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Abstract

The charged particle transverse momentum (pT) spectra are presented for pp colli-
sions at

√
s = 0.9 and 7 TeV. The data samples were collected with the CMS detec-

tor at the LHC and correspond to integrated luminosities of 231 µb−1 and 2.96 pb−1,
respectively. Calorimeter-based high-transverse-energy triggers are employed to en-
hance the statistical reach of the high-pT measurements. The results are compared
with leading and next-to-leading order QCD and with an empirical scaling of mea-
surements at different collision energies using the scaling variable xT ≡ 2pT/

√
s over

the pT range up to 200 GeV/c. Using a combination of xT scaling and direct inter-
polation at fixed pT, a reference transverse momentum spectrum at

√
s = 2.76 TeV

is constructed, which can be used for studying high-pT particle suppression in the
dense QCD medium produced in heavy-ion collisions at that centre-of-mass energy.
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1 Introduction
The charged particle transverse momentum (pT) spectrum is an important observable for un-
derstanding the fundamental quantum chromodynamic (QCD) interactions involved in proton-
proton collisions. While the energy dependence of the bulk of particle production with pT be-
low a few GeV/c is typically described either empirically or with phenomenological models, the
rest of the spectrum can be well described by a convolution of parton distribution functions,
the hard-scattering cross section from perturbative calculations, and fragmentation functions.
Such a prescription has been generally successful over a large range of lower energy pp and pp̄
collisions [1–7]. Along with measurements of the jet production cross section and fragmenta-
tion functions, measurements of high-pT spectra provide a test of factorised perturbative QCD
(pQCD) [8] at the highest collision energy to date.

In addition to its relevance to the understanding of pQCD, the charged particle spectrum in pp
collisions will be an important reference for measurements of high-pT particle suppression in
the dense QCD medium produced in heavy-ion collisions. At the Relativistic Heavy Ion Col-
lider (RHIC), the sizable suppression of high-pT particle production, compared to the spectrum
expected from a superposition of a corresponding number of pp collisions, was one of the first
indications of strong final-state medium effects [9–12]. A similar measurement of nuclear mod-
ification to charged particle pT spectra has been one of the first heavy-ion results at the Large
Hadron Collider (LHC) [13]. The reference spectrum for the PbPb collisions at

√sNN = 2.76 TeV
per nucleon can be constrained by interpolating between the pp spectra measured at

√
s = 0.9

and 7 TeV.

In this paper, the phase-space-invariant differential yield E d3Nch/dp3 is presented for primary
charged particles with energy (E) and momentum (p), averaged over the pseudorapidity accep-
tance of the Compact Muon Solenoid (CMS) tracking system (|η| < 2.4). The pseudorapidity
is defined as –ln[tan(θ/2)], with θ being the polar angle of the charged particle with respect
to the counterclockwise beam direction. The number of primary charged particles (Nch) is de-
fined to include decay products of particles with proper lifetimes less than 1 cm. Using the
integrated luminosities calculated in Refs. [14, 15] with an estimated uncertainty of 11% and
4% at

√
s = 0.9 and 7 TeV, respectively, the differential cross sections are constructed and com-

pared to a scaling with the variable xT ≡ 2pT/
√

s. Such a scaling has already been observed
for pp̄ measurements at lower collision energies [4, 5, 16, 17]. For consistency with the CDF
measurements at

√
s = 0.63, 1.8, and 1.96 TeV, the pseudorapidity range of the xT distributions

has been restricted to |η| < 1.0.

Finally, using the new measurements presented in this paper, as well as previously measured
pp and pp̄ cross sections, an estimate of the differential transverse momentum cross section is
constructed at the interpolated energy of

√
s = 2.76 TeV, corresponding to the nucleon-nucleon

centre-of-mass energy of PbPb collisions recorded at the LHC.

The paper is organised as follows: Section 2 contains a description of the CMS detector; Sec-
tion 3 describes the trigger and event selection; Sections 4 and 5 detail the reconstruction and
selection of primary vertices and tracks; Section 6 explains the characterisation of events based
on the leading-jet transverse energy; Section 7 describes the various applied corrections and
systematic uncertainties; Section 8 presents the final invariant differential yields and compar-
isons to data and simulation; and Section 9 discusses the interpolation procedures used to
construct a reference spectrum at

√
s = 2.76 TeV.
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2 The CMS Detector
A detailed description of the CMS experiment can be found in Ref. [18]. The central fea-
ture of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, provid-
ing an axial magnetic field of 3.8 T. Immersed in the magnetic field are the pixel tracker, the
silicon strip tracker, the lead tungstate crystal electromagnetic calorimeter (ECAL), and the
brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas ionisation detectors
embedded in the steel return yoke.

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal
interaction point, the x axis pointing to the centre of the LHC ring, the y axis pointing up per-
pendicular to the plane of the LHC, and the z axis along the counterclockwise beam direction.
The azimuthal angle, φ, is measured in the (x, y) plane.

The tracker consists of 1440 silicon pixel and 15 148 silicon strip detector modules and measures
charged particle trajectories within the nominal pseudorapidity range |η| < 2.4. The pixel
tracker consists of three 53.3 cm-long barrel layers and two endcap disks on each side of the
barrel section. The innermost barrel layer has a radius of 4.4 cm, while for the second and
third layers the radii are 7.3 cm and 10.2 cm, respectively. The tracker is designed to provide an
impact parameter resolution of about 100 µm and a transverse momentum resolution of about
0.7 % for 1 GeV/c charged particles at normal incidence (η = 0) [19].

