 radiation lengths of lead, is placed in front of the endcaps to
cover the pseudorapidity region 1.65 < |η| < 2.6.

The differential cross section is measured as a function of variables that are particularly relevant
in searches for rare processes or to characterise QCD interactions (e.g. [2]):

• the diphoton invariant mass, mγγ;

• the azimuthal angle between the two photons, ∆ϕγγ;

• the photon pair transverse momentum, pT,γγ =
√

pT,γ1
2 + pT,γ2

2 + 2 pT,γ1 pT,γ2 cos ∆ϕγγ,
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where pT,γ1 and pT,γ2 are the magnitudes of the transverse momenta of the two pho-
tons;

• |cos θ∗| = |tanh ∆yγγ

2 |, with ∆yγγ being the difference between the two photon ra-
pidities. At lowest order in QCD, θ∗ is the center-of-mass scattering angle for the
qq̄→ γγ and gg→ γγ processes.

The event selection requires at least one isolated photon with ET > 23 GeV and a second iso-
lated photon with ET > 20 GeV, separated by R > 0.45. The measurements are performed in
two pseudorapidity regions, one with |η| < 1.44, and the other defined by the tracker accep-
tance |η| < 2.5, but excluding the transition region between the barrel and endcap calorimeters,
1.44 < |η| < 1.57. For convenience the widest η range without the transition will be referred to
as |η| < 2.5 throughout the paper.

The asymmetric thresholds on the photon transverse momenta avoid the infrared sensitivity
affecting the fixed-order calculations [10, 11] and simplify the comparison of the measurements
with the theoretical predictions.

All simulation results are based on the PYTHIA 6.4.22 [12] event generator, with the Z2 tune, the
CTEQ6L parton distribution functions (PDFs) [13], and a GEANT4 [14] modelling of the detector.
The Z2 tune is identical to the Z1 tune described in [15] except that Z2 uses the CTEQ6L PDFs
while Z1 uses CTEQ5L [16]. At the generator level, a prompt photon is considered as signal if
the sum of the generated transverse momenta of all the particles within a cone R < 0.4 around
the photon direction is less than 5 GeV.

Event selection and background discrimination are presented in Sections 2 and 3. The determi-
nation of the signal yield and the measurement of the cross section are described in Sections 4
and 5. Systematic uncertainties are detailed in Section 6. Results are discussed in Section 8 and
compared with the theoretical predictions introduced in Section 7.

2 Event Selection
Photon candidates are reconstructed by clustering the energy deposited in the ECAL [17, 18]
crystals. CMS is equipped with a versatile trigger to adapt to the steady increase in the LHC
instantaneous luminosity. In this measurement, three trigger settings were used for three suc-
cessive data-taking periods. They require two photon candidates, with a threshold of either
15 GeV or 17 GeV on the transverse energy. For the last period, with the highest instantaneous
luminosity, a weak isolation requirement is applied on one of the two photon candidates. For
the three periods, the trigger efficiency for events passing the analysis selections described in
the following paragraphs is estimated from simulated events to be greater than 99.9%. The
offline event selection requires one photon candidate with ET > 23 GeV and a second photon
candidate with ET > 20 GeV, each within the fiducial region defined in the introduction. The
candidates are required to be separated by R > 0.45 to avoid energy deposits related to one
candidate overlapping with the isolation region of another candidate.

Photon identification criteria requiring the deposits in the calorimeters to be consistent with an
electromagnetic shower are applied to the two candidates. The criteria are based on the spread
along η of the energy clustered in the ECAL, henceforth referred to as σηη , and on the ratio H/E
of the energies measured in the HCAL and ECAL (loose selections of Ref. [18]).

The photon candidates are required to be isolated. The sum of the transverse momenta of
charged particles measured by the tracker and the sum of the transverse energy deposits in
the HCAL, both defined within a cone of radius R = 0.4 around the photon direction, must
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each be less than 2 GeV in the barrel and 4 GeV in the endcaps. HCAL deposits in a cone of
radius R = 0.15 are excluded from the sum, as well as tracks in a cone of radius R = 0.04
and within a strip of ∆η = 0.03 along the ϕ direction, which can potentially contain tracks
of an electron-positron pair from the conversion of a photon in the tracker material. The sum
of the transverse energy deposited in the ECAL in a cone of radius R = 0.3 is required to
be less than 20% of the photon transverse energy, in order to be consistent with the online
trigger requirements. Excluded from the sum is the energy deposited within a cone whose
radius corresponds to 3.5 crystals along η and within a 5-crystal-wide strip extending along
the ϕ direction. In addition, we require that no charged particle with the following properties
impinge on the ECAL within a cone of radius R = 0.4: transverse momentum pT > 3 GeV,
impact parameters with respect to the primary vertex in the transverse and longitudinal planes
of less than 1 mm and 2 mm, respectively, and one associated hit in the innermost layer of the
pixel detector. Tracks corresponding to such particles are henceforth called impinging tracks.
The electron contamination is further reduced by imposing an additional veto on the presence
of hits in the layers of the pixel detector along the direction of the photon candidate.

