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3Université de Genève, 30, quai Ernest-Ansermet, CH-1211 Genève 4
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Supernova cosmology without spectroscopic confirmation is an exciting new frontier which we
address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and
the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN).
BEAMS is a Bayesian framework for using data from multiple species in statistical inference when
one has the probability that each data point belongs to a given species, corresponding in this context
to different types of supernovae with their probabilities derived from their multi-band lightcurves.
We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of
order 104 supernovae, testing the algorithm against various pitfalls one might expect in the new and
somewhat uncharted territory of photometric supernova cosmology. We compare the performance
of BEAMS to that of both mock spectroscopic surveys and photometric samples which have been
cut using typical selection criteria. The latter typically are either biased due to contamination or
have significantly larger contours in the cosmological parameters due to small data-sets. We then
apply BEAMS to the 792 SDSS-II photometric supernovae with host spectroscopic redshifts. In
this case, BEAMS reduces the area of the Ωm,ΩΛ contours by a factor of three relative to the case
where only spectroscopically confirmed data are used (297 supernovae). In the case of flatness, the
constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are
ΩBEAMS
m = 0.194±0.07. This illustrates the potential power of BEAMS for future large photometric

supernova surveys such as LSST.

PACS numbers:

∗Electronic address: rhlozek@astro.princeton.edu

I. INTRODUCTION

The unexpected faintness of distant Type Ia Super-
novae (SNIa) was the key to the discovery of late-time
cosmic acceleration [1, 2]. A decade later, the discovery
and analysis of large numbers of high-quality SNIa data
remain cornerstones of modern cosmology, with various
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surveys probing SNIa over a huge range of distances,
with a particular focus on understanding and remov-
ing potentially unaccounted-for systematic errors and
sharpening them as standard candles (e.g. [3–22]).
The current state-of-the-art is a heterogenous sample
of hundreds of SNe, predominantly at intermediate red-
shifts, z < 1 [9, 19, 22–25], with a high-redshift, z > 1,
sample from the Hubble Space Telescope [7], anchored
with a low redshift sample, z < 0.02 [5, 15, 20, 26–29].
The SDSS-II SN survey data [10, 12] fill in the ‘red-
shift gap’ between 0.02 < z < 0.4. In these surveys,
multi-band photometric light-curves are very success-
fully used to estimate the probability that a candidate
is a SNIa as opposed to a core-collapse supernova (Ibc
or II) or other object, providing vital intelligence for
the selection of likely SNIa for spectroscopic follow-up
[30–41], if not currently used for making Hubble dia-
grams.
Future surveys such as the Dark Energy Survey (DES,
[42]), Pan-STARRS [43] and the Large Synoptic Survey
Telescope (LSST, [44]) will vastly increase the numbers
of detected SNe, perhaps by a factor of a thousand in
the case of LSST. However, the quandary facing these
surveys is how to make appropriate use of this surfeit
of data given that spectroscopic confirmation will only
be possible for a small fraction of the promising SNIa
candidates, varying somewhere between 0− 20%. The
wealth of current and future data is therefore driving
us inexorably towards an era of purely photometric su-
pernova cosmology in which most of the cosmological
constraints from the survey come from supernovae with
no spectroscopic information, except perhaps for a host
redshift obtained with a multi-object spectrograph.
Photometric supernova cosmology is not a task to
be undertaken lightly. While multi-band photometric
methods strive to reduce the amount of contamination
of the Ia sample from interlopers to a minimum, there
will always be some level of contamination - typically
around the few percent level [37, 38, 44, 45] - and this
biases the inferred cosmological constraints at an unac-
ceptable level if one simply uses standard χ2 inference
techniques. In this standard paradigm one is faced
with a choice between inevitable contamination using
all data, restricting the sample size to those supernovae
that can be followed up spectroscopically, wasting the
available data at hand - or defining a smaller subset
from the photometric candidates that has a high Type
Ia purity (see [46] for one such treatment). Fortunately
one can rigorously incorporate contamination effects
into a Bayesian inference framework to yield unbiased
cosmological results.
In this paper we apply the resulting framework:
Bayesian Estimation Applied to Multiple Species

(BEAMS, Kunz et al. [47]) to purely photometric SN
data with host galaxy redshift information. We test
the algorithm against various simulations, and describe
potential challenges in future photometric analyses. In
addition, we apply the algorithm to the photometric
SDSS-II SN data sample with host galaxy redshifts.
While still in its developing stages, photometric su-
pernova cosmology is a very promising approach to ex-
ploit the deluge of supernova data expected in the next
decade, and we show how BEAMS is one approach that
is robust to general assumptions about the SN popu-
lation.

II. THE BEAMS FRAMEWORK FOR
PHOTOMETRIC SN COSMOLOGY

A. Basic formalism

The current state-of-the-art is to restrict any contam-
ination from non-SNIa interlopers by only doing cos-
mology on those candidates that have been spectro-
scopically confirmed as being Type Ia through the iden-
tification of characteristic absorption lines such as the
Si-II 6150 Å feature [48, 49]. While this strategy is
feasible for the current level of precision, using only
spectroscopically confirmed supernovae in the cosmol-
ogy analysis from future large surveys such as DES and
LSST will result in throwing away the great majority
of interesting candidates.
BEAMS was developed to make the most of the up-
coming large datasets [47]. It is a general Bayesian
framework that allows use of all available candidates
provided we have some indication of how likely they are
to be a SNIa. While BEAMS is a general method for es-
timating parameters from any type of data which may
be contaminated, it is readily applied to the SN prob-
lem, where we wish to evaluate the posterior distribu-
tion P (θ|d), the probability of cosmological parameters
which we denote by θ = (θ1, θ2, ..., θj , θm), given the
SN data, expressed as a vector d = (d1, d2, ..., di, ...dN )
of N measurements (of, for example, the distance mod-
ulus µ or apparent magnitude m in the case of SN
data).
To apply BEAMS we invoke a theoretical binary vec-
tor τ = (τ1, τ2, ..., τi, ...τN ) of length N , equal to the
number of data points. The entries of this vector are
one if the corresponding data point is a Type Ia super-
nova (SNIa) and zero if the point is not (for e.g. Type
Ibc, II or non-SN), that is, τi = 1(0) if the i-th data
point is (or is not) a SNIa. This represents the under-
lying ‘truth’, however we shall see later that we will
use a proxy for the true type: the ‘probability’ of be-
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Figure 1: 3D photometric Hubble diagram for the SDSS-II data: residuals relative to the input cosmology for
the SDSS-II SN photometric data with host spectroscopic redshifts (discussed in Section III C). SNe are measured in
both redshift and distance modulus space, but the BEAMS algorithm includes probability information, adding a third
dimension to standard SN cosmology. The Type Ia’s clearly show up on the left at high probability, but with some small
contamination that must be accounted for.

ing a Ia. In general the class of ‘non-SNIa’ supernovae
can be subdivided into many subclasses; in which case
τ would not be a binary vector but would index the
possible sub-classes. Here we consider only the simple
binomial case.
Applying Bayes’ Theorem and marginalizing over all
possible values of the vector τ = τ1, τ2, ..., τN , the gen-
eral posterior becomes [47]:

P (θ|d) =
∑

τ

P (θ, τ |d) =
∑

τ

P (d|θ, τ )
P (θ, τ )

P (d)
, (1)

where P (θ, τ ) is the prior for the parameters and P (d)
is the usual evidence factor which does not depend on
the cosmic parameters.
Assuming that the data are uncorrelated we then split
the effective posterior into two parts for each i-th data
point:

P (d|θ, τ )P (τ )|i =

[P (di|θ, τi = 1)Pi + P (di|θ, τi = 0)(1− Pi)] ,(2)

where Pi = P (τi = 1), is the probability that a given
point is in fact a SNIa, P (di|θ, τi = 1) is the likelihood

of the Ia distribution, and P (di|θ, τi = 0) is the non-
SNIa likelihood. This assumption of uncorrelated data
is crucial in separating the contributions of the Ia and
non-Ia populations to the final posterior, and relaxing
this assumption will require a more complex statistical
description.
The probabilities Pi are determined through fitting
light curves to standard SNIa models such as SALT2
[50] or MLCS2k2 [51], which typically assume that the
data belong to the SNIa class and hence fit SNIa light-
curve templates to all the data points. The Type Ia
probability can either be obtained using a goodness-
of-fit of the light-curves normalized by the degrees of
freedom (dof):

Pi = Pfit ∝ exp(χ2
lc/dof), (3)

or by fitting multiple templates to the data and obtain-
ing probabilities from the relative χ2 of the fits from
different SN templates (Ia, Ibc, II, etc.), Ptyper, such
as the PSNID typer [37, 38].
The probability (3) represents how well a light-curve
fits the photometric magnitudes, and does not tell you
a priori how likely the data point is to be a Ia. For
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example if both Ia and II templates fit the data equally
well with a χ2

fit/dof = 0.95, then the relative probabil-
ity of each type is Pi = 0.5, while the probability of be-
ing a Ia obtained only from the fit of the Ia light-curve
to the data is Pfit = 0.65. Typically the probabilities
are combined with additional selection cuts [38, 46].
Hence in general the conversion from a normalized χ2

lc
to Pi can lead to skewed probabilities (see Newling
et al. [52] for a detailed investigation of potential bias
from incorrect assumptions about the probabilities -
we test for distance modulus-probability correlations
in Appendix A), as selection cuts, which are typically
based on supernova rate or intrinsic brightness can in-
troduce redshift-dependent selection bias. In addition,
a data set may contain very different numbers of Type
Ia and core-collapse supernovae. For this reason we
add a global parameter A that re-normalizes the rela-
tive probability (the Bayes factor) of being of Type Ia
or not through PIa,i/(1− PIa,i)→ APIa,i/(1− PIa,i).
The final probability that enters the BEAMS likelihood
is then

P
(A)
Ia,i =

APIa,i

1− PIa,i +APIa,i
(4)

where we estimate A simultaneously with the other pa-
rameters (subject to a Jeffreys’ prior, i.e. we sample
uniformly in lnA, although the results are not depen-
dent on the prior used). This mapping provides an in-
dication of whether or not the input probabilities (from
the light curve fitter for example) are biased, as we ex-
pect the distribution to be peaked around one. The
re-mapping of probabilities allows BEAMS to ‘correct’
for bias in the input probabilities. This parameter A
is necessary to debias the probabilities with respect to
the overall Ia/non-Ia ratio of the whole sample even
if the light-curve fitter gives a perfect ‘per SN’ prob-
ability. We discuss this in detail in Section IV D. In
general one might allow A to vary with redshift, or
indeed with the light-curve model used, given the vari-
ety of assumptions made by the light-curve fitters. We
leave these tests to future work and in this analysis we
consider only one global parameter A.
In addition, it is important to note that in applying the
BEAMS algorithm we do not assume a known popula-
tion of Ia (or non-Ia) SNe, and hence no probabilities
are set to zero or unity in the analysis, even if they
have been spectroscopically confirmed, as the number
of known Ias will be much smaller than the total pho-
tometric sample in future surveys.