The tracker was aligned as described in Ref. [20] using cosmic ray data prior to the LHC com-
missioning. The precision achieved for the positions of the detector modules with respect to
particle trajectories is 3–4 µm in the barrel for the coordinate in the bending plane (φ).

Two elements of the CMS detector monitoring system, the beam scintillator counters (BSC)
[18, 21] and the beam pick-up timing for the experiments devices (BPTX) [18, 22], were used
to trigger the detector readout. The BSCs are located at a distance of 10.86 m from the nominal
interaction point (IP), one on each side, and are sensitive in the |η| range from 3.23 to 4.65.
Each BSC is a set of 16 scintillator tiles. The BSC elements have a time resolution of 3 ns, an
average minimum ionising particle detection efficiency of 95.7%, and are designed to provide
hit and coincidence rates. The two BPTX devices, located around the beam pipe at a position
of z = ±175 m from the IP, are designed to provide precise information on the bunch structure
and timing of the incoming beam, with better than 0.2 ns time resolution.

The two steel/quartz-fibre forward calorimeters (HF), which extend the calorimetric coverage
beyond the barrel and endcap detectors to the |η| region between 2.9 and 5.2, were used for
further offline selection of collision events.

The detailed Monte Carlo (MC) simulation of the CMS detector response is based on GEANT4
[23]. Simulated events were processed and reconstructed in the same manner as collision data.

3 Event Selection
This analysis uses data samples collected from 0.9 and 7 TeV pp collisions in the first months
of the 2010 LHC running, corresponding to integrated luminosities of (231 ± 25) µb−1 and
(2.96± 0.12)pb−1, respectively [14, 15]. This section gives a brief description of the require-
ments imposed to select good events for this analysis. A more detailed description of the CMS
trigger selections can be found in Ref. [24].

First, a minimum bias trigger was used to select events with a signal in any of the BSC tiles,
coincident with a signal from either of the two BPTX detectors, indicating the presence of at
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least one proton bunch crossing the interaction point. From this sample, collision events were
selected offline by requiring a coincidence of BPTX signals, indicating the presence of both
beams.

To select preferentially non-single-diffractive (NSD) events, at least one forward calorimeter
(HF) tower with energy deposition E > 3 GeV in each of the forward and backward hemi-
spheres was required. Events with beam-halo muons crossing the detector were identified and
rejected based on the time difference between BSC hits on either side of the interaction point.
Beam-induced background events, producing anomalous numbers of low-quality tracks, were
rejected by requiring that at least 25% of the charged particles reconstructed in the pixel–silicon
tracking system satisfied the highPurity criterion. This criterion, described in Ref. [25], consists
of numerous selections on the properties of the tracks, including the normalised χ2, the com-
patibility with the beamline and primary vertices, the number of hit layers, the number of ‘3D’
layers, and the number of lost layers. The selection on the fraction of highPurity tracks was
only applied to events with more than 10 tracks, providing a clean separation between real pp
collisions and beam backgrounds. The remaining non-collision event fraction, determined by
applying the same selections to events where only a single beam was crossing the interaction
point, is estimated to be less than 2 x 10−5. Events were required to have at least one primary
vertex, reconstructed according to the description in the following section from triplets of pixel
hits. A further requirement, namely at least one vertex found from fully reconstructed tracks
(see next section for details) with number of degrees of freedom (Ndo f ) greater than four, was
imposed to improve the robustness against triggered events containing multiple pp collisions,
i.e., “event pileup”. The loss in event selection efficiency from the fully-reconstructed-track
vertex compared to the pixel vertex alone was determined entirely from data, based on a sub-
set of early runs with negligible event pileup. The percentage of events remaining after each
selection step is presented in Table 1.

For a large part of the 7 TeV data collection, the minimum bias trigger paths had to be prescaled
by large factors because of the increasing instantaneous luminosity of the LHC. In order to max-
imise the pT reach of the charged particle transverse momentum measurement at this centre-of-
mass energy, two high-level trigger (HLT) paths were used that selected events with minimum
uncorrected transverse jet energies (ET) of 15 and 50 GeV, based only on information from the
calorimeters. While the higher threshold path was not prescaled during the 7 TeV data-taking
period corresponding to the 2.96 pb−1 used in this analysis, the lower threshold path had to
be prescaled for a significant fraction of this sample. The 0.9 TeV data sample consists of 6.8
million minimum bias triggered events, while the 7 TeV sample is composed of 18.7 million
minimum bias events, and 1.4 (5.6) million events selected with the HLT minimum-ET values
of 15 (50) GeV.

The selection efficiency for NSD events was determined based on simulated events from the
PYTHIA [26] event generator (version 6.420, tune D6T [27]) that were subsequently passed
through a Monte Carlo simulation of the CMS detector response. The resulting event selection
efficiency as a function of the multiplicity of reconstructed charged particles is shown for 7 TeV
collisions in Fig. 1a. The corresponding event selection efficiency is calculated by the same
technique for the 0.9 TeV data (not shown). Based on events simulated with PHOJET [28, 29]
and PYTHIA, the remaining fraction of single-diffractive (SD) events in the selected sample was
estimated to be (5± 1)% and (6± 1)% for the 0.9 and 7 TeV data, respectively.
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Table 1: Summary of event selection steps applied to the 0.9 and 7 TeV collision data sets and
the percentage of events from the original minimum bias samples that remain after each step.