3 Signal and Background Discrimination
The photon candidates in the selected event sample are designated as signal photons, back-
ground photons from hadron decays (most of which are misidentified pairs of collinear photons
coming from neutral meson decays), or misidentified electrons. The background to diphoton
pair events is thus made up of photon+jet and multijet events, with respectively one and two
background photons from neutral hadron decays, and Drell–Yan events, with two misidenti-
fied electrons.

The contamination from Drell–Yan events is estimated from simulation using the next-to-leading-
order (NLO) POWHEG generator [19–21], which agrees well with our own Drell–Yan measure-
ment [22]. The diphoton cross-section measurement is corrected for this contamination, which
amounts to about 12% in the diphoton mass range 80–100 GeV around the Z peak. This proce-
dure has a negligible impact on the systematic uncertainties.

Background photons from photon+jet and multijet events are produced in jets alongside other
particles, which tend to widen the deposits in the ECAL. An isolation variable I based on the
energy in the ECAL is used to statistically estimate the fraction of diphoton events among the
selected candidates. This variable is constructed to minimise the dependence on the energy
deposited by minimum-ionising particles (MIPs) such that its distribution for the background
can be obtained from the data by means of the impinging-track method described below. It is
defined as the sum of the transverse energy of the ECAL deposits with ET > 300 MeV (MIP
veto), within a hollow cone centred on the photon impact point, with an inner radius of 3.5
crystal widths and an outer radius of R = 0.4. Deposits assigned to the photon itself or falling
within a 5-crystal-wide strip extending along ϕ and centred on the photon impact point are
removed. Thus, deposits from photons converting into electron-positron pairs in the tracker
material and spread along the ϕ direction do not contribute to the value of I . The variable I
differs from the ECAL isolation used in the selection described in Section 2.

As the distribution of I is different for signal photons and background photons, this variable
can be used in a maximum-likelihood fit to extract the number of signal events in the entire
selected sample. Figure 1 shows the probability density function of I , which was extracted
from data with the methods described below.

Contributions to the value of I for signal photons come from pileup (multiple proton-proton
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collisions in the same bunch crossing) and underlying-event activity (multiple parton interac-
tion and beam remnants from the same proton-proton collision). Since these contributions are
independent of ϕ, the ECAL isolation probability density function f (I) is estimated from ran-
dom cones using events with at least one isolated photon candidate. The value of I is calculated
in a cone of radius R = 0.4 around an axis at the same value of η as the photon candidate and
at a random value of ϕ within a window of width π/2 centred on the axis perpendicular to the
photon direction, with the same exclusions applied to photon signals. The cone is required not
to include any photon or electron candidates or jets. The function f (I) for signal photons is
validated with two additional independent methods. Both methods exploit e+ and e− from Z
and W boson decays that do not radiate significantly in the tracker material. The e+ and e− are
selected with a constraint imposed on the fraction of bremsstrahlung energy emitted from the
interaction in the tracker material. Such electrons and positrons leave ECAL energy deposits
consistent with those of photons, and have a similar probability density function for I . The
Z → e+e− events are selected with stringent requirements on the identification criteria of the
lepton pair and on its invariant mass, and the f (I) distribution is obtained directly from both
leptons. In W → eνe events, f (I) is obtained by exploiting the sPlot technique [23]. The miss-
ing transverse energy projected along the lepton axis is used to estimate the probability of an
event to be signal (W→ eνe) or background (Z→ e+e−, W→ τντ, γ+ jet(s), and QCD multijet
processes). The value of I for the selected candidates is weighted accordingly to estimate the
distribution of I . The uncertainty on f (I) is taken as the maximum difference between the
distributions extracted from random cones and from electrons in Z and W events. In simulated
events, the difference between f (I) for signal photons and for random cones is smaller than
the uncertainty determined from data.

For background photons, f (I) is extracted from a sample with less than 0.1% of signal-photon
contamination. The sample is obtained by selecting photon candidates with one and only one
impinging track. A cone of radius R = 0.05 around the track is excluded from the isolation
area to avoid counting the energy deposited by the charged particle. The isolation variable
I is then rescaled to take into account this additional exclusion. To validate this method, the
I distribution is also extracted from a sample of events with two impinging tracks, one of
the two being excluded in the computation of I . The latter distribution is compared to that
obtained with the one-impinging-track sample, using the normal definition of I , i.e., including
the energy deposits in the vicinity of the track. The agreement is within one standard deviation
for the entire range of the I distribution, and the difference is taken as a systematic uncertainty
on f (I) for background photons.