The total BEAMS posterior is then

P (θ|d) ∝ P (θ)×
N∏

i=1

{
P (di|θ, τi = 1)P

(A)
Ia,i + P (di|θ, τi = 0)

(
1− P (A)

Ia,i

)}

(5)

where the parameter vector θ now contains the cosmo-
logical parameters {H0,Ωm,ΩΛ}, the probability pa-
rameter A and the extra parameters necessary to model
the supernova likelihoods as discussed below. P (θ)
represents the prior probabilities of the parameters. If
we are interested only in the cosmological parameters
then we marginalize over all the others. We will now
discuss in detail our choice of the Type Ia and non-
SNIa likelihoods.

B. The likelihood distribution for SNIa

The Ia likelihood is modeled as a Gaussian probabil-
ity distribution function (pdf) for the observed dis-
tance modulus µi centered around the theoretical value
µ(z,θ) with a variance σ2

tot,i:

P (µi|θ, τi = 1) =
1√

2πσtot,i

exp

(
− (µi − µ(zi,θ))2

2σ2
tot,i

)
.

(6)
The distance modulus is related to the cosmological
model via:

µ(z,θ) = 5 log dL(z,θ) + 25 , (7)

where

dL(z,θ) =
c(1 + z)√

ΩkH0

× sinh

(√
Ωk

∫ z

0

dz

E(z)

)

(8)

is the luminosity distance measured in Mpc, the ex-
pansion rate is given by

E(z) =
√

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩDEf(z). (9)

The energy densities relative to flatness of matter
(Ωm), curvature (Ωk) and dark energy (ΩDE) obey the
relation Ωm + Ωk + ΩDE = 1. The distance modulus
is defined as the difference between the absolute and
apparent magnitudes of the supernova, µ = m −M,
with additional corrections made to the apparent mag-
nitude for the correlations between brightness, color
and stretch and a K-correction term related to the dif-
ference between the observer and rest-frame filters, for
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example. The corrections are typically made within the
model employed in a light-curve fitter, such as that for
MLCS2k2.
The parameter H0 is the Hubble constant, and the
function f(z) = ρDE(z)/ρDE(0) describes the evolu-
tion of the dark energy density. While one of the ul-
timate goals in SN cosmology is to test for dynamics
with redshift of the equation of state w, this relies on
a sample at both high and low redshift to anchor the
Hubble diagram and provide a long lever arm. In this
work, we discuss how BEAMS improves constraints on
parameters when including a photometric sample, and
hence do not include the low or high redshift samples
in this case. For this reason we focus on the Ωm,ΩΛ

combination of cosmological parameters, and so will
only consider ΛCDM models for which f(z) = 1. In
principle we should also consider radiation, but its en-
ergy density is negligible at late times when we observe
supernovae.
In this application of BEAMS we have assumed that
the distance modulus µ is obtained directly from the
light-curve fitter (such as is the case for fitters which
use the MLCS2k2 light-curve model), however this is
not an implicit assumption. In the case of the SALT
light-curve fitter, the distance modulus would be re-
constructed using a framework such as that outlined
in [53] before including in the BEAMS algorithm.
We model the error on the distance modulus of each su-
pernova as a sum in quadrature of several independent
contributions,

σ2
tot,i = σ2

µ,i + σ2
τ + σ2

µ,z, (10)

where σµ,i is the error obtained from fits to the SN
light-curve, στ is the characteristic intrinsic dispersion
of the supernova population, which we add as an addi-
tional global parameter to the vector θ with Jeffreys’
prior. The constraints do not depend strongly on the
prior used for the intrinsic dispersion. The error term
σµ,z converts the uncertainty in redshift due to mea-
surement errors and peculiar velocities into an error in
the distance of the supernova as:

σµ,z =
5

ln(10)

1 + z

z(1 + z/2)

√
σ2
z + (vpec/c)2, (11)

with σz as redshift error, and vpec as the typical am-
plitude of the peculiar velocity of the supernova, which
we take as 300 kms−1 [10, 11].
In general, light-curve models such as SALT2 [50] or
MLCS2k2 [51] are used to fit fluxes in various bands
and time epochs to obtain a distance modulus. The two
light-curve models are based on different approaches
and hence make different assumptions about the under-
lying SN properties. In general one might also include

a systematic error due to differences in distance modu-
lus from using different light-curve fitters as discussed
in Kessler et al. [10]. However, given that we are fitting
the light-curves using only the MLCS2k2 model in this
analysis, and as we are interested in the relative im-
provement of constraints when applying BEAMS, we
ignore this constant systematic error without loss of
generality.

C. Forms of the non-SNIa likelihood

The general form of the non-SNIa likelihood will be
complicated since there are several sub-populations.
Given the limited number of non-SNIa in the SDSS-
II SN data set however, (see Figure 5) we will model
it with a single mean and a dispersion. If one chooses
to describe a population using only a mean and a vari-
ance, statistically the least-informative (maximum en-
tropy) choice of pdf in this case is also a Gaussian [54],

P (µi|θ, τi = 0) =
1√

2πstot,i

exp

(
− (µi − η(zi,θ))2

2s2
tot,i

)
.

(12)
As we do not know the mean η and variance s2

tot,i of
the non-SNIa population, we describe them with ad-
ditional parameters. We will keep the parametrization
of the mean very general (see below) but for the vari-
ance we restrict ourselves to the same form as for the
Type Ia supernovae, Eq. (10), but with a potentially
different intrinsic dispersion s2

τ described by an inde-
pendent parameter (again with a Jeffreys’ prior). We
assume that the measurement errors and the contribu-
tion from the peculiar velocities enter in the same way
for Type Ia and other supernovae and so keep these
terms identical.
We do not know what to expect for the mean of the
non-SNIa pdf and so we allow for a range of possi-
bilities. As the brightness is linked to the luminos-
ity distance through Eq. (7), we describe the expected
non-SNIa distance modulus (as provided by the light-
curve fitter) as a deviation from the theoretical value,
η(z,θ) = µ(z,θ) + Υ(z), where we consider the follow-
ing Taylor expansions of the difference as a function of
redshift:

Υ(z) = η(z,θ)− µ(z,θ) ∝:

3∑

i=0

(aiz
i)/(1 + dz)

(13)

We consider the cases where we set different combina-
tions of the parameters (ai, d), to zero, and employ a
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criterion based on model probability to decide which
of these functions to use. We note that the explicit
link of η(z,θ) to µ(z,θ) carries a risk that the non-
SNIa likelihood can influence the posterior estimation
of the cosmological parameters. For this reason we ver-
ify that the contours do not shift when we set directly
η(z,θ) = Υ(z), although we will need a higher-order
expansion in general (and of course the recovered pa-
rameters of the function Υ(z) will change). In general,
as long as the basis assumed has enough freedom to fit
the deviation in distance modulus of the non-SNIa pop-
ulation from the Ia model, the inferred cosmology will
not be biased.
For a cosmological analysis we just marginalize over
the values of the parameters in Υ(z), but these param-
eters contain information on the distribution of non-Ia
type SN and thus their posterior is of interest as well,
allowing us to gain insight into the distribution charac-
teristics on the non-SNIa population at no additional
‘cost’.
The simple binomial case considered here, where the
non-SNIa population consists of all types of core-
collapse SNe, is probably too simplistic to accurately
describe the distribution of non-SNIa supernovae. In
general one could include multiple populations, one for
each supernova type, which would yield a sum of Gaus-
sian terms in the full posterior. In addition, the forms
describing the distance modulus of the non-SNIa pop-
ulation are chosen to minimize the cosmological infor-
mation from the non-SNeIa (we always test for a devia-
tion from the cosmological distance modulus), however,
the parameterization of the non-SNIa distance mod-
ulus could be improved by investigating the distance
modulus residuals from simulations, as the major con-
tributions to the distance modulus residuals appear to
be the core-collapse luminosity functions, along with
the specific survey selection criteria and limiting mag-
nitude, see Falck et al. [55]. While current SN samples
do not include a large sample of non-SNIa data to test
for this, larger data sets (such as the data from the
BOSS SN survey) will allow for a detailed analysis of
the number (and form) of distributions describing the
contaminant population.

D. Markov Chain Monte Carlo Methods

In this work, the BEAMS algorithm is implemented
within a Markov Chain Monte Carlo (MCMC) frame-
work, and the Metropolis-Hastings [56] acceptance cri-
terion was used. We use the cosmological parameters

{Ωm,ΩΛ, H0} (14)

in the case of the χ2 approach on the spectro and cut
samples described below, and add additional parame-
ters

{A, στ , sτ ,a} (15)

in the case of the BEAMS application. The parame-
ters a = {a0, a1, a2}; d = a3 = 0 in Eq. (15) are for
the quadratic model, in the other models for Υ(z) we
adjust the parameters accordingly. The chains were
in general run for around 100 000 steps per model;
this was sufficient to ensure convergence. We test for
convergence using the techniques described in Dunk-
ley et al. [57]. We impose positivity priors on the
energy densities of matter and dark energy, and im-
pose a flat prior on the Hubble parameter between
20 < H0 < 100 kms−1Mpc−1. The Hubble param-
eter is marginalized over given that we do not know
the intrinsic brightness of the supernovae, but through
the distance modulus are only sensitive to the relative
brightness of the supernovae. We impose broad Gaus-
sian priors on the parameters of the non-SNIa likeli-
hood function, and step logarithmically in the proba-
bility normalization parameter A, the intrinsic disper-
sion parameters of both the Ia and non-SNIa distribu-
tions.