Collision energy 0.9 TeV 7 TeV
Selection Percentage passing each selection cut
One BSC + one BPTX 100.0 100.0
BPTX coincidence 94.49 90.05
Beam halo rejection 94.08 89.83
HF coincidence 73.27 83.32
Beam background rejection 73.26 83.32
Valid pixel-track vertex 70.14 82.48
Quality full-track vertex 64.04 77.35

4 Primary Vertex
In this analysis, two separate algorithms are employed to determine the primary vertex po-
sition. The first is a highly efficient algorithm based on pixel triplet tracks that requires a
minimum of just a single track consistent with the beam-spot position. The position of the
beam-spot, taken as the centre of the region where the LHC beams collide, is calculated for
each LHC fill based on the average over many events of the three-dimensional fitted vertex po-
sitions [25]. The second vertex-finding algorithm, based on fully reconstructed tracks with hits
also in the silicon strip tracker, is less efficient in selecting low-multiplicity events, but more
robust in discriminating against event pileup. Since pileup is significant over the majority of
the analysed data sample, only the fully-reconstructed-track vertex is used to construct the raw
charged particle momentum spectra. The raw spectra are subsequently corrected for the frac-
tion of events with fewer than four tracks (and the fraction of tracks in such low-multiplicity
events), based on a subset of the event sample selected with the more efficient pixel-track vertex
requirement during collision runs with negligible event pileup.

To determine the z position of the pixel vertex in each event, tracks consisting of three pixel
hits are constructed with a minimum pT of 75 MeV/c from a region within a transverse distance
of 0.2 cm from the beam axis. The x and y positions of the pixel vertex are taken from the
transverse position of the beam axis. Fitted tracks are selected based on the requirement that
the transverse impact parameter is less than three times the quadratic sum of the transverse
errors on the track impact parameter and the beam axis position. The selected tracks are then
passed to an agglomerative algorithm [30], which iteratively clusters the tracks into vertex-
candidates. The procedure is halted when the distance between nearest clusters, normalised
by their respective position uncertainties, reaches 12. Only vertices consisting of at least two
tracks are kept, except when the event contains a single reconstructed track, which occurs in
1.67% (0.99%) of the events at

√
s = 0.9 (7) TeV. In the case of multiple vertex-candidates, only

the vertex with the most associated tracks is kept. While this occurs in as many as 20% of
events, the rejected vertex typically has very few associated tracks and is highly correlated in
z position to the vertex with the most associated tracks. These characteristics imply that the
rejected vertices are not from event pileup, but rather from tracks in the tails of the impact
parameter distribution that are not agglomerated into the primary vertex.

The fully-reconstructed-track vertex algorithm begins from a set of tracks selected according to
their transverse impact parameter to the beam-spot (< 2 cm), number of hits (> 6), and nor-
malised χ2 (< 20). These tracks are passed to an adaptive vertex fitter, in which tracks are as-
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Figure 1: (a) The efficiency (εselected
NSD in Eq. (2)) for selecting non-single-diffractive (NSD) events

as a function of the multiplicity of reconstructed charged particles in the tracker acceptance
(|η| < 2.4) after applying the full event selection described in the text, including a single pixel-
track vertex (filled circles) and additionally requiring a fully-reconstructed-track vertex with
Ndo f > 4 (open circles) as described in Section 4. Also, the remaining single-diffractive (SD)
fraction ( f selected

SD in Eq. (2)) as a function of charged particle multiplicity for the same selec-
tions (solid and dashed lines). (b) Correlation between the z positions, z0

PV and z1
PV, of the

two vertices with the most associated tracks for measured events with more than one fully-
reconstructed-track vertex satisfying the quality selections.

signed a weight between 0 and 1 according to their compatibility with the common vertex [25].
Quality vertices are further required to have more than four degrees of freedom (Ndo f ), corre-
sponding to at least four tracks with weights of approximately one. For events with multiple
reconstructed vertices passing the quality selection, the correlation between the z positions of
the two vertices with the most associated tracks is shown in Fig. 1b. Other than the diago-
nal region without multiple vertices, expected from the algorithmic parameter of at least a 1 cm
separation, the uncorrelated positions of the two vertices are indicative of random event pileup.

The event pileup rate is estimated from the fraction of events with multiple reconstructed ver-
tices, after correcting for vertices that are not found because of their proximity. The beam
conditions varied over the analysed minimum bias data samples, such that the corrected frac-
tion of pileup events is in the range (0.4–7.5)%. The uncertainty on the event pileup fraction,
determined from the largest correction to the multiple-vertex fraction, is a constant factor of
0.2% and 1.2% for the 0.9 and 7 TeV data, respectively.

5 Track Selection
This analysis uses tracks from the standard CMS reconstruction algorithm, which consists of
multiple iterations of a combinatorial track finder based on various seeding layer patterns [31].
After each iteration, hits belonging unambiguously to tracks in the previous step are removed
from consideration for subsequent steps.
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Figure 2: (a) The algorithmic tracking efficiency for two different momentum ranges as a func-
tion of η. (b) The product of geometrical acceptance (A) with tracking efficiency (εtr) (upper
points) and the misidentification (‘fake’) rate (lower points) as a function of transverse momen-
tum for tracks with |η| < 1 in bins of corrected leading-jet transverse energy.