The distributions f (I) show a moderate dependence on η and on the pileup conditions, the
latter being quantified by the number nvtx of primary vertices in the events (2.4 on average).
The background distribution f (I) also depends on the transverse energy ET of the candidate.
Therefore, events in the sample used for the extraction of f (I) are weighted to reproduce the
distributions of η, nvtx, and ET of the diphoton sample used for the cross section measurement.
The effect of using the distributions from the diphoton sample to correct the biases in the back-
ground and signal shapes used in the maximum-likelihood fit is addressed in the systematic
uncertainty section, Section 6.

4 Signal Yield Determination
The number of diphoton events is obtained from a binned maximum-likelihood fit to the dis-
tributions of the ECAL isolation variables of the two photons, I1 and I2, whose ordering is
chosen randomly. Events are separated into three types: signal events (γγ) if both photons
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are signal photons, background events with a signal photon and a background photon, and
background events with two background photons.

The likelihood function L that is maximised in the fit is

L =
e−Ntot

N!

N

∏
i=1

3

∑
t=1

Nt ft(I i
1, I i

2) , (1)

where N is the number of selected events, Nt is the number of events estimated in the fit for
event type t, Ntot is their sum, and ft(I1, I2) is the probability for the ECAL isolation variables
of the two photons to have values I1 and I2 for a given event type t.

The probability density functions ft(I i
1, I i

2) for the three event types are obtained by multi-
plying the probability density functions f (I) for single-photon candidates, assuming the two
statistical variables I1 and I2 to be independent. Correlations between these two variables
have been checked with simulation and are negligible.

A total of 5977 events pass the selection criteria described in Section 2. These events are divided
into three subsamples depending on whether both photons are in the barrel (2191 events), one
is in the barrel and the other in the endcaps (2527 events), or both are in the endcaps (1259
events). The fit is performed separately for each of the three subsamples and each bin of the
four observables. An example of the fit for one bin of the mγγ spectrum is shown in Fig. 2 for
events with both photons in the barrel (|η| < 1.44).

The maximum-likelihood method is known to be biased for samples with small numbers of
events [24]. This bias is estimated with Monte Carlo pseudo-experiments and the fit results are
corrected for it. It is less than 10% of the statistical uncertainty for 80% of the fits and never
exceeds half the statistical uncertainty.

5 Cross-Section Measurement
The differential diphoton cross-section measurement dσ/dX, for the variable X in the interval
Xi, is

dσ

dX
(Xi) =

NU
γγ(Xi)

L∆XiC(Xi)
, (2)

where NU
γγ is the number of signal events obtained from the fit, unfolded for the detector reso-

lution and corrected for the Drell–Yan contamination; L is the integrated luminosity, ∆Xi is the
interval width; C is a correction factor for the effects of the detector resolution on the acceptance
and on the efficiencies of photon reconstruction and identification.

The number of signal events is unfolded [25] for the detector resolution by inverting a response
matrix T for each of the observables mγγ, pT,γγ, ∆ϕγγ, and |cos θ∗|, obtained from simulated
events passing the selection requirements. The matrix elements Tik are the probabilities of a
selected event with the generated value of X in bin Xk to be reconstructed with a value of X in
bin Xi. For a given interval Xk, the number of events after unfolding is related to the observed
numbers of events in the different intervals Xi by NU

γγ(Xk) =
(
T−1)kiNγγ(Xi). Here, Nγγ(Xi)

is the signal yield corrected for the Drell–Yan contamination, as described in Section 3. Given
the excellent energy resolution of the ECAL and the bin sizes, the matrix T is nearly diagonal,
and thus no regularisation is applied in the unfolding procedure.
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Figure 1: Probability density functions of the ECAL isolation variable I for signal photons
(solid blue) and background photons (dashed red) in the barrel (left) and in the endcap regions
(right).
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Figure 2: Fit to the photon ECAL isolation (I1, I2) in the bin 100 < mγγ < 140 GeV for photons
with |η| < 1.44. The distribution of the isolation variable I1 of one photon candidate, arbitrarily
chosen as the “first photon” and denoted with subscript “1”, is displayed in the left figure,
together with the fit result, integrated over I2; the shaded region shows the signal distribution,
the dashed line represents the background contribution, while the solid line is the sum of the
signal and background contributions. The same distributions for the second photon candidate
are shown in the right figure. In this mass bin, the number of signal events is 72± 14, out of
the total number of 161 selected candidates.
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The correction factor C(Xi) is defined as

C(Xi) =
Nsim

reco(Xi)

Nsim
gen (Xi)

εdata

εsim , (3)

where

Nsim
reco(Xi) is the number of simulated events passing all the selection criteria, with generated

values of X within the interval Xi;

Nsim
gen (Xi) is the number of simulated events within the acceptance defined at the generator

level (Section 1), with generated values of X within the interval Xi;

εdata is the efficiency of the photon identification criteria measured from data;

εsim is the efficiency of the photon identification criteria obtained from simulated events using
the same technique as for εdata.