E. Comparison to standard χ2 methods

The primary difference between BEAMS and current
methods is that the latter either require that all data
are spectroscopically confirmed, or apply a range of
quality cuts based on selection criteria. In this paper
we will compare the performance of BEAMS to these
two approaches, by processing the data that pass
the required selection criteria using the Ia likelihood,
Eq. (6). We will hereafter refer to this as the χ2

approach.

We use the following samples:

• spectro sample:
The sample containing only spectroscopically
confirmed supernovae. In addition to spectro-
scopic confirmation we will also apply a cut on
the goodness-of-fit probability from the light-
curve templates within the MLCS2k2 model,
Pfit > 0.01, and a cut on the light-curve fit-
ter parameter ∆ > −0.4, where ∆ is a param-
eter in the MLCS2k2 model describing the light-
curve width-luminosity correlation. MLCS2k2
was trained using the range −0.4 < ∆ < 1.7 [51],
hence we restrict the sample to ∆ > −0.4, which
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is a cut typical in current SN surveys, and so we
introduce the cut to provide comparison between
datasets. We process this spectro sample using
the χ2 approach.

• cut sample:
This larger sample is selected both by remov-
ing 5σ outliers from a moving average fit to the
Hubble diagram including both photometric and
spectroscopically confirmed data and applying a
cut to the sample, including only data with a
high enough probability, Ptyper > 0.9 (where the
probability comes from a general supernova typ-
ing procedure, such as PSNID, described in Sako
et al. [37, 38]). We choose to use the PSNID
probabilities to make the probability cut on the
sample (Ptyper > 0.9); if the MLCS2k2 proba-
bilities had themselves been used to make a cut
sample, then objects would only be included if
they had probabilities greater than, for exam-
ple, Pfit > 0.9 In addition, we impose a cut on
the goodness-of-fit of the light-curve data to the
Type Ia typer, χ2

lc < 1.8, a cut on the goodness-
of-fit probability from the light-curve templates
within the MLCS2k2 model, Pfit > 0.01, and a
cut on ∆ > −0.4. In this cut sample case we then
use standard the χ2 cosmological fitting proce-
dure on the sample, and so set the Ia probability
of all points to one.

• photo sample:
This sample is the one to which BEAMS will be
applied, and will include all the photometric data
with host galaxy redshifts. As in the previous
two cases, we include only data which have Pfit >
0.01,∆ > −0.4.

Note that the spectro sample will be included in all the
three samples described above. While the spectro and
cut samples have by definition PIa = 1 (as they are an-
alyzed in the χ2 approach), we do not set the probabil-
ities to unity when applying BEAMS to the full sample
- the spectro subsample within the larger photo sam-
ple will be treated ‘blindly’ by BEAMS. The spectro
sample is the one most similar to current cosmologi-
cal samples, and will be used to check for consistency
in the derived parameters between BEAMS applied to
the photo sample and the χ2 approach on the spectro
sample.

III. DATASETS

We apply BEAMS to three datasets. Firstly we gener-
ate an ideal simulated dataset where the input Ia and

non-SNIa model for distance modulus are known, and
all data are simulated as Gaussian distributions around
this model. The second level of simulations are gener-
ated from SNANA [58] as light-curves and then fit us-
ing MLCS2k2 [51], based on an SDSS-II-like dataset.
The third level is the SDSS-II SN Survey photomet-
ric data with host-z from 2005 to 2008. The various
datasets are described below.

A. Level I: Gaussian simulations

To test the BEAMS algorithm explicitly we need a
completely controlled sample, where all variables (such
as the non-SNIa model, SNIa probabilities) are directly
known and where we can verify that the algorithm is
able to recover them correctly. In addition, we use this
data set to check that we recover the correct shape
of the non-Ia distance modulus η(z) since the true
η(z,θ) is known for this sample only. We simulate
a population of 50 000 SNe, with redshifts drawn from
a Gaussian distribution, z ∼ N (0.3, 0.15), and dis-
tance moduli drawn from a flat ΛCDM universe with
(Ωm,ΩΛ, H0, w0, wa) = (0.3, 0.7, 70,−1, 0). The non-
SNIa population includes a contribution to the distance
modulus, η(z,θ) = µ(z,θ) +a0 + a1z+ a2z2, where we
choose (a0, a1, a2) = (1.5, 1,−3). We assign PIa proba-
bilities from a linear model dN/dPIa = A0 +A1 ∗ PIa.
We then assign the types from the two samples (of Ias
and non-SNeIa ), i.e. we choose a random number t
and if t > PIa (i.e. the type also follows the same lin-
ear relationship as the probability) we take the data
point to be a Ia, and if t < PIa we assign it as a
non-SNIa, until we run out of data points from either
sample. This procedure reduces the sample size from
50 000 to 37529.
We assign a ‘measurement error’ to each distance mod-
ulus of σµ = 0.1; add an intrinsic error στ = 0.16
and a peculiar velocity error based on Eq. (10), with
vpec = 300kms−1. We then randomly scatter to the
data points based on the total errorbar. To mimic
what happens in a light-curve fitter, only the measure-
ment error is recorded, however. When performing pa-
rameter estimation on the points we either add this
measurement error in quadrature to the other terms
whose amplitudes are fixed (in the case of the χ2 ap-
proach), or we estimate the magnitudes of the intrinsic
dispersion when we apply the BEAMS algorithm. We
randomly choose 10% of the Ia data and assign spectro
status; this represents the data that are followed up by
large telescopes on the ground. This spectro sample is
drawn so that we can compare the BEAMS-estimated
result to the χ2 approach on a smaller sample. The
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Figure 2: Level I Gaussian data: 37529 points simu-
lated according to a Gaussian distributions around a dis-
tance modulus in a flat ΛCDM model for the Ia population
(25000 points) and with extra terms up to quadratic order
in redshift for the non-Ia population. The points are col-
ored according to their simulated probabilities from blue
(low probability) to dark brown (high probability).

data are shown in Figure 2. In the BEAMS analysis
we checked on a small number of simulated samples
that the results obtained were unbiased - a full Monte
Carlo simulation of bias is beyond the scope of this
work.

B. Level II: SNANA simulations

The previous Gaussian simulation is generated in order
to test the algorithm for any intrinsic biases in the anal-
ysis procedure. In order to apply BEAMS to a more
realistic scenario, we use the Supernova Analysis pack-
age SNANA [58] to simulate a mixed sample of Type Ia
supernovae and non-SNIa contaminants and to include
realistic survey characteristics. SNANA contains both
a simulation module to generate light-curve data, and a
light-curve fitter that includes the MLCS2k2 model we
used in this work (both SALT2 and MLCS2k2 are con-
tained within the SNANA package). This sample pro-
vided a useful procedure to test the BEAMS algorithm,
where the final distribution of distance moduli are not
explicitly given, but rather arise from the generation
of SN data from light-curve templates, and the fitting
of those templates with standard light-curve fitters.
The simulation specifications were chosen based on the

Figure 3: Level II SNANA simulations: 35815 SNANA
simulated data points generated from a ΛCDM concordance
cosmology and fitted with efficiency corrections as discussed
in the text, which satisfy the conditions Pfit > 0.01; ∆ >
−0.4. The data contain 30623 SNIa, and we define a smaller
subset (1467 SNe Ia) as a spectro subsample, to mimic cur-
rent data. As in Figure 2, the points are colored by proba-
bility from low (blue points) to high (dark brown points).

SDSS-II SN survey characteristics. A sample of 62441
SNe were simulated between redshifts 0.02 < z < 0.5,
assuming a ΛCDM (Ωm,ΩΛ) = (0.3, 0.7) cosmology.
The simulation was generated using the same char-
acteristics as in the Supernova Photometric Classifi-
cation Challenge (SNPCC, see [59, 60] for the simu-
lation specifcations), where the non-Ia simulation is
based on 42 spec-confirmed non-Ia light curves. The
cosmology cuts of Pfit > 0.01,∆ > −0.4 reduce the
sample from 62441 to 35815. Most of the SNe that
are cut from the sample are from the non-Ia sample;
only 17% of the final sample are non-SNIa. A large
spectro sample of 13826 SNe were flagged as spectro-
scopic in MLCS2k2, however we reduce this sample to
a smaller spectro sample of 1467 SNe (roughly ' 10%
of the full spectroscopic Type Ia sample). The simula-
tion was generated using an efficiency correction based
on the full sample of Type Ia SN, including photomet-
ric and spectroscopic candidates. Hence the smaller
spectro sample was taken from the full set of all Ias in
the sample (i.e. it is not a subset of those flagged as
spectroscopically confirmed) so as not to introduce an
efficiency bias.
The data are corrected for a small redshift-dependent
bias in the fitted distance modulus. This correction is
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Figure 4: Distance moduli of the Level II SNANA
simulation: the top panel shows the 35815 SNANA
normed histogram of the distance moduli residuals (the
difference of the distance modulus of each point relative
to the input ΛCDM cosmology) for the Ia SNe only, with
the Gaussian fit to the residuals. The skewness and kurto-
sis of this distribution are 0.46 and 0.11 respectively. The
bottom panel shows the normed histogram for the Type 2
(SN Types IIn, IIP, IIL) and Type 3 (SN Types Ib, Ic) pop-
ulations (the SNANA simulation yields populations gener-
ated according to many subtypes, as specified in [59, 60];
here we consider two broader classes for visual purposes).
The dashed line shows the Gaussian distribution fitted to
the mean and standard deviation of all the non-Ia types
combined. In this case, the simple sum of two Gaussian
distributions, one for the Ias and one for the non-Ia points
is no longer adequate in describing the simulated model.
In particular (as can also be seen from Figure 2), the sim-
ulation predicts a population of non-SNeIa brighter than
the Ia population (negative ∆µ), which is not seen in the
SDSS-II SN sample, as stringent cuts are typically made to
the data before obtaining a Hubble diagram.

determined by comparing the MLCS2k2 fitted modu-
lus to the input distance modulus in ten redshift bins,
and varies with by up to 2%. The data are shown in
Figure 3. The distance moduli residuals of the SNANA
simulation are binned in Figure 4, illustrating that the
non-SNIa population is in general not merely a sin-
gle Gaussian family. In this case the single Gaussian
assumption in BEAMS will not be entirely accurate,
however this sub-structure is not yet observed in cur-
rent data, which has not included large populations of
non-Ia supernovae, and hence we leave the multino-
mial description for future work (see Appendix B for a
discussion of pitfalls in photometric cosmology and fu-
ture outlook). In addition, as can be seen from the top
panel of Figure 4, the Ia distance moduli are approxi-
mately Gaussian. One can check whether allowing for
non-zero skewness and kurtosis through, for example,
a saddlepoint distribution improves the fit of the data
- particularly in the tail regions.