In order to minimise the contribution from misidentified tracks and tracks with poor momen-
tum resolution, a number of quality selections are applied. These include the highPurity selec-
tion mentioned in Section 3, the requirement of at least five hits on the track, the normalized χ2

per degree of freedom divided by the number of tracker layers used in the fit less than a maxi-
mum value which varies from 0.48 and 0.07 depending on η and pT, and a relative momentum
uncertainty of less than 20%. Furthermore, to reject non-primary tracks (i.e., the products of
weak decays and secondary interactions with detector material), only the pixel-seeded tracking
iterations are used, and selections are placed on the impact parameter of the tracks with respect
to the primary vertex position. Specifically, the transverse and longitudinal impact parameters
are required to be less than 0.2 cm and also less than 3 times the sum in quadrature of the uncer-
tainties on the impact parameter and the corresponding vertex position. In the case of multiple
quality reconstructed vertices in the minimum bias event samples, tracks that pass the impact
parameter selections with respect to any vertex are used in the analysis. The number of events,
by which the track pT distribution is normalised, is then scaled by a factor to account for the
event pileup fraction. In contrast, for the jet-triggered samples, tracks are selected based on
the impact parameter with respect to the single vertex responsible for the trigger. The primary
vertex of the hard-scattering process is identified as the vertex with the largest value of ∑ p2

T
for the associated fitted tracks.

With the above-mentioned selections applied to the reconstructed tracks, the algorithmic ef-
ficiency determined from simulated PYTHIA events is greater than 85% (80%) for tracks with
transverse momentum above 2.0 (0.4) GeV/c averaged over |η| < 2.4 (Fig. 2a). In the same
kinematic region, misidentified and non-primary tracks are each below 1%, while multiple re-
construction occurs for less than 0.01% of tracks.
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6 Event Classification by Leading-Jet Energy
All events in this analysis are classified according to the transverse energy of the most energetic
reconstructed jet, defined as the leading jet. Jets are reconstructed from calorimeter deposits
alone using the anti-kT algorithm [32] with cone radius R =

√
(∆φ)2 + (∆η)2 = 0.5. The

measured energy of the jet is adjusted according to corrections based on a MC description of
the CMS calorimeter response with a 3–6% uncertainty on the jet energy scale [33].

The motivation for classifying events according to the leading-jet transverse energy is twofold.
First, the degrading effect of the local-track density on the high-pT tracking performance (e.g.,
inside a jet) can be parametrised according to this variable. Based on events simulated with
PYTHIA in minimum bias and QCD samples with various thresholds on the hard-scattering
scale (p̂T), the efficiency and misidentification rates of the selected tracks are estimated as a
function of transverse momentum in bins of leading-jet transverse energy (see Fig. 2b). Sec-
ond, as discussed in Section 3, calorimeter-based triggers with leading-jet transverse energy
thresholds of 15 GeV (Jet15U) and 50 GeV (Jet50U) were used to extend the pT reach of the 7 TeV
measurement.

To avoid potential biases from the jet-trigger selection, it is desirable to operate in a region
where the trigger is fully efficient. The region above which the jet trigger with an uncorrected
energy threshold of 15 GeV becomes fully efficient is determined by first plotting the leading-jet
ET distribution for a sample of events selected with the prescaled minimum bias trigger and
the offline selections described in Section 3. This distribution is then compared to the subset of
those events which also fire the 15 GeV jet trigger as a function of corrected transverse energy.
The resulting ratio is the trigger efficiency curve presented in the lower panel of Fig. 3a. The
15 GeV jet trigger achieves more than 99% efficiency at a corrected energy of ET = 45 GeV. The
analogous procedure is repeated on a sample of events selected by the 15 GeV jet trigger to
determine that the 50 GeV jet trigger becomes fully efficient above ET = 95 GeV. For the trigger
efficiency study, an early subset of the data (10.2 nb−1) was used, because the minimum bias
and lower-threshold jet triggers were highly prescaled in the later runs. In the upper panel
of Fig. 3a, the ET distributions from the jet-triggered sample are normalised per equivalent
minimum bias event by matching their integrals in the regions where the triggers are fully
efficient.

For the 7 TeV analysis, events are divided into three classes based on leading-jet ET: below
60 GeV, between 60 and 120 GeV, and above 120 GeV. Since each event is uniquely assigned
to one such leading-jet ET range, the overall dNch/dpT distribution is simply the sum of the
spectra from the three ranges, each corresponding to a fully-efficient HLT selection (i.e., min-
imum bias, 15 GeV jet trigger, and 50 GeV jet trigger). The contributions to the spectra from
the jet-triggered events are normalised per selected minimum bias event; the fraction of min-
imum bias events containing a leading jet with greater than either 60 or 120 GeV is calculated
as shown in Fig. 3a by matching the fully-efficient regions of the leading-jet ET distributions.
The three contributions to the combined charged particle transverse momentum spectrum are
shown in Fig. 3b. The lower panel of that figure compares the combined spectrum first to the
minimum bias spectrum alone and then to a spectrum constructed with the addition of only the
lower-threshold jet trigger. These are all in good agreement within their respective statistical
uncertainties. A pT-dependent systematic uncertainty of 0–4% is attributed to the normalisa-
tion of the contributions from the triggered samples. This value is determined by changing the
leading-jet ET ranges that separate the three samples (e.g., to ET = 40 and 100 GeV), by basing
the normalisation directly on the HLT prescale values, and by comparing the normalisations
determined from different subsets of the full data sample.
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malised by the number of selected minimum bias events NEvt
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Upper panel: the three contributions to the charged particle transverse momentum spectrum
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old jet trigger. Lower panel: the ratio of the combined spectrum to minimum bias only (solid
circles) and with the addition of only the lower threshold jet trigger (open triangles).