The efficiencies εdata and εsim to observe a diphoton candidate are taken as the square of the
efficiencies to observe a single photon.

The efficiency for the requirements on isolation, σηη , and H/E is estimated with a “tag-and-
probe” method [26] applied to a Z → e+e− sample selected from the full 2010 dataset. One
lepton, the tag, is selected with tight reconstruction and identification criteria [27], while the
other, the probe, is selected by requiring a constraint on the invariant mass of the lepton pair.
The probes constitute a sample of unbiased electrons and positrons. The same constraint as
discussed in Section 3 is applied on the fraction of bremsstrahlung energy emitted by the e+

and e− interacting in the tracker material. This requirement ensures that the electromagnetic
deposits of these electrons and positrons are consistent with those of a photon shower. The
efficiency is computed by applying the requirements on isolation, σηη , and H/E to this sample,
and then measuring the fraction of probes passing the selection.

The efficiency for the requirement to have no impinging tracks within the isolation cone is
estimated from data, from a control sample built using a random-cone technique on events with
a single photon selected according to the identification criteria described above. The random-
cone definition is that introduced in Section 3 for the extraction of f (I). Particles within the
random cone hence come mainly from pileup and the underlying event. Quantities such as the
number of impinging tracks or energy deposits in the isolation area are therefore assumed to
have the same distributions as for isolated photons. The efficiency of the requirement to have
no impinging track within the isolation cone is given by the ratio of the number of random
cones passing this criterion to the total number of random cones. The efficiency of the veto on
pixel hits is obtained from simulation. It is included in the Nsim

reco/Nsim
gen term of Eqn. (3).

The correction factor C is (80.8± 1.9)% for the integrated cross section in the region |η| < 1.44,
and (76.2± 3.3)% in the region |η| < 2.5.

6 Systematic Uncertainties
The systematic uncertainty on the reconstructed photon four-momenta is dominated by the
ECAL energy scale, known to 0.6% in the barrel and 1.5% in the endcaps [28]. The energy scale
affects the value of the acceptance and induces bin-to-bin migrations in the differential cross
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sections. The effect on the acceptance is relevant only in kinematic regions near the photon pT
thresholds and results in an uncertainty of 40% in the most affected region, the lowest values
of mγγ. The uncertainty from the bin-to-bin migration is about 1%.

The systematic uncertainty on the measured photon identification efficiency (εdata in Eqn. (3))
is estimated by applying the tag-and-probe and random-cone methods on simulated events.
The difference between the efficiency value obtained with these methods and that given by
the fraction of simulated events passing the identification criteria is taken as the systematic
uncertainty. The uncertainty from the acceptance and efficiency correction factor C is taken
as the quadratic sum of the statistical uncertainties on the different factors of Eqn. (3) and the
systematic uncertainty mentioned above. The systematic and statistical uncertainties on εdata

total 1.9% for diphotons in the barrel and 3.3% for all diphotons.

The systematic uncertainties on the signal and background isolation probability distributions
f (I) are estimated with Monte Carlo pseudo-experiments in which f (I) is varied. The vari-
ations correspond to the differences between the shapes of the nominal and validation distri-
butions observed in the validation of the random-cone and impinging-track methods (Section
3). In the first bin of the probability density functions, they are of the order of ±0.01 for the
signal, and range from ±0.03 to ±0.05 for the background. The uncertainty on f (I) from its
dependence on the distribution of photon transverse energy ET, photon pseudorapidity η, and
number of vertices nvtx is estimated from the change in f (I) when using the ET, η, and nvtx dis-
tributions from the diphoton simulation instead of those from the diphoton event candidates
in data. This contribution to the uncertainty is negligible. The overall systematic uncertainty
from the f (I) distributions on the integrated cross section is about 8%, and varies from 4 to
27% on the differential cross sections, depending on the bin and the subsample.

A 4% uncertainty is assigned to the integrated luminosity [29]. The various contributions to
the systematic uncertainties are summarised in Table 1.