C. Level III: SDSS-II SN photometric data

The Sloan Digital Sky Survey Supernova Search oper-
ated for three, three-month long seasons during 2005
to 2007. We use the photometric supernovae from all
three seasons of the SDSS-II SN survey which also had
host galaxy redshifts from the SDSS survey. The analy-
sis and cosmological interpretation of the first season of
data (hereafter Fall 2005) are described in Kessler et al.
[10], Lampeitl et al. [11], Frieman et al. [61] and [62].
The SDSS CCD camera is located on a 2.5 m telescope
at the Apache Point Observatory in New Mexico. The
camera operated in the five Sloan optical bands ugriz
[63]. The telescope made repeated drift scans of Stripe
82, a roughly 300 square degree region centered on the
celestial equator in the Southern Galactic hemisphere,
with a cadence of roughly four to five days, accounting
for problems with weather and instrumentation.
The images were scanned and objects were flagged
as candidate supernovae [37]. Candidate light-curves
were compared to a set of supernova light-curve tem-
plates in the g, r, i bands (consisting of both core-
collapse and Type Ia supernovae) as a function of red-
shift, intrinsic luminosity and extinction. Likely SNIa
candidates were preferentially followed up with spec-
troscopic observations of both the candidates and their
host galaxies (where possible) on various larger tele-
scopes (see Sako et al. [37]).
In addition to the spectroscopically confirmed SNeIa
discovered in the SDSS-II SN, many high-quality can-
didates without spectroscopic confirmation (i.e. only
photometric observations were made of the SNe) but
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Figure 5: Level III SDSS-II SN data: the photomet-
ric sample of the full three seasons of SDSS-II SN survey.
The 792 points are all those with host galaxy spectroscopic
redshifts. The sample includes 297 spectroscopically con-
firmed SNe, and are color coded using probabilities from
the PSNID typer Sako et al. [37, 38] from low (blue) to
high (dark brown).

which, by chance, have a host galaxy spectroscopic red-
shift, are present in the SDSS sample1.
We include these SNe in both the cut sample and the
spectro samples in the full photo sample, but do not set
the probabilities of these points to unity. These super-
novae are fit with the MLCS2k2 model [51] to obtain
a distance modulus for each supernova, assuming the
supernova is a Type Ia, in the same way as the Level
II SNANA simulations.
As outlined in Section II E, we impose the standard
selection cuts on the probability of the fit to the
MLCS2k2 light-curve template Pfit > 0.01 and ∆ >
−0.4 to all data, and require that the data used have
spectroscopic host galaxy redshift information. Ap-
plying these cuts to the full three year data yields a
photometric sample of 792 SNe, with a spectroscopic
subsample of 297 SNe. The spectro sample consists
of the objects which have been spectroscopically con-
firmed by other ground-based telescopes, while the cut

1 The BOSS survey recently obtained host galaxy redshifts of all
high-quality SN candidates from all three seasons of the SDSS-
II Supernova Search. This work does not use the additional
BOSS information and only uses the host galaxy redshifts ob-
tained during the running of the SDSS-II survey.

sample consists of the data points which have a typer
probability of Ptyper > 0.9 and a goodness-of-fit to the
light-curve templates within the PSNID typer [37, 38],
χ2
lc < 1.8.

IV. APPLICATION OF BEAMS

A. Performance of BEAMS comparisons across
datasets

The BEAMS approach can be compared to standard
χ2 techniques, namely the χ2 approach applied to sub-
sets of the dataset resulting from cuts. For the Level I
Gaussian simulation we define the spectro sample as a
randomly selected sample of 10% of the points we know
to be of Type Ia. This is to match expected future effi-
ciencies of spectroscopic confirmation; one will always
be comparing the performance of BEAMS, which takes
account of contamination within the algorithm, on a
larger photometric sample against a χ2 approach that
does not directly control for contamination, on smaller,
but more pure sample. We compare the constraints us-
ing the three level datasets and various approaches in
Figure 6.
In each case, the BEAMS algorithm applied to the data
gives the tightest constraints that are also consistent
with the input cosmology (in the case of simulations)
and the spectroscopic sample (in the case of the data).
In the case of the Level I Gaussian simulation (since
there is no light-curve fitting procedure in this simu-
lation) the cut sample is taken to be all points with
probability PIa > 0.9, while for the Level II SNANA
simulation this is taken as all points that satisfy the
basic cuts (such as the cut on the ∆ parameter), and
which also satisfy PIa > 0.9 and the goodness-of-fit
χ2
lc < 1.8. Note that the cut on the goodness-of-fit

is not particularly conservative. In general, the more
conservative the cut, the less biased the contours be-
come. However, this is at the cost of the size of the
contours, which increase, thereby losing the statistical
power of the large sample. The curve corresponding to
the spectroscopic subset we define as ‘unbiased’ since
they by definition are the contours that would result
in a contemporary analysis.
A small (' 1σ) bias is visible in the recovered cosmol-
ogy in the case of the Level II SNANA simulations.
This is potentially due to a combination of factors.
Firstly, a single Gaussian is used to model the dis-
tance modulus of the non-SNIa population, which we
can see from Figure 4 is not an accurate description of
the core-collapse population within the SNANA simu-
lation. This same substructure is not seen in the data,
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Figure 6: Comparing analysis techniques on various datasets: The left panel shows the 2σ contours in the Ωm,ΩΛ

plane for Levels I-III (top to bottom), while the right panel shows the ∆µ(z) for the sample, where the data are colored
by probability from low (blue) to high (dark brown). In addition, the points which are ‘spectroscopic’ are colored in black.
The levels are characterised in Table I. In each case the BEAMS constraints are consistent with the concordance cosmology
shown as the filled orange square (which is what was input for the simulated data, and which one might hope to recover
in the real-world data). The best-fit BEAMS point is given by the black square, while the best-fit cosmology from the
spectroscopic data is indicated by the brown cross. While the cut approach based on probability of fit (and the parameter
∆ in the case of the Level II simulations and Level III data) of light curve templates recovers the sample cosmology as the
spectro sample for stringent enough cuts, these cuts reduce the sample size significantly. The top left hand panel shows
how even a relatively stringent cut on probability of Pcut = 0.9 biases the inferred cosmology; stronger cuts will recover
the true cosmology at the cost of sample size.
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Dataset Level I Level II Level III

Gaussian SNANA SDSS-II SN

sim sim data

Redshift range (0.02, 0.9) (0.02, 0.45) (0.02, 0.45)

Total photo sample Size 37529 35815 792

No of spectro points 2500 1467 297

No of cut points 7130 10967 191

No of Ia points 25000 30623 unknown

TABLE I: Summary of datasets - the redshift distribu-
tion and sample sizes of the datasets compared in Figure 6.
The Level I Gaussian simulation and constraints are shown
in the top row of Figure 6, the Level II SNANA simulation
is shown in the middle panel, and the Level III SDSS-II SN
data are shown in the bottom row of Figure 6, in which case
the true numbers of Ia SNe in the sample are unknown.

and hence we motivate that a single population is suf-
ficient to model the contaminant population.
This assumption will be relaxed when applying
BEAMS to the larger SN sample within the BOSS
data, which is left to future work. In addition, an effi-
ciency correction for Malmquist bias was made within
the MLCS2k2 fitting procedure, based on the sample
of Ia data. We do not expect the Malmquist bias of
the Ia supernova sample to be the same as that of the
non-Ia data; this issue will be addressed in detail in
future work, and is essential for future large photomet-
ric surveys. An additional source of bias could be due
to incorrectly assuming a Gaussian likelihood for for
the Ia (and non-Ia) populations, as this would bias all
cosmological analyses. We leave investigation of non-
Gaussian likelihoods to future work.
As is shown in Figure 6, BEAMS recovers the input
cosmology of the simulations and estimates parame-
ters consistent with the spectro sample in the case of
the Level III SDSS-II SN data. Moreover, the BEAMS
contours are three times smaller than when using the
spectro sample alone. In the Level II SNANA simu-
lation the contours are ' 40% the size of the spectro
sample, while in the case of ideal Level I Gaussian sim-
ulations, the BEAMS contours using all the points are
' 16% of the size of the spectro sample. This high-
lights the potential of photometric supernova cosmol-
ogy to drastically reduce the size of error contours with
larger samples while remaining unbiased relative to the
‘known’ spectroscopic case.

B. Scaling of errorbars

As discussed in Kunz et al. [47] for the one-dimensional
case, the effective number of SNe that result when ap-
plying BEAMS scales as the number of spectroscopic
SNe and the average probability of the dataset mul-
tiplied by the remainder of the photometric sample,
σ → σ/

√
Nspec + 〈PIa〉Nphoto. In the two-dimensional

case, the square root would be removed as the area of
the ellipse scales with the increase in the effective num-
ber of supernovae. In our applications we have, how-
ever, not used the fact that we know that some points
are confirmed as Type Ia. In other words, the proba-
bility of each data point was taken from the light-curve
fitter and was not adjusted to one or zero depending
on the known type. Hence we expect the size of the
contours in the i− j plane to scale as

C
1/2
ij →

C
1/2
ij

〈PIa〉Nphoto
(16)

We compute the size of the error ellipse for various
Level I simulations as a function of the size of the sim-
ulation, shown in Figure 7, for one particular model
of the probabilities, and hence one value of 〈P 〉. We
impose a prior on the densities, and hence the ellipses
are not closed for smaller samples. For large enough
sample sizes the ellipse is closed and we observe that
the error ellipses scale in area as ∝ 1/〈PIa〉N, which is
consistent with earlier results [47]. In general then, one
would obtain a different constant factor 〈P 〉 in Figure 7
for different simulated probability distributions. Large
supernova surveys will not only increase the total num-
ber of Type Ia SNe candidates, but will allow one to
investigate systematics about the SNe populations di-
rectly. The BEAMS algorithm is designed to include
and adapt to information about the non-SNIa popula-
tion easily. By adapting the form of the non-SNIa pop-
ulation, and including more than one population group,
one could use BEAMS to gain insight into the contam-
inant distribution.