7 Corrections and Systematic Uncertainties
To obtain the final phase-space-invariant charged particle differential momentum distribution,
a number of corrections must be applied to the raw distributions of reconstructed charged
particles, according to the following equation:

E
d3Nch

dp3 (pT, η) =
∑

M,E
jet
T

Nraw
track(M, Ejet

T , pT, η) · wtr(pT, η, Ejet
T ) · wev(M)

2πpT · ∆pT · ∆η ·∑M
Nselected(M) · (1− f 0

NSD)
−1 · (1 + f pileup) · wev(M)

, (1)

where Nraw
track is the raw number of tracks in a bin with transverse momentum width ∆pT and

pseudorapidity width ∆η, and Nselected is the number of selected events. An event weight wev
(see Eq. (2)) is applied as a function of the multiplicity of reconstructed charged particles (M),
while a track weight wtr (see Eq. (3)) is applied for each M and leading-jet transverse energy
(Ejet

T ), as a function of pT; the final results are summed over M and Ejet
T . The number of selected

events is corrected for the fraction of NSD events ( f 0
NSD) that have zero reconstructed tracks in

the tracker acceptance of |η| < 2.4 (about 5%) and for the pileup event fraction ( f pileup).

The multiplicity-dependent event weight wev accounts for the efficiency of the event selection
for accepting NSD events (εselected

NSD ) and for the fraction of SD events ( f selected
SD ) that contaminate
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Table 2: Summary of the various contributions to the estimated systematic uncertainty.

Source Uncertainty [%]
Collision energy 0.9 TeV 7 TeV
Event selection 3.2 3.5
Pileup effect on vertexing 0.2 1.2
Acceptance 1.5 1.5
Reconstruction efficiency 2.2 2.2
Occupancy effect on efficiency 0.0–0.5 0.0–2.8
Misidentified track rate 0.3–1.0 0.3–3.0
Correction for secondary particles 1.0 1.0
Momentum resolution and binning 0.3–1.5 0.3–2.7
Normalisation of jet-triggered spectra – 0.0–4.0
Total 4.3–4.7 4.7–7.9
Total excluding event selection uncertainty 2.9–3.4 3.1–7.1
Total including luminosity uncertainty 11.4–11.6 5.1–8.1

the selected sample (about 5% overall):

wev(M) =
1

εselected
NSD

(1− f selected
SD ). (2)

The correction factor wtr, by which each track is weighted, is calculated for each bin in trans-
verse momentum, pseudorapidity, and leading-jet transverse energy. This factor accounts for
the geometric detector acceptance (A) and algorithmic tracking efficiency (εtr), as well as the
fraction of tracks corresponding to the same, multiply reconstructed charged particle (D), the
fraction of tracks corresponding to a non-primary charged particle (S), and the fraction of
misidentified (‘fake’) tracks that do not correspond to any charged particle (F):

wtr(pT, η, Ejet
T ) =

(1− F) · (1− S)
A · εtr · (1 + D)

. (3)

The common uncertainty related to the triggering and event selection efficiency is discussed in
detail in Ref. [34]. Contributions from uncertain diffractive-event fractions and detector ineffi-
ciencies in the BSC and HF combine to contribute a scale error of ±3.5% to the total systematic
uncertainty at

√
s = 7 TeV (see Table 2). At

√
s = 0.9 TeV, the diffractive fractions are slightly

better constrained, hence an uncertainty of ±3.2% is assigned.

Using simulated events generated with PYTHIA tune D6T, the various terms in Eq. (3) are esti-
mated by matching selected reconstructed tracks to simulated tracks based on the requirement
that they share 75% of their hits. As an example, the algorithmic efficiency (εtr) versus η is
presented in Fig. 2a. The slight asymmetry between the positive and negative hemispheres is
attributed to a slightly displaced beam-spot and the distribution of dead channels in the tracker.
The systematic uncertainties assigned to the various tracking corrections are discussed below
and are summarised, along with the total systematic uncertainty, in Table 2.

The uncertainty on the geometrical acceptance of the tracker was estimated from three sources.
First, the efficiency of the pixel hit reconstruction was estimated from a data-driven technique
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involving the projection of two-hit combinations (called tracklets) onto the third layer in search
of a compatible hit. The observed efficiency of (99.0± 0.5)% leads to a 0.3% uncertainty on
the acceptance of pixel-seeded tracks. Second, the variation of the geometrical acceptance was
estimated for a variety of generator tunes including PYTHIA8 [35] and the Perugia0 [36] tune of
PYTHIA. Third, the variation was estimated after shifting the generated beam-spot and modi-
fying the width of the generated z vertex distribution. The latter two effects each contribute a
1% shift in the acceptance.

In a similar fashion, using the different generator tunes results in a 2% shift in the reconstruc-
tion efficiency. An additional series of checks was performed by varying the cuts imposed dur-
ing the track selection and in the determination of the corresponding MC-based corrections.
The resulting variation in the corrected results contributes another 1% to the reconstruction
efficiency uncertainty.