Table 1: Contributions to the systematic uncertainties on the measured differential cross sec-
tions for two pseudorapidity ranges. The uncertainties are computed for each bin of Figs. 3
to 10. The values listed below are averages.

Uncertainty source |η| < 1.44 |η| < 2.5

Energy scale
on acceptance 1.5% 2%
Energy scale
on bin-to-bin migration 1% 1.5%
Signal and background
distributions for f (I) 7% 9%
Acceptance and efficiency
correction factor C 2% 3%
Luminosity 4% 4%

Total 8% 11%

7 Theoretical Predictions
This section introduces the theoretical calculations whose predictions are compared to the ex-
perimental data in Section 8. The leading contributions to the production of pairs of prompt
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photons in pp collisions are the quark-antiquark annihilation (qq → γγ), gluon fusion (gg →
γγ), and gluon-(anti)quark scattering (qg→ γγq) processes. One or both photons come either
directly from the hard process or from parton fragmentation, in which a cascade of successive
collinear splittings yields a radiated photon. Contributions from the quark-antiquark annihila-
tion process and the single- and double-fragmentation processes are calculated up to order αsα

2

with the DIPHOX 1.3.2 program [1]. The contributions from the gluon fusion process, includ-
ing the one-loop box diagram of order α2

s α2, the interference between the one- and two-loop
box diagrams, and the real emission one-loop “pentagon” gg → γγg, both of order α3

s α2, are
calculated with the GAMMA2MC 1.1.1 program [2]. The fragmentation function BFG set II [30]
is used in the calculation. Although they are higher-order processes, the gluon fusion contribu-
tions are quantitatively comparable to those from quark-antiquark annihilation in the diphoton
mass range of interest, due to the significant gluon luminosity in this mass range at the LHC.
The three theoretical scales, renormalisation, initial factorisation, and fragmentation, are set to
the diphoton mass value.

The photons are required to be within the kinematic acceptance defined in Section 1. An ad-
ditional isolation requirement at the parton level is imposed by requiring the total hadronic
transverse energy deposited in a cone of radius R = 0.4 centred on the photon direction to
be less than 5 GeV. Particles resulting from underlying-event activity and hadronisation are
not included in partonic event generators such as DIPHOX and GAMMA2MC. The fraction of
diphotons not selected due to underlying hadronic activity falling inside the isolation cone is
estimated using the PYTHIA 6.4.22 [12] event generator with tunes Z2, D6T [31], P0 [32], and
DWT [31]. A factor of 0.95± 0.04 is applied to the parton-level cross section to correct for this
effect.

The uncertainties associated with parton distribution functions and the strong coupling con-
stant αs are determined according to the PDF4LHC recommendations [33]. The diphoton cross
section is computed with three different PDF sets (CT10 [34], MSTW08 [35], and NNPDF2.1 [36]),
taking into account their associated uncertainties and the uncertainties on αs. The respective
preferred αs central value of each PDF set is used, and αs is varied by ±0.012. The value for
the cross section is taken as the midpoint of the envelope of the three results, including the
uncertainties (68% confidence level envelope). The uncertainty on the cross section is taken to
be the half-width of the envelope.

The theoretical scale uncertainties are estimated by varying the renormalisation, initial factori-
sation, and fragmentation scales by factors of 1/2 and 2, keeping the ratio between any two
scales less than 2 (for example the combination 0.5 mγγ, 2 mγγ, mγγ is not considered). The
uncertainty is taken to be the maximum difference in the resulting cross sections.

8 Results
The integrated diphoton cross sections obtained for the acceptances defined in Section 1 are

σ(pp→ γγ)||η|<1.44 = 31.0 ± 1.8 (stat.) +2.0
−2.1 (syst.) ± 1.2 (lumi.) pb ,

σ(pp→ γγ)||η|<2.50 = 62.4 ± 3.6 (stat.) +5.3
−5.8 (syst.) ± 2.5 (lumi.) pb.

The theoretical calculation described in the previous section predicts

σ(pp→ γγ)||η|<1.44 = 27.3 +3.0
−2.2 (scales) ± 1.1 (PDF) pb ,

σ(pp→ γγ)||η|<2.50 = 52.7 +5.8
−4.2 (scales) ± 2.0 (PDF) pb.
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The integrated cross sections obtained from the calculation are consistent with the measure-
ments within the experimental and theoretical uncertainties.