C. Constraining Υ(z) forms for the
non-SNIa population

1. Level I Gaussian simulation

The Gaussian simulation described in Section II C uses
a quadratic model for the differences between the stan-
dard ΛCDM µ(z) and the non-SNIa distance modulus.
We test here that assuming a different functional form
while performing parameter estimation does not sig-
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Figure 7: Errors scale with number of SNe: the size
of the error ellipse, approximated by the square root of the
determinant of the two-dimensional chain of Ωm,ΩΛ shows
the reduction in size with increasing the number of SNe in
the simulation.

nificantly bias the inferred cosmology. We define the
effective χ2 as −2 lnL, where the posterior L is a linear
sum of the terms in Equation (5), and provide values
relative to the simplest linear model for Υ(z). In Fig-
ure 8 we show that BEAMS is reasonably insensitive to
the assumed form of the non-SNIa likelihood, provided
it is allowed enough freedom to capture the underlying
model. A linear model fails to recover the correct cos-
mology, as it does not have enough freedom to recover
the difference between the Ia and non-SNIa distribu-
tion. It correspondingly has a very high χ2 relative to
the other approaches. The higher-order functions re-
cover consistent cosmologies, and the χ2 of these mod-
els improves by ∆χ2 < 0.5, even though the models
have increased the number of parameters by one.

2. Level II: SNANA simulations

In the case of the Level I Gaussian simulated data, the
explicit form of the Υ(z) was specified as quadratic and
then various other forms for Υ(z) were fit for within the
BEAMS approach. In general, any model with enough
freedom (of equal or higher order to the input model)
managed to recover the input cosmology. We apply this
test to the Level II SNANA simulations, where the data
are generated from fitting generated light-curve data
to templates. Näıvely one might not expect a simple
model to fit the data. In general we find that while a
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Figure 8: Different Υ(z) distributions for the non-Ia
likelihoods: 2σ constraints in the Ωm,ΩΛ plane for differ-
ent versions of the non-Ia distance modulus function, for
the Level I Gaussian simulation (top panel), the Level II
SNANA simulation (middle panel) and the Level III SDSS-
II SN data (bottom panel). In the case of the Level I sim-
ulation, we simulated a quadratic model, and ran BEAMS
assuming a linear, quadratic, cubic and Padé form for Υ(z),
as described in Section II C. For the other two cases the
underlying distribution for the non-SNIa distance modu-
lus is not known analytically; we test for the same models
as for the Level I simulation; the legend is the same for
all panels. In the Level I Gaussian simulation the linear
model does not have enough freedom to capture the non-
SNIa distribution (as expected, since the input model was a
quadratic function). This behavior is also seen in the Level
II SNANA simulations. The Level III SDSS data does not
have a particular preference of the form used, as the num-
ber of SNe in the sample is not large enough to constrain
the non-SNIa population. The goodness-of-fit of the distri-
butions to the data are summarized in Tables II, III and
IV for the Level I, II and III cases respectively.
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Model ∆χ2
eff
a Parameters

Υ(z) = az + c 0 2

Υ(z) = az + bz2 + c -192.9 3

Υ(z) = az + bz2 + cz3 + d -193.3 4

Υ(z) = (az + bz2 + c)/(1 + dz) -193.4 4

aDifference in the effective χ2 between a given model and the
linear case, which has χ2

eff = 42526.2.

TABLE II: Comparison of non-SNIa likelihood mod-
els for Level I Gaussian simulation: χ2 values for the
fits using various forms of the non-SNIa likelihood for the
Level I simulations, where the true underlying model is a
quadratic. The constraints on Ωm,ΩΛ are shown in Fig-
ure 8.

cubic model performed the best at fitting the data (it
had the lowest χ2

eff relative to the linear model), the
inferred cosmology in the quadratic case is consistent
with the input cosmology. Fitting the Level II SNANA
simulated data with a linear model led to large a bias
in the inferred cosmology, as shown in Figure 8.

Model ∆χ2
eff
a Parameters

Υ(z) = az + c 0 2

Υ(z)b = az + bz2 + c -135.1 3

Υ(z) = az + bz2 + cz3 + d -287.2 4

Υ(z) = (az + bz2 + c)/(1 + dz) -206.1 4
aDifference in the effective χ2 between a given model and the
linear case, which had χ2

eff = 10092.6 .
bIn the quadratic case, the best-fit values for the
non-SNIa distribution parameters were
(a0, a1, a2, στ , sτ ) = (1.99,−13.99, 20.32, 0.06, 0.93)

TABLE III: Comparison of non-SNIa likelihood mod-
els for Level II SNANA simulation: χ2 values for the
fits using various forms of the non-SNIa likelihood for the
Level II simulations, where the true underlying model is
unknown. The constraints on Ωm,ΩΛ are consistent for all
models of second order or higher.

3. Level III: SDSS-II data

In the case of the Level III SDSS-II SN data, we shall
let the data inform us of the best choice of model for
the non-SNIa distribution. In an observed sample of
non-SNIa data, the theoretical distance modulus de-

Model ∆χ2
eff
a Parameters

Υ(z) = a1z + a0 0 2

Parameters (a1, a0) (−5.3, 1.7)

Υ(z) = a1z + a2z2 + a0 -1.3 3

Parameters (a1, a2, a0) (−9.69, 10.73, 2.1)

Υ(z) = a1z + a2z2 + a3z3 + a0 -2.9 4

Parameters(a1, a2, a3, a0) (0.59,−4.97, 9.98, 1.64)

Υ(z) = (a1z + a2z2 + a0)/(1 + dz) -0.2 4

Parameters (a1, a2, a0, d) (−33.3, 83.4, 1.43,−19)

aDifference in the effective χ2 between a given model and the
linear case, which has χ2

eff = 1215.3.

TABLE IV: Comparison of non-SNIa likelihood mod-
els for Level III SDSS-II SN data: χ2 values for the
fits using various forms of the non-SNIa likelihood for the
SDSS-III data. While the χ2 decreases as the number of pa-
rameters increases, it does not decrease significantly given
the amount of freedom in the higher order models. The con-
straints on Ωm,ΩΛ from these fits are shown in Figure 8.
The parameter values are the mean of the one-dimensional
likelihood for the model parameters. This form also ap-
pears to be consistent with the SNANA simulated data (see
Figure 3).

pends on their apparent magnitudes, which in turn de-
pend on redshift and survey limiting magnitude, and
the absolute magnitudes of the non-SNIa population,
which are drawn from an unknown luminosity func-
tion. In the large supernova limit we will learn about
the distribution of those SNe that are not from the Ia
distribution, however we treat them here as nuisance
parameters that we marginalize over, rather than using
a ‘hard-coded’ empirical relation. Table IV shows the
various forms of the non-SNIa distribution considered,
and the χ2 of the fit.
The data seem consistent with a quadratic model, and
the constraints do not change significantly for any as-
sumed form, as shown in Figure 8. It is clear from the
limited amount of data in the current SDSS-II SN sam-
ple that a complicated form is unjustified at present,
however this will be tested as the amount of super-
nova candidates increases with the SDSS-II SN with
host redshifts from BOSS (and future large photomet-
ric surveys such as LSST and DES).
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D. BEAMS posterior probabilities

BEAMS uses probability information from photomet-
ric Ia candidates in the likelihood to determine cosmo-
logical parameters. In this section, however, we illus-
trate in addition that BEAMS can test whether a given
set of probabilities are biased, and can allow for uncer-
tainty in the probabilities themselves while computing
cosmological constraints.

1. Methodology

The probability Pi is a prior probability from the ear-
lier fitting and mapping process on whether or not
the specific data belongs to the Type Ia population
of supernovae. Using accurate probabilities within the
BEAMS framework leads to the greatest reduction in
the size of the parameter contours, while controlling for
bias, as is shown in Figure 6. But one might ask, can
BEAMS itself recover probability information from the
data? The answer, as we will discuss below, is yes. In-
deed, BEAMS posterior probabilities can be used as a
check for bias in the input probabilities of the data. As
described in Kunz et al. [47], however, one can promote
Pi to a free variable, and its posterior distribution then
contains information on how well it fits the Ia or then
non-Ia class of supernovae. If we leave just Pi for one
i free, and fix all other parameters, then the posterior
becomes

P (θ|µ) ∝




N∏

j 6=i

P (θ|µj)


 {P (µi|θ, τi = 1)Pi

+P (µi|θ, τi = 0)(1− Pi)}
(17)

where P (θ|µj) is the posterior at the fixed parame-
ter vector θ containing both the cosmological parame-
ters and the additional parameters describing the non-
SNIa population (Eqs. (14) and (15)) for all super-
novae except i. The above expression is just a straight

line going from
∏N
j 6=i P (θ|µj)P (µi|θ, τi = 0) at the in-

tercept Pi = 0 to the value
∏N
j 6=i P (θ|µj)P (µi|θ, τi =

1) at Pi = 1. In general, we do not fix the parameters
but sample from the full posterior, and then marginal-
ize over everything except Pi. This results again in the
posterior for Pi being a straight line.
To extract the model probabilities corresponding to su-
pernova i being of Type Ia or not, as opposed to the
posterior distribution of the parameter Pi, we take re-
course to the Savage-Dickey density ratio [64, 65]: In

nested models the relative model probability (in favor
of the more simple model) is the ratio of the posterior
divided by the prior at the nested point. The two mod-
elsM1=“Ia” andM2=“not Ia” are not nested, but we
can use a trick by extending our model space with a
third model M3=“Pi free”. Then the two models are
nested in that third model at the points Pi = 1 and
Pi = 0 respectively. Therefore the relative probabilities

B
(i)
31 = P (M3)/P (M1) and B

(i)
32 = P (M3)/P (M2) for

supernova i can be extracted from a MCMC chain with
free probability Pi, by looking at the end-points of the
normalized posterior for Pi, marginalized over all other
parameters. Given the discussion above on the shape
of the posterior of Pi, what we do in practice is to
fit a straight line to the distribution of Pi values of a
MCMC chain in which we left Pi free. The values at
the end points give directly B31 and B32. The relative
probability between modelsM1 andM2 is now simply

B
(i)
12 = B

(i)
32 /B

(i)
31 .