Since the dependence of the reconstruction efficiency on local hit density has been parametrised
in terms of leading-jet transverse energy, both the uncertainty on the jet energy scale and the
accuracy of the jet-fragmentation description become relevant. The former contribution is es-
timated by convolving the dependence of the tracking efficiency on the leading-jet transverse
energy (see Fig. 2b) with a 4% uncertainty in the jet energy scale [33]. The latter contribution
is estimated by comparing the PYTHIA-based corrections to HERWIG++ [37]. The resulting pT-
dependent uncertainty on the occupancy is in the range (0.0–2.8)%.

Based on studies of different generator tunes and MC samples with different hard-scattering
scales, the assigned uncertainty to the misidentified-track correction grows linearly as a func-
tion of pT from 0.3 to 3.0%. An additional check was performed for tracks with pT above
10 GeV/c to correlate the reconstructed track momentum with the deposited energy in the pro-
jected ECAL and HCAL cells. For the selected tracks in this analysis, there is no evidence of any
excess of high-pT misidentified tracks characterised by atypically little energy deposited in the
calorimeters. The correction for secondaries and feed-down from weak decays is assigned a 1%
systematic uncertainty, which is large compared to the scale of the contributions, but intended
to account for the uncertainties in the K0

S and Λ fractions [38].

The tendency for finite bin widths (up to 40 GeV/c) and a finite transverse momentum resolu-
tion (rising from 1 to 5% in the range pT = 10–150 GeV/c) to deform a steeply falling spectrum is
corrected based on the shape of the pT spectrum and the MC-based pT response matrix. The ef-
fect of momentum resolution alone is 0.5–2.5%, while the wide binning results in an additional
correction ranging from a fraction of a percent up to approximately 20% in the widest high-pT
bins. The correction for the two effects is determined by fitting an empirical function to the dif-
ferential yield, smearing it with the MC-based momentum resolution, re-binning into the bins
of the final invariant yield, and dividing by the original fitted form. The quoted systematic un-
certainty of 0.3–2.7% is estimated by varying the fitted form of the spectrum and by performing
multiple iterations of the unsmearing with successively more accurate input spectra.

In addition to the uncertainties from the event selection efficiency weighting and the tracking
corrections described above, the total systematic uncertainty contains a contribution from the
uncertainty on the estimation of the event pileup fraction of 0.2 and 1.2% for the 0.9 and 7 TeV
data, respectively. In the cases where the total integrated luminosity is used to normalise the
results, this contributes an additional 4% (11%) scale uncertainty [14, 15] for

√
s = 7 (0.9) TeV.

Assuming that the various pT-dependent contributions are uncorrelated, the total systematic
uncertainty is determined from their sum in quadrature, as indicated in Table 2.
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Figure 4: (a) Upper panel: the invariant charged particle differential yield from the present
analysis (solid circles) and the previous CMS measurements at

√
s = 0.9 TeV (stars) over the

limited pT range of the earlier result. Lower panel: the ratio of the new (solid circles) and pre-
vious (stars) CMS results to a Tsallis fit of the earlier measurement. Error bars on the earlier
measurement are the statistical plus systematic uncertainties added in quadrature. The sys-
tematic uncertainty band around the new measurement consists of all contributions, except for
the common event selection uncertainty. (b) The same for

√
s = 7 TeV.

8 Results
After applying the corrections described in the previous section, the resulting invariant differ-
ential yields for charged particles within |η| < 2.4 are shown for a limited pT range in Figs. 4a
and 4b in order to quantify the agreement with previous CMS measurements at

√
s = 0.9 and

7 TeV [24, 34]. At each energy, both CMS measurements are divided by a Tsallis fit [39] to the
earlier measurement and the ratios compared in the lower panels. For the earlier measure-
ments, the error bars indicate the statistical plus systematic uncertainties added in quadrature.
The bands around the new measurements represent all contributions to the systematic uncer-
tainty, except the contribution from the common event selection. Statistical uncertainties are
negligible on the new measurements in this pT range. Below pT = 4 GeV/c for the 0.9 TeV sam-
ple and below pT = 6 GeV/c at

√
s = 7 TeV, which are the limits of the previously published CMS

spectra, the new results are in reasonable agreement with the earlier measurements. However,
the measured spectra do deviate from the Tsallis fits in the earlier papers by as much as 20% at
low pT. The origin of the small difference between the two CMS measurements at

√
s = 7 TeV

is attributed to the different tracking algorithms used in the two measurements, as well as the
different PYTHIA tunes used to determine the tracking corrections.

In the upper plots of Figs. 5a and 5b, the charged particle differential transverse momentum
yields from this analysis are displayed for

√
s = 0.9 and 7 TeV, respectively. The latter distribu-

tion covers the pT range up to 200 GeV/c, the largest range ever measured in a colliding beam
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Figure 5: (a) Upper panel: the invariant charged particle differential yield at
√

s = 0.9 TeV
compared with the predictions of four tunes of the PYTHIA MC generator. Lower panel: the
ratio of the new CMS measurement to the four PYTHIA tunes. The grey band corresponds to
the statistical and systematic uncertainties added in quadrature. (b) The same for

√
s = 7 TeV.

experiment. Also shown in the figures are various generator-level MC predictions for the yields
[27, 35, 36, 40]. The lower plots of Figs. 5a and 5b show the ratios of the data to the various MC
predictions. As already observed in Ref. [34], there is a deficit of pT < 1 GeV/c particles in the
predicted 7 TeV spectra for several of the popular PYTHIA tunes. For the whole pT range above
1 GeV/c, PYTHIA8 is the most consistent with the new 7 TeV result (within 10%). This provides
an important constraint on the different generator parameters responsible for sizable variations
among the tunes. A similar but slightly larger spread is observed in Fig. 5a for different gener-
ator parameters at

√
s = 0.9 TeV, where the CMS measurement is most consistently described

by the ProQ20 tune.