The differential cross-section measurements as functions of mγγ, ∆ϕγγ, pT,γγ, and |cos θ∗| for
the two pseudorapidity ranges are shown, along with the theoretical predictions, in Figs. 3 to
10. The 4% uncertainty on the integrated luminosity is not included in the error bars. The val-
ues of the cross sections are given in Tables 2 to 5. As can be seen in Figs. 7 and 8, the theoretical
predictions underestimate the measured cross section for ∆ϕγγ < 2.8. In the leading-order (LO)
diagrams of gluon fusion and quark-antiquark annihilation 2 → 2 processes, the two photons
are back-to-back because of momentum conservation. Therefore, the LO term does not con-
tribute to this phase space region, which thus only receives contributions from NLO terms for
both the direct and fragmentation diphoton production processes.

The contribution for ∆ϕγγ . 2.8, combined with the requirements of ET > 20 and 23 GeV on
the two photons, is responsible for the shoulder around 40 GeV in the diphoton differental pT
distribution of Figs. 5 and 6. This contribution also populates the region below 30 GeV in the
diphoton mass distribution shown in Figs. 3 and 4. In these two regions of the pT,γγ and mγγ

spectra, the theoretical cross section is lower than the measurement, consistent with the deficit
for ∆ϕγγ . 2.8.

Comparison of the measurements of the |cos θ∗| spectra with theoretical predictions, shown in
Figs. 9 and 10, reveals an underestimation from the theory at large |cos θ∗| values, which is more
significant for the central rapidity range (|η| < 1.44). Similar discrepancies have previously
been observed in diphoton production at hadron colliders [5, 8, 37] as discussed in Ref. [38].

Table 2: Measured diphoton differential cross section as a function of mγγ for the two photon
pseudorapidity ranges, with statistical (stat.) and systematic (syst.) uncertainties.

dσ/dmγγ [pb/GeV]
mγγ [ GeV] |η| < 1.44 |η| < 2.5

stat. syst. stat. syst.
0−30 0.0299 ±0.0071 +0.0069 −0.0086 0.050 ±0.013 +0.014 −0.024

30−40 0.061 ±0.030 +0.015 −0.018 0.127 ±0.049 +0.035 −0.061
40−45 0.097 ±0.088 +0.020 −0.020 0.28 ±0.17 +0.06 −0.07
45−55 0.77 ±0.12 +0.06 −0.05 1.40 ±0.20 +0.14 −0.12
55−65 0.70 ±0.10 +0.05 −0.04 1.43 ±0.18 +0.10 −0.09
65−80 0.408 ±0.059 +0.030 −0.031 0.80 ±0.11 +0.07 −0.06
80−100 0.175 ±0.031 +0.013 −0.012 0.365 ±0.063 +0.041 −0.037

100−140 0.070 ±0.012 +0.003 −0.003 0.142 ±0.028 +0.020 −0.018
140−200 0.0102 ±0.0035 +0.0007 −0.0006 0.054 ±0.015 +0.006 −0.006
200−300 0.0022 ±0.0011 +0.0001 −0.0001 0.0084 ±0.0060 +0.0023 −0.0019