To which value should we set the probabilities that we
keep fixed? A natural possibility would be to use the
output of a prior typing stage, but this choice involves
the risk that the prior probabilities could be biased.
Instead we could use P = 1/2 to convey the minimal
amount of extra information. In this case we should
also use the A parameter to allow for an automatic
correction of different total numbers of supernovae of
different types. This choice has another advantage: as
shown in Section IVA of [47] we get effectively P = 1/2
if we marginalize over a fully free P , so this is also the
choice where we let all Pj ’s float freely and marginalize
over all but Pi. For this reason we will use P = 1/2
together with a free global A in the remainder of this
section.

2. Toy-model illustration of posterior probabilities

Let us illustrate the meaning of the posterior proba-
bilities that we expect to find if BEAMS works with
a simple toy model: we assume that we are dealing
with two populations (let us call them ‘red’ and ‘blue’)
drawn from two normal distributions with means at
±θ and equal variances of σ2 = 1, see the top panel of
Figure 9.
We use this toy model specifically to highlight the most
important elements in estimating the posterior proba-
bilities, in the case where the populations are similar
(e.g. they have equal variances) and to highlight the
necessity of the normalization/rate parameter A. We
will also see that unbiased probabilities imply that a
small peak at low probability for the Ia or high proba-
bility for the non-Ia is actually ‘right’ and is what we
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should expect.
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Figure 9: Posterior probabilities: the top panel provides
an illustration of the two toy distributions, in the case of
θ = 0.5, 1.0, 2.0 (left to right). The bottom panel shows
the probability histogram density plots, or number of red
points with a given probability, where dN (r)(P ) is given in
Eq. (22) for θ = 0.5 (blue), 1 (red) and 2 (yellow).

The equality of the variances of the two populations
means that we are measuring the distance ∆ = 2θ be-
tween the two mean values in units of the standard de-
viation. We also allow for different numbers of points
drawn from the red and blue Gaussians through a ‘rate
parameter’ ρ ∈ [0, 1] that gives the probability to draw
a red point. If we draw N points in total, we will
then have on average ρN red points and (1− ρ)N blue
points. The likelihood for a set of points {xj}, with j

running from 1 to N , is then

P ({xj}|θ) =

N∏

j=1

1√
2π

(
Pe−

1
2 (θ−xj)2 + (1− P )e−

1
2 (θ+xj)2

)
.

(18)
for P = ρ.
To simplify the analysis we assume that we are deal-
ing with large samples so that θ is determined to high
precision, with an error much smaller than σ. In this
case (and since this is a toy model) we can take the
parameter θ fixed. We also note that if we are running
this in BEAMS with a true prior probability P = ρ
then we would find a normalization parameter A = 1,
while for P = 1/2 we would obtain A = ρ/(1− ρ), and
we again assume that this parameter can be fixed to its
true value. Then it is easy to see that if we leave the
probability for point i, Pi, free, we find a Bayes factor

B =
P ({xj}|θ, Pi = 1)

P ({xj}|θ, Pi = 0)
=
e−

1
2 (θ−xi)

2

e−
1
2 (θ+xi)2

= e2θxi . (19)

In other words, ln(B) = xi∆, just the value of the data
point times the separation of the means. If the point
is exactly in between the two distributions xi = 0 then
B = 1, i.e. its BEAMS posterior probability to be red
or blue is equal. Notice that the answer is independent
of the value of ρ and this happens because we have
removed any influence of the rate parameter A on the
free Pi. This means that if we want to think of the
BEAMS posterior probability as the probability to be
red or blue, we should update the Bayes factor with
A, i.e. use B̃ = BA, with an associated probability
P = B̃/(1 + B̃). We also see that the probability to be
red increases exponentially as xi increases. As we will
see below, this reflects the fact that the number of red
points relative to the blue points increases in the same
way. The rapidity of this increase is governed by the
separation, ∆, of the two distributions.
What is the distribution of the posterior probabilities,
i.e. the histogram of probability values, and what de-
termines how well BEAMS does as a typer in this
example? The number of red points in an interval
[x, x + dx] is just given by the ‘red’ probability dis-
tribution function at this value, times dx. To plot this
function in terms of P we also need

x(P ) =
ln(B)

∆
=

ln(P/(1− P ))

∆
(20)

dP

dx
= ∆P (1− P ). (21)

The probability histograms for the red (r) and blue (b)



17

points, normalized to ρ and 1−ρ respectively, then are:

dN (r)(P ) =
ρ√

2π∆

dP

P (1− P )
(22)

× exp

{
−1

2

(
ln[P/(1− P )]

∆
− θ
)2
}

dN (b)(P ) =
1− ρ√

2π∆

dP

P (1− P )
(23)

× exp

{
−1

2

(
ln[P/(1− P )]

∆
+ θ

)2
}

We plot dN (r)/dP/ρ for θ = 0.5, 1 and 2 in the lower
panel of Figure 9. We see how the values become more
concentrated around P = 1 for larger separation of the
distributions, i.e. BEAMS becomes a “better” typer.
But for very large separations there are also suddenly
more supernovae at low P (yellow curve). The reason is
that BEAMS does not try to be the best possible typer,
instead it respects the condition that the probabilities
have to be unbiased, in the sense that

dN (r)

dN (b)
=

(
P

1− P

)(
ρ

1− ρ

)
= BA = B̃. (24)

Since BEAMS only uses the information coming from
the distribution of the values, its power, as reflected in
the distribution of probability values dN(P ), is given
by how strongly the distributions are separated. If they
are identical (θ = 0) then BEAMS can only return
P = 1/2 while for larger θ there is a stronger pref-
erence for one type over another. But given the two
populations, we can in principle derive the probability
histogram by just looking at the ratio of data points of
either type at each point in data space, there is nothing
else BEAMS can do. Also, in order for the probabil-
ities to be unbiased (up to the rates which are taken
into account by A) if there are, say, 200 red points in
the P = 0.9 bin and only 10 in the P = 0.8 bin, then
we need to find about two blue points in the P = 0.8
bin, but 20 in the P = 0.9 bin. Although this looks
like a significant misclassification problem, it is just a
reflection of Eq. (24) and is actually the desired behav-
ior.

3. Application to Level II

In order to check whether BEAMS is able to pro-
duce posterior probabilities with the expected prop-
erties, we ran it on the Level II SNANA simulation
for constant P = 1/2 prior probabilities, allowing for a
free A. We plot the two probability histograms in the

upper panel of Figure 10, for probabilities that were
updated with the posterior value of the rate parame-
ter, A = 0.33. The cuts on the ∆ parameter and re-
moving all points with probability Pfit < 0.01 reduce
the number of non-SNeIa in the sample at low prob-
ability, while there is quite a spread in the probabili-
ties of the Type Ia supernovae. The right-hand panel
shows the BEAMS posterior probabilities - the nor-
malization parameter A allows BEAMS to adjust the
high probability non-SNIa to low probability, and to
sharpen the Type Ia probabilties around high proba-
bility. The bottom panel of the figure shows the ra-
tio of the two histograms in the upper panel to test
whether we recover Eq. (24). Given that B is the ratio
of the number of Ia to non-SNIa points, we have that
P = ln(B) = ln(NIa) − ln(NnonIa). Hence, the error
bars on ln(B) are taken to be

σ(P )2 =
1

(PN
(P )
tot )

+
1

((1− P )N
(P )
tot )

(25)

where N
(P )
tot are the total actual number of supernovae

in the probability bin.

4. Approximate methods

The procedure to extract the posterior probabilities as
outlined above is rather slow, as we need to run a full
MCMC analysis for each supernova. This is only so
because we evaluate the posterior for Pi given all other
probabilities fixed to their mapped values. Leaving all
the probabilities free would lead to a very high dimen-
sional and complex posterior that would be very hard
to sample from. However, since we are working at any
rate in the limit of at most weak correlations between
supernovae, we can leave free a subset n of the Pi si-
multaneously. It is better if n is much smaller than the
total number of supernovae, and not too large in any
case, for example n = 10. In addition, the more uncor-
related the Pi, the easier it is to sample from the total
posterior. But in this way we speed the process up by
a factor of n, making it more tractable for large sets.
Additionally, since the runs are independent, they can
be performed on a large computer in parallel, so that
even large supernova samples can be analyzed with the
computational resources available to the typical astro-
physics department (for example, we ran the Level II
SNANA analysis above without this trick in just a day
on the local cluster).
A quicker method of determining the posterior prob-
abilities is obtained by taking the ratio of the proba-
bility that a data point, i is from the Ia type relative
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Figure 10: Posterior probabilities within BEAMS for the Level II SNANA simulation: the top left panel
shows the histogram of the MLCS2k2 fitter probabilities for the 35815 SNe in the SNANA simulation, while the top
right-hand panel shows the histogram for the same data, where the probabilities are taken as the BEAMS-posterior
estimated probabilities obtained using the A parameter. In both cases the probabilities are separated according to the true
(input) type of the points, either Ia or non-Ia. There are few non-SNIa points in the quality controlled Level II SNANA
simulation, but a reasonably small number of low-probability non-SNIa , compared to the BEAMS posterior probabilities
on the same data. This is illustrated in the bottom panel, where we plot the ratio of SNIa to non-SNIa in probability bins
for the MLCS2k2 probabilities (black crosses) and BEAMS posterior probabilities (grey dots) compared to the theoretical
expectation ln(B) = ln(P/(1 − P )) (orange curve and error bars). For example, the dot for the 90% bin will lie on the
theoretical curve if indeed 90% of the supernovae with PIa ≈ 0.9 are of actually Type Ia, and the equivalent for the other
bins. The fact that the histogram of BEAMS posterior probabilities (top right panel) shows more non-SNeIa are assigned
low probability explains why there is less bias at low probability in the bottom panel.

to the probability that is is a non-SNIa. If instead
of marginalizing over all other parameters, we evalu-
ate the posterior at the maximum likelihood point for
the cosmological parameters, where θ = θ∗, the ratio
is simply given by

P (µi|θ∗, τi = 1)

P (µi|θ∗, τi = 0)
. (26)

We compare the approach to the computationally in-
tensive one discussed above in Figure 11 as a function
of true SN type for the Level II SNANA simulation.
In general the probabilities are consistent, especially
in the case of the Ia SNe, with no SNIa being given a
high probability in the full approach and being given
a low probability using the ratio of maximum likeli-
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Figure 11: Approximate and direct methods for ob-
taining the posterior probabilities. There is a tight
agreement between the probabilities obtained through full
MCMC runs and the approximate approach taking the ra-
tio of the Ia to the non-SNIa likelihoods at the maximum
likelihood point (for the cosmological parameters).

hoods. The mean and standard deviation of the dis-
tribution of residuals between the two approaches are
δPIa = 0.005±0.015. As such, the approximate method
provides a robust check of the full approach, as differ-
ences in the probabilities are mostly related to conver-
gence properties of the full estimation. As might be
expected, non-SNeIa that are given a high probability
using the full method are also given a high PIa using
the approximate method.