As discussed in Ref. [41, 42], a robust prediction of pQCD hard processes is the power-law
scaling of the inclusive charged particle invariant differential cross section with the variable xT:

E
d3σ

dp3 = F(xT)/pn(xT,
√

s)
T = F′(xT)/

√
sn(xT,

√
s), (4)

where F and F′ are independent of
√

s, and the slow evolution of the power-law exponent n
with xT and

√
s (n ' 5–6) is due to the running of αs and changes in the parton distribution

and fragmentation functions. In the upper plot of Fig. 6a, the 0.9 and 7 TeV pp measurements
from this analysis are compared to the empirical scaling observed from measurements over a
range of lower pp̄ collision energies by plotting

√
sn E d3σ/dp3. For the purpose of reporting

the CMS results as differential cross sections, the integrated luminosities for the analysed data
samples were measured according to the descriptions in Ref. [14, 15]. Also, to compare with the
published results from the CDF experiment at

√
s = 0.63, 1.8, and 1.96 TeV, the pseudorapidity
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range has been restricted to |η| < 1.0. Whereas an exponent n = 5.5 was found in Ref. [42]
from a global fit to only the previous pp̄ measurements from

√
s = 0.2 to 1.96 TeV, the xT

scaling presented in this paper is optimised for use in an interpolation between the CDF and
CMS measurements from

√
s = 0.9 to 7 TeV. Within this range, the best scaling is achieved

with an exponent of n = 4.9± 0.1. This is consistent with the predictions of next-to-leading-
order (NLO) calculations, where the scaling is also found to be optimised for this value of the
exponent [42]. From the lower panel of Fig. 6a, it is apparent that the NLO calculations over-
predict the measured cross sections by almost a factor of two at all collision energies. This is
in spite of the relatively good agreement in the inclusive jet spectrum [43, 44], which suggests
that the fragmentation functions are not well tuned for LHC energies.

The CMS results are consistent over the accessible xT range with the empirical xT scaling given
by Eq. (4) and established at lower energies. This quality of the scaling is more easily seen in the
upper panel of Fig. 6b, where the points show the ratio of the various differential cross sections,
scaled by

√
s4.9, to the result of a global power-law fit to the CDF and CMS data from Fig. 6a.

The fitting function is of the form F′(xT) = p0 · [1 + (xT/p1)]
p2 , where p0, p1, and p2 are free

parameters, and the region below pT = 3.5 GeV/c has been excluded to avoid complications
from soft-particle production. Considering the somewhat naı̈ve power-law function and the
expected non-scaling effects [45], the new measurement is in reasonable agreement with the
global power-law fit result (within roughly 50%) over its full xT range.

9 Interpolation to 2.76 TeV
In order to construct a predicted reference charged particle differential cross section at

√
s =

2.76 TeV for comparison with the measured PbPb heavy-ion spectrum, two different techniques
are used in partially overlapping transverse momentum regimes. In the high-pT range from
5.0–200 GeV/c, where approximate xT scaling is expected to hold, the estimated 2.76 TeV cross
section is derived from a common xT-scaling curve, based on the CDF and CMS measurements
shown in Fig. 6a. In the low-pT range from 1.0–20 GeV/c, it is possible to interpolate directly
between the several measured cross section values as a function of

√
s at each fixed pT value.

As discussed in the previous section, the upper panel of Fig. 6b shows the residual difference
from perfect xT scaling with exponent n = 4.9 for the 0.9 and 7 TeV CMS measurements and
for the 1.96 TeV CDF measurement [4, 5] . The

√
s and xT dependence of the residuals are not

unexpected, since this behaviour is predicted by NLO calculations. This can be seen in the
lower panel of Fig. 6b, which shows the predicted deviation from perfect xT scaling for calcu-
lated NLO cross sections at several collision energies with respect to a reference centre-of-mass
energy of 2.75 TeV [42]. The calculations were performed using the CTEQ66 parton distribution
functions [46], DSS fragmentation [47], and a factorisation scale µ = pT [42]. Taking the mag-
nitude of the xT-scaling violation from NLO (ranging from 0–20%), each of the three measure-
ments in data (i.e., 0.9, 1.96, and 7 TeV) can be corrected separately to arrive at an expectation
for the 2.76 TeV cross section. The three independent interpolations based on NLO-corrected
xT scaling are shown as solid blue lines in the upper panel of Fig. 6b. The combined ‘best es-
timate’ (shown as a shaded band) has an associated uncertainty that covers the deviations of
up to 12% observed by varying the factorisation scale from µ = 0.5 pT to µ = 2.0 pT for each
of the three collision energies. The error band is expanded below pT ≈ 8 GeV/c to include the
full difference between the 1.96 and 7 TeV results, since the evolution of the spectra below this
value — corresponding to xT = 0.0023 (7 TeV), 0.0082 (1.96 TeV), and 0.018 (0.9 TeV) — is no
longer consistently described by xT scaling and the NLO-based corrections. In addition to the
12% contribution from the uncertainty on the NLO-based correction, the final uncertainty on
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Figure 6: (a) Upper panel: inclusive charged particle invariant differential cross sections, scaled
by
√

s4.9, for |η| < 1.0 as a function of the scaling parameter xT. The result is the average of
the positive and negative charged particles. Lower panel: ratios of differential cross sections
measured at 0.9, 1.96, and 7 TeV to those predicted by NLO calculations for factorisation scales
ranging from 0.5–2.0 pT. (b) Upper panel: ratios of the scaled differential cross sections to
the global power-law xT fit described in the text (coloured markers) and fits to these ratios
(similarly coloured thin lines). The expected ratio for