9 Summary
The integrated and differential production cross sections for isolated photon pairs have been
measured in proton-proton collisions at a centre-of-mass energy of 7 TeV, using data collected
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Figure 3: (Left) Diphoton differential cross section as a function of the photon pair invariant
mass mγγ from data (points) and from theory (solid line) for the photon pseudorapidity range
|η| < 2.5. (Right) The difference between the measured and theoretically predicted diphoton
cross sections, divided by the theory prediction, as a function of mγγ. In both plots, the inner
and outer error bars on each point show the statistical and total experimental uncertainties. The
4% uncertainty on the integrated luminosity is not included in the error bars. The dotted line
and shaded region represent the systematic uncertainties on the theoretical prediction from the
theoretical scales and the PDFs, respectively.
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Figure 4: (Left) Diphoton differential cross section as a function of the photon pair invariant
mass mγγ from data (points) and from theory (solid line) for the photon pseudorapidity range
|η| < 1.44. (Right) The difference between the measured and theoretically predicted diphoton
cross sections, divided by the theory prediction, as a function of mγγ. In both plots, the inner
and outer error bars on each point show the statistical and total experimental uncertainties. The
4% uncertainty on the integrated luminosity is not included in the error bars. The dotted line
and shaded region represent the systematic uncertainties on the theoretical prediction from the
theoretical scales and the PDFs, respectively.
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Figure 5: (Left) Diphoton differential cross section as a function of the photon pair transverse
momentum pT,γγ from data (points) and from theory (solid line) for the photon pseudorapid-
ity range |η| < 2.5. (Right) The difference between the measured and theoretically predicted
diphoton cross sections, divided by the theory prediction, as a function of pT,γγ. In both plots,
the inner and outer error bars on each point show the statistical and total experimental uncer-
tainties. The 4% uncertainty on the integrated luminosity is not included in the error bars. The
dotted line and shaded region represent the systematic uncertainties on the theoretical predic-
tion from the theoretical scales and the PDFs, respectively.
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Figure 6: (Left) Diphoton differential cross section as a function of the photon pair transverse
momentum pT,γγ from data (points) and from theory (solid line) for the photon pseudorapid-
ity range |η| < 1.44. (Right) The difference between the measured and theoretically predicted
diphoton cross sections, divided by the theory prediction, as a function of pT,γγ. In both plots,
the inner and outer error bars on each point show the statistical and total experimental uncer-
tainties. The 4% uncertainty on the integrated luminosity is not included in the error bars. The
dotted line and shaded region represent the systematic uncertainties on the theoretical predic-
tion from the theoretical scales and the PDFs, respectively.
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Figure 7: (Left) Diphoton differential cross section as a function of the azimuthal angle be-
tween the two photons, ∆ϕγγ, from data (points) and from theory (solid line) for the photon
pseudorapidity range |η| < 2.5. (Right) The difference between the measured and theoretically
predicted diphoton cross sections, divided by the theory prediction, as a function of ∆ϕγγ. In
both plots, the inner and outer error bars on each point show the statistical and total experi-
mental uncertainties. The 4% uncertainty on the integrated luminosity is not included in the
error bars. The dotted line and shaded region represent the systematic uncertainties on the
theoretical prediction from the theoretical scales and the PDFs, respectively.
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Figure 8: (Left) Diphoton differential cross section as a function of the azimuthal angle be-
tween the two photons, ∆ϕγγ, from data (points) and from theory (solid line) for the photon
pseudorapidity range |η| < 1.44. (Right) The difference between the measured and theoreti-
cally predicted diphoton cross sections, divided by the theory prediction, as a function of ∆ϕγγ.
In both plots, the inner and outer error bars on each point show the statistical and total exper-
imental uncertainties. The 4% uncertainty on the integrated luminosity is not included in the
error bars. The dotted line and shaded region represent the systematic uncertainties on the
theoretical prediction from the theoretical scales and the PDFs, respectively.
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Figure 9: (Left) Diphoton differential cross section as a function of |cos θ∗| from data (points)
and from theory (solid line) for the photon pseudorapidity range |η| < 2.5. (Right) The dif-
ference between the measured and theoretically predicted diphoton cross sections, divided by
the theory prediction, as a function of |cos θ∗|. In both plots, the inner and outer error bars
on each point show the statistical and total experimental uncertainties. The 4% uncertainty on
the integrated luminosity is not included in the error bars. The dotted line and shaded region
represent the systematic uncertainties on the theoretical prediction from the theoretical scales
and the PDFs, respectively.
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Figure 10: (Left) Diphoton differential cross section as a function of |cos θ∗| from data (points)
and from theory (solid line) for the photon pseudorapidity range |η| < 1.44. (Right) The dif-
ference between the measured and theoretically predicted diphoton cross sections, divided by
the theory prediction, as a function of |cos θ∗|. In both plots, the inner and outer error bars
on each point show the statistical and total experimental uncertainties. The 4% uncertainty on
the integrated luminosity is not included in the error bars. The dotted line and shaded region
represent the systematic uncertainties on the theoretical prediction from the theoretical scales
and the PDFs, respectively.
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Table 3: Measured diphoton differential cross section as a function of pT,γγ for the two photon
pseudorapidity ranges, with statistical (stat.) and systematic (syst.) uncertainties.

dσ/dpT,γγ [pb/GeV]
pT,γγ [ GeV] |η| < 1.44 |η| < 2.5

stat. syst. stat. syst.
0−4 0.93 ±0.13 +0.04 −0.05 1.94 ±0.32 +0.12 −0.13
4−6 1.20 ±0.42 +0.10 −0.09 3.80 ±0.88 +0.27 −0.29
6−8 1.68 ±0.45 +0.12 −0.12 2.66 ±0.87 +0.27 −0.24
8−12 1.24 ±0.22 +0.08 −0.08 2.21 ±0.45 +0.26 −0.22

12−18 0.85 ±0.14 +0.06 −0.06 1.61 ±0.28 +0.15 −0.15
18−30 0.320 ±0.058 +0.026 −0.022 0.63 ±0.12 +0.09 −0.08
30−40 0.262 ±0.055 +0.019 −0.017 0.57 ±0.10 +0.05 −0.04
40−50 0.234 ±0.049 +0.020 −0.019 0.507 ±0.093 +0.040 −0.036
50−80 0.077 ±0.017 +0.007 −0.007 0.153 ±0.030 +0.016 −0.016
80−180 0.0084 ±0.0026 +0.0006 −0.0005 0.0150 ±0.0036 +0.0010 −0.0009