V. TESTS AND CHECKS FOR BIAS

A. Dependence on error accuracy

The full error on the distance modulus is given in
Eq. (11) - where the error combines measurement er-
ror (from light-curve fitting), intrinsic dispersion (from
the absolute magnitude distribution of the SNe) and
peculiar velocity error. In general the peculiar veloc-
ity error is degenerate with the non-SNIa distribution
characteristics in that the velocity error tends to in-
crease the errors at low redshift. However, the in-
trinsic dispersion of the non-SNIa effectively controls
the spread in the distribution, which we know to in-
crease at low redshift. Hence, fitting for the veloc-
ity and intrinsic dispersion together can lead to one
being unconstrained. We test for the dependence of
the cosmological results on this effect in the Level I

Gaussian simulation only, where the input simulated
data model is completely understood. In the cosmo-
logical analysis we set the peculiar velocity term to be
set by vpec = 300kms−1 [11], however doubling vpec
to 600kms−1 does not change the inferred cosmology.
When we allow vpec to be free, we find it unconstrained
by the data, with the minimum value saturating the
lower bound of the prior of log(vpec/c) = −20, and the

maximum given by vpec < 1922kms−1.

B. Dependence on Ia/non-Ia rates

An additional complication to the probabilities is the
dependence of the probabilities with redshift. This red-
shift dependence occurs as a result of the fact that the
signal-to-noise ratio changes as a function of redshift,
and the effective rest-frame filters used to type SNe.
The relative numbers of SNe at a given redshift depend
on the various SN rates (or number of explosions per
year per unit volume). In general, non-SNIa rates are
less certain than Type Ia rates, since SNe are mainly
followed up in a cosmological survey if they already
appear to be good Ia candidates. As a test of this
dependence, we modify the probabilities in two ways:
firstly, we scale the true probabilities as a function of
redshift as

PIa,z = min

(
PIa

1 + z

1 + zmax
, 1

)
, (27)

which increases the probability of being Ia of data at
higher redshift. In this case the fact that there is no
redshift dependence in A itself introduces a slight bias
in the inferred cosmology, as is shown in Figure 12,
with the input cosmology only recovered at 2σ (the
filled 1- and 2σ contours from the linear unbiased case
are shown for comparison). An alternative way of prob-
ing this dependence is by artificially changing the rela-
tive numbers of Ia to non-SNIa SNe in a given simula-
tion. We do this by simply removing a subset of the Ia
data (where the data are binned in ten redshift bins)
after assigning probabilities to ensure that we are ef-
fectively biasing the probabilities - or rather, that the
probability of being a Type Ia at a given redshift will
not reflect how many Ia actually exist at that redshift.
This case is also shown in Figure 12 for the Level I
Gaussian simulation and the Level II SNANA simula-
tion, where the contours are slightly larger than the
standard case (given that data are removed), but are
consistent with the input cosmology at 1σ.
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Figure 12: The dependence of the probabilities on
SN rate: the 2σ contours in the Ωm,ΩΛ plane when con-
sidering two different methods of introducing a redshift de-
pendence on the probabilities for the Level I Gaussian sim-
ulation (top panel) and the Level II SNANA simulation
(bottom panel). The brown contours show the case where
the PIa probabilities were explicitly changed to depend on
redshift through Eq. (27). The black curves illustrate the
case where the overall probabilities are left unchanged, but
the number of Ia SNe relative to the non-SNeIa is changed
as a function of redshift.

C. Dependence on Probability

The BEAMS algorithm naturally uses some indica-
tion of the probability of a data point to belong to
the Ia population, whether it is some measure of the

goodness-of-fit of the data to a Type Ia light-curve
template, or something more robust such as the rel-
ative probability that the point is a Ia compared to
the probability of being of a different type. By includ-
ing a normalization factor, we can correct for general
biases in the probabilities of the Ia points. One might
still question, however, how sensitive BEAMS is to the
input probability of the objects. For the Level I Gaus-
sian simulation, where we assign the probabilities, PIa,
directly we can change the relationship between the
true underlying distribution of the types (i.e. the ratio
of Ias to non-Ias in the sample) and the input prob-
ability value (the number we input into the BEAMS
algorithm as the PIa). If the probabilities are unbiased
then the distribution of types should follow the prob-
ability distribution of the data, in other words 60%
of the points with PIa = 0.6 should be Type Ia SNe.
This is the standard case. We then modify the prob-
abilities by assigning a probability of PIa = 0.3 to all
points (which we know will be biased since the mean
probability of the sample is 0.667).
We compare the constraints in the two cases in Fig-
ure 13. If we ignore all probability information and
set it to a (biased) value of PIa = 0.3, the probability
information is essentially controlled by the normaliza-
tion parameter. A tends to a value of 4.7, which, when
inserted into Equation (4) yields a ‘normalized’ prob-
ability of PIa = 0.668. Hence BEAMS uses the nor-
malization parameter to remap the mean of the given
probabilities to ones that have a mean that fits the
true unbiased probabilities. In correcting for this ef-
fect, BEAMS manages to recover cosmological param-
eters consistent with the unbiased case.
For the Level II SNANA simulation, the true underly-
ing probability distribution is more complicated, and
so we test for dependence on probability in a different
way. The SNANA simulation mimics real-life obser-
vations in that it treats the simulated light-curves as
‘real’ data and fits them in the same way one would
fit and analyze current data. The main bias from this
dataset will be any bias introduced in the probabili-
ties of the data to be of Type Ia, since we have no
guarantee a priori that the probabilities will be unbi-
ased. We thus fit for the cosmology assuming different
proxies for the probability, either taking the probabil-
ity from the light-curve fitter alone, Pfit or setting the
probabilities to an arbitrary value of P = 1/2. In the
Level III SDSS-II SN data, we add in a case where
an additional, typer probability Ptyper [37, 38] is used,
which computes the relative goodness-of-fit of differ-
ent Ia and non-SNIa templates to the data. In the
case of the Level III SDSS-II SN data, the average
probability obtained using the PSNID fitting proce-
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Figure 13: BEAMS corrects for biased input prob-
ability: the marginalized one-dimensional likelihood for
the normalization parameter A (top panel) and estimated
contours (bottom panel) for Level I Gaussian simulation
under two forms of the probability distribution. The pink
curve and contours correspond to the nominal case, where
the probabilities are generated in a linear model, and the
types are assigned according to the probabilities. The pur-
ple dashed contours correspond to assigning a probability
of PIa = 0.3 to all points. The dashed vertical lines show
the expected value of the parameter A such that the true
input mean probability of PIa = 0.667 is recovered. Note
that the x-axis in the top panel has been shortened to allow
for comparison of the two distributions.
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Figure 14: Using different probabilities for the Level
II SNANA simulations and the Level III SDSS-II
SN data: Top: the blue filled 1, 2σ contours show the
constraints when setting the probabilities of all points to
P = 0.5, while the orange dashed curves show the 2σ
contours when using the goodness-of-fit probabilities from
the MLCS2k2 fitter for the Level II SNANA simulation.
Bottom: the solid 1, 2σ blue contours are from ignoring
probability information, and setting all the probabilities
of the points to PIa = 0.5 for the Level III SDSS-II SN
data. The light curves (2σ constraints) result when us-
ing the MLCS2k2 goodness-of-fit probability, which is un-
normalized relative to the other types, and is typically low
for the sample. The dark purple contours are from using
the probabilities for each point from the PSNID prescrip-
tion Sako et al. [37, 38], also at 2σ. In both cases, the effect
is a shift of < 1σ in the inferred cosmological contours.
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dure is 〈Ptyper〉 = 0.79. In this case the normalization
parameter A peaked around 0.3, resulting in a nor-

malized average probability of 〈P (A)
Ia,i 〉 = 0.525. In the

case where the MLCS2k2 goodness-of-fit probabilities
are used, the average probability of being a Ia is lower,
〈Pfit〉 = 0.41. In this case the A parameter is dis-

tributed around A = 25, leading to 〈P (A)
Ia,i 〉 = 0.95 -

BEAMS tries to increase the average probability of all
points to be close to unity. Finally when setting the
probability to 0.5, A is centered around 2.5, leading to

〈P (A)
Ia,i 〉 = 0.71. Typing SNe effectively is an active area

of research [30–35, 37, 38, 40, 66], indeed, a recent com-
munity wide challenge provided a way of testing the
ability of various approaches to type SN efficiently (see
Kessler et al. [59] and references therein). With more
data and improved algorithms, the probabilities used in
photometric SN analysis will greatly improve. As Fig-
ure 14 illustrates, however, BEAMS can use the min-
imal amount of probability information, and recover
consistent results.

VI. CONCLUSIONS AND OUTLOOK

Bayesian Estimation Applied to Multiple Species
(BEAMS) is a statistically robust method of param-
eter estimation in the presence of contamination. The
key power of BEAMS is in the fact that it makes use
of all available data, hence reducing the statistical er-
ror of the measurement, whether or not the purity of
the sample can be guaranteed. Rather than discard-
ing data, the probability that the data are “pure” is
used as a weight in the full Bayesian posterior, reduc-
ing potential bias from the interloper distribution. We
summarize the paper as follows:

• We tested the BEAMS algorithm on an ideal
Gaussian simulation of 37529 SNe, consisting of
one population of non-SNeIa and one SNIa pop-
ulation. We showed that the area of the con-
tours in the Ωm,ΩΛ plane when using BEAMS is
six times smaller than when using only a small
spectroscopic subsample of the data. In addition,
we showed that the size of the error ellipse using
BEAMS decreases as Eq. (16).