√
s = 2.76 TeV after applying NLO-based

corrections to each of the three measurements as described in the text (solid blue lines). The
uncertainty from the NLO parameters is represented by the shaded band. The upper axis
translates xT to pT for

√
s = 2.76 TeV. Lower panel: ratios of the NLO-calculated cross sections

at three different energies, scaled by
√

s4.9, to the cross section calculated at
√

s = 2.75 TeV. The
width of the bands represents the variation of the factorisation scale by a factor of two.

the interpolated cross section has an additional component to account for possible correlations
in the luminosity uncertainty between the three measurements. This term, taken as equal to
the smallest individual uncertainty (4%), is added in quadrature.

The direct interpolation of cross sections at a fixed value of pT is done using CDF measurements
at
√

s = 0.63, 1.8 and 1.96 TeV [4, 5, 17], the new CMS measurements at
√

s = 0.9 and 7 TeV,
as well as an earlier result at

√
s = 2.36 TeV [24]. The latter measurement is converted to a

differential cross section assuming the total inelastic cross section of 60.52 mb from PYTHIA. At
each energy, an empirical fit to the pT distribution is first constructed to provide a continuous
estimation independent of different binning. Then, in arbitrarily small pT bins, these empirical
fits are evaluated and the evolution of the cross section with

√
s is parametrised by a second-

order polynomial. Two examples of these fits are shown in Fig. 7a for pT = 3 and 9 GeV/c.
The uncertainty on the value of the fit evaluated at

√
s = 2.76 TeV is taken from the covariance

matrix of the fit terms, with an additional 4% added in quadrature to account conservatively
for any correlation in the luminosity uncertainty between the different measurements.
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To arrive at a single interpolated spectrum over the full pT range, a linear combination of
the two techniques is used with weights that vary linearly across the overlap range from
pT = 5 GeV/c (only direct interpolation at fixed pT) to pT = 20 GeV/c (only xT scaling with
NLO-based residual correction). In the pT range where the two techniques overlap, the differ-
ent methods agree to within their respective systematic uncertainties. (The fixed-pT interpo-
lation value is typically around 8% lower than the xT interpolation.) The resulting predicted
2.76 TeV differential cross section is shown in the upper panel of Fig. 7b, and its ratio with re-
spect to various PYTHIA tunes at that centre-of-mass energy in the lower panel. The uncertainty
on the predicted cross section, shown by the grey band in the lower panel, is the weighted sum
(where applicable) of the uncertainties derived from the two methods described in the preced-
ing paragraphs. Also shown in the lower panel of Fig. 7b is the ratio of the predicted 2.76 TeV
cross section to that found by simply scaling the CMS measured 7 TeV result by the expected
2.75 TeV to 7 TeV ratio from NLO calculations [42]. The interpolation used in the recent ALICE
publication [13] is a few percent lower than the result quoted in this paper, but consistent within
the respective systematic uncertainties. The behavior of the various generators compared to the
interpolated 2.76 TeV cross section is broadly similar to the 0.9 TeV invariant yields presented in
Fig. 7b. The ProQ20 tune agrees most closely (within 15%) with the interpolated cross section
above 2 GeV/c. Future analysis of a recently recorded 2.76 TeV pp collision sample will provide
verification of this result and a reduction in the systematic uncertainties.

10 Summary
In this paper, measurements of the phase-space-invariant differential yield E d3Nch/dp3 at

√
s

= 0.9 and 7 TeV have been presented for primary charged particles, averaged over the pseu-
dorapidity acceptance of the CMS tracking system (|η| < 2.4). The results have been shown
to be in reasonable agreement with the previously published CMS measurements at

√
s = 0.9

and 7 TeV [24, 34] and, except for the surplus of tracks at very low transverse momentum, with
PYTHIA leading-order pQCD. The 7 TeV data are most consistent with PYTHIA8, which agrees at
the 10% level over the full pT range of the measurement. In contrast, the 0.9 TeV data are consid-
erably better described by the ProQ20 tune. Additionally, the consistency of the 0.9 and 7 TeV
spectra has been demonstrated with an empirical xT scaling that unifies the differential cross
sections from a wide range of collision energies onto a common curve. Furthermore, within
the theoretical uncertainties of the NLO calculations, the residual breaking of xT scaling above
pT ≈ 8 GeV/c is consistent between the measured cross sections and the NLO calculations.

This result has removed a large uncertainty from an important ingredient of existing and future
PbPb measurements, namely the pp reference spectrum corresponding to the energy of the
2010 PbPb run: 2.76 TeV per nucleon. By employing a combination of techniques to interpolate
between the results presented here at

√
s = 0.9 and 7 TeV, including information from existing

CDF measurements at
√

s = 0.63, 1.8, and 1.96 TeV, a pp reference at
√

s = 2.76 TeV has been
constructed over a large range of transverse momentum (pT = 1–100 GeV/c) with systematic
uncertainties of less than 13%.
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