Table 4: Measured diphoton differential cross section as a function of ∆φγγ for the two photon
pseudorapidity ranges, with statistical (stat.) and systematic (syst.) uncertainties.

dσ/d∆φγγ [pb]
∆φγγ |η| < 1.44 |η| < 2.5

stat. syst. stat. syst.
0−0.2π 1.87 ±0.53 +0.13 −0.13 4.65 ±0.89 +0.29 −0.30

0.2π−0.4π 1.77 ±0.55 +0.15 −0.14 5.5 ±1.1 +0.5 −0.4
0.4π−0.6π 3.09 ±0.72 +0.31 −0.29 5.5 ±1.3 +0.6 −0.5
0.6π−0.8π 7.2 ±1.1 +0.5 −0.4 16.1 ±2.1 +1.4 −1.2
0.8π−0.88π 20.8 ±2.6 +1.0 −1.0 36.7 ±5.3 +3.4 −3.0

0.88π−0.92π 29.8 ±5.1 +1.7 −1.5 67 ±11 +5 −5
0.92π−0.95π 36.2 ±8.1 +5.1 −4.7 66 ±15 +9 −8
0.95π−0.98π 58.8 ±8.8 +4.2 −3.8 103 ±17 +12 −11
0.98π−π 68 ±11 +4 −4 141 ±23 +12 −11
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Table 5: Measured diphoton differential cross section as a function of |cos θ∗| for the two photon
pseudorapidity ranges, with statistical (stat.) and systematic (syst.) uncertainties.

dσ/d|cos θ∗| [pb]
|cos θ∗| |η| < 1.44 |η| < 2.5

stat. syst. stat. syst.
0−0.2 52.6 ±5.2 +3.1 −3.2 87.3 ±9.0 +9.1 −7.9

0.2−0.4 38.4 ±4.9 +3.0 −3.0 67.0 ±8.2 +6.6 −6.0
0.4−0.6 34.8 ±4.6 +2.7 −2.5 66.0 ±7.5 +5.9 −5.3
0.6−0.8 25.6 ±3.7 +1.6 −1.5 66.7 ±7.7 +6.1 −5.3
0.8−1 6.4 ±1.4 +0.3 −0.4 30.8 ±7.9 +5.9 −4.7

by the CMS detector in 2010, corresponding to an integrated luminosity of 36 pb−1. The dif-
ferential cross sections have been measured as functions of the diphoton invariant mass, the
diphoton transverse momentum, the difference between the two photon azimuthal angles, and
|cos θ∗|. The background from hadron decay products was estimated with a statistical method
based on an electromagnetic energy isolation variable I . The signal and background distribu-
tions for I were entirely extracted from data, resulting in systematic uncertainties of approxi-
mately 10% on the measured diphoton yields.

The measurements have been compared to a theoretical prediction performed at next-to-leading-
order accuracy using the state-of-the-art fixed-order computations [1, 2]. Whereas there is an
overall agreement between theory and data for the diphoton mass spectrum, the theory un-
derestimates the cross section in regions of the phase space where the two photons have an
azimuthal angle difference ∆ϕ . 2.8.
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Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus,
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M. Karim12, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des
Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier
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G. Abbiendia, A.C. Benvenutia, D. Bonacorsia, S. Braibant-Giacomellia,b, L. Brigliadoria,
P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania ,b, G.M. Dallavallea, F. Fabbria,
A. Fanfania,b, D. Fasanellaa,1, P. Giacomellia, C. Grandia, S. Marcellinia, G. Masettia,
M. Meneghellia ,b, A. Montanaria, F.L. Navarriaa ,b, F. Odoricia, A. Perrottaa, F. Primaveraa,
A.M. Rossia,b, T. Rovellia ,b, G. Sirolia,b, R. Travaglinia,b

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
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INFN Sezione di Roma a, Università di Roma ”La Sapienza” b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b ,1, M. Diemoza, D. Francia ,b, M. Grassia ,1, E. Longoa ,b,
P. Meridiania, S. Nourbakhsha, G. Organtinia ,b, F. Pandolfia ,b, R. Paramattia, S. Rahatloua ,b,
M. Sigamania

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (No-
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Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),
Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo
Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domı́nguez Vázquez,
C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia,
O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo,
I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias,
J.M. Vizan Garcia

Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros,
M. Felcini27, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez
Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra
Gomez28, T. Rodrigo, A.Y. Rodrı́guez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron
Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, C. Bernet5, W. Bialas,
P. Bloch, A. Bocci, H. Breuker, K. Bunkowski, T. Camporesi, G. Cerminara, T. Christiansen,
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