• We tested the BEAMS algorithm on a more re-
alistic simulated sample of 35815 SNe obtained
from light-curve fitting [58], which includes many
more than two populations of non-SNIa , and dis-
cussed the validity of the single non-SNIa pop-
ulation assumed in this version of the BEAMS
algorithm. A simple two parameter model fails
to completely describe the distribution - how-

ever the constraints using BEAMS are not sig-
nificantly biased.

• We applied BEAMS to the SDSS-II SN dataset
of 792 SNe, using photometric data points with
host galaxy spectroscopic redshifts, and showed
that the BEAMS contours are three times smaller
than when using only the spectroscopically con-
firmed sample of 297 SNe Ia.

• In both the ‘realistic’ and Gaussian simulations,
we assume a variety of models for the distance
modulus distribution of the non-SNIa popula-
tion, and test for a dependence of the inferred
cosmology on the assumed form of the distance
modulus function. BEAMS requires a model
with enough freedom to capture the behavior
as a function of redshift: functions of quadratic
and higher order are required to fit the Level II
SNANA simulations, while no strong preference
is seen for any particular model using the SDSS-
II SN sample.

• We investigated possible biases introduced
through incorrect probability or rate information,
or error accuracy, showing that BEAMS can cor-
rect for the biases when suitable nuisance param-
eters were marginalised over.

• We discussed the ability of BEAMS to determine
the posterior probability of a point based on its fit
to the best-fit model. Posterior probabilities es-
timated through BEAMS more accurately model
the relative probabilities of the SN types.

As mentioned above, we have restricted ourselves
to the binomial case of a SNIa population and one
general core-collapse, or non-SNIa, population. While
this assumption is valid for the SDSS-II SN data,
we see that a more complicated model with at least
two separate non-SNIa Gaussians is more appropriate
for the Level II SNANA simulations (see Figure 4).
This remains to be confirmed with large photometric
datasets such as BOSS. The BEAMS method can
easily be extended to the multinomial case, as we
learn more about the distributions of the contaminant
populations - this will be performed in the upcoming
BEAMS analysis of the SDSS supernovae with host
redshifts obtained through the BOSS survey. We
list some general lessons for photometric supernova
cosmology with BEAMS in Appendix B.

In addition to the binomial approximation for the
likelihoods, we have also assumed that host galaxy
redshifts are known for all SNe. One can include
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photometric redshift error by looping N times, once
per supernova and marginalizing over the redshift
of the i-th SN in each case (in a similar fashion as
the method of obtaining the post facto estimation
of the Ia probability of each SN in Section IV D).
The sensitivity to redshift error can also be included
directly through fitting for cosmology directly in
‘light-curve’ space (see for example March et al. [67]).
However, we leave this general treatment of redshift
uncertainty in BEAMS to future work.

In the specific case of the SDSS-II Supernova Survey,
we will apply BEAMS to the larger SN sample with
spectroscopic host galaxy redshifts from the BOSS
survey. Not only will the sample size of data points
with accurate host redshifts increase (thereby further
reducing the cosmological contours from photometric
data) but the larger sample of non-SNeIa will allow
one to easily calibrate the constraints obtained with
the current application of BEAMS against the case
where one only has photometric redshifts, which will
be the case for LSST [41].

With the wealth of new photometric data awaiting SN
cosmology, BEAMS provides a platform to learn more
about the SN populations while at the same time tack-
ling the fundamental questions about the constituents
of the universe.

Acknowledgments

We thank Michelle Knights for comments on the draft.
RH thanks Jo Dunkley, Olaf Davis, David Marsh,
Sarah Miller and Joe Zuntz for useful discussions, and
thanks the Kavli Institute for Cosmological Physics,

Chicago, the South African Astronomical Observatory,
the University of Cape Town, and the University of
Geneva for hospitality while this work was being com-
pleted. MK would like to thank AIMS for hospitality
during part of the work. RH acknowledges funding
from the Rhodes Trust and Christ Church. MK ac-
knowledges funding by the Swiss NSF. BB acknowl-
edges funding from the NRF and DST. Part of the
numerical calculations for this paper were performed
on the Andromeda cluster of the University of Geneva.
Funding for the SDSS and SDSS-II has been provided
by the Alfred P. Sloan Foundation, the Participating
Institutions, the National Science Foundation, the U.S.
Department of Energy, the National Aeronautics and
Space Administration, the Japanese Monbukagakusho,
the Max Planck Society, and the Higher Education
Funding Council for England. The SDSS Web Site is
http://www.sdss.org/. The SDSS is managed by the
Astrophysical Research Consortium for the Participat-
ing Institutions. The Participating Institutions are the
American Museum of Natural History, Astrophysical
Institute Potsdam, University of Basel, University of
Cambridge, Case Western Reserve University, Univer-
sity of Chicago, Drexel University, Fermilab, the In-
stitute for Advanced Study, the Japan Participation
Group, Johns Hopkins University, the Joint Institute
for Nuclear Astrophysics, the Kavli Institute for Par-
ticle Astrophysics and Cosmology, the Korean Scien-
tist Group, the Chinese Academy of Sciences (LAM-
OST), Los Alamos National Laboratory, the Max-
Planck-Institute for Astronomy (MPIA), the Max-
Planck-Institute for Astrophysics (MPA), New Mexico
State University, Ohio State University, University of
Pittsburgh, University of Portsmouth, Princeton Uni-
versity, the United States Naval Observatory, and the
University of Washington.

[1] A. G. Riess, A. V. Filippenko, P. Challis, et al., AJ
116, 1009 (1998), arXiv:astro-ph/9805201.

[2] S. Perlmutter, G. Aldering, G. Goldhaber, et al., ApJ
517, 565 (1999), arXiv:astro-ph/9812133.

[3] M. Hamuy, M. M. Phillips, N. B. Suntzeff, et al., AJ
112, 2398 (1996), astro-ph/9609062.

[4] M. Hamuy, M. M. Phillips, N. B. Suntzeff, et al., AJ
112, 2391 (1996), astro-ph/9609059.

[5] A. G. Riess, R. P. Kirshner, B. P. Schmidt, et al., AJ
117, 707 (1999), astro-ph/9810291.

[6] J. L. Tonry, B. P. Schmidt, B. Barris, et al., ApJ 594,
1 (2003), astro-ph/0305008.

[7] A. G. Riess, L.-G. Strolger, J. Tonry, et al., ApJ 607,
665 (2004), astro-ph/0402512.

[8] J. Sollerman, C. Aguilera, A. Becker, et al., ArXiv
Astrophysics e-prints (2005), astro-ph/0510026.

[9] K. Krisciunas, ArXiv e-prints (2008), 0809.2612.
[10] R. Kessler, A. C. Becker, D. Cinabro, et al., ApJS 185,

32 (2009), 0908.4274.
[11] H. Lampeitl, R. C. Nichol, H. Seo, et al., ArXiv e-prints

(2009), 0910.2193.
[12] J. A. Holtzman, J. Marriner, R. Kessler, et al., AJ 136,

2306 (2008), 0908.4277.
[13] M. Hamuy, G. Folatelli, N. I. Morrell, et al., PASP

118, 2 (2006), arXiv:astro-ph/0512039.
[14] W. L. Freedman, C. R. Burns, M. M. Phillips, et al.,

ApJ 704, 1036 (2009), 0907.4524.
[15] C. Contreras, M. Hamuy, M. M. Phillips, et al., AJ

http://www.sdss.org/


24

139, 519 (2010), 0910.3330.
[16] M. Hamuy, G. Folatelli, N. I. Morrell, et al., PASP

118, 2 (2006), astro-ph/0512039.
[17] W. D. Li, A. V. Filippenko, R. R. Treffers, et al.,

in American Institute of Physics Conference Series,
edited by S. S. Holt and W. W. Zhang (2000), pp.
103–106.

[18] M. Hicken, P. Challis, R. P. Kirshner, et al., in Ameri-
can Astronomical Society Meeting Abstracts (2006), p.
72.04.

[19] M. Kowalski, D. Rubin, G. Aldering, et al., ApJ 686,
749 (2008), 0804.4142.

[20] S. Jha, R. P. Kirshner, P. Challis, et al., AJ 131, 527
(2006), astro-ph/0509234.

[21] M. Hamuy, J. Maza, M. M. Phillips, et al., AJ 106,
2392 (1993).

[22] G. Aldering, G. Adam, P. Antilogus, et al., in Sur-
vey and Other Telescope Technologies and Discover-
ies. Edited by Tyson, J. Anthony; Wolff, Sidney. Pro-
ceedings of the SPIE, Volume 4836, pp. 61-72 (2002).,
edited by J. A. Tyson and S. Wolff (2002), pp. 61–72.

[23] M. Sullivan, J. Guy, A. Conley, et al., ArXiv e-prints
(2011), 1104.1444.

[24] R. Amanullah, C. Lidman, D. Rubin, et al., ApJ 716,
712 (2010), 1004.1711.

[25] M. Hicken, P. Challis, S. Jha, et al., ApJ 700, 331
(2009), 0901.4787.

[26] M. Hamuy, M. M. Phillips, N. B. Suntzeff, et al., AJ
112, 2408 (1996), arXiv:astro-ph/9609064.

[27] K. Krisciunas, M. M. Phillips, C. Stubbs, et al., AJ
122, 1616 (2001), arXiv:astro-ph/0106088.

[28] K. Krisciunas, M. M. Phillips, N. B. Suntzeff, et al.,
AJ 127, 1664 (2004), arXiv:astro-ph/0311439.

[29] K. Krisciunas, N. B. Suntzeff, M. M. Phillips, et al.,
AJ 128, 3034 (2004), arXiv:astro-ph/0409036.

[30] B. D. Johnson and A. P. S. Crotts, AJ 132, 756 (2006),
arXiv:astro-ph/0511377.

[31] N. V. Kuznetsova and B. M. Connolly, ArXiv Astro-
physics e-prints (2006), astro-ph/0609637.

[32] N. Connolly and B. Connolly, ArXiv e-prints (2009),
0909.3652.

[33] D. Poznanski, D. Maoz, and A. Gal-Yam, ArXiv As-
trophysics e-prints (2006), astro-ph/0610129.

[34] S. A. Rodney and J. L. Tonry, ApJ 707, 1064 (2009),
0910.3702.

[35] S. A. Rodney and J. L. Tonry, ArXiv e-prints (2010),
1003.5724.

[36] A. G. Kim and R. Miquel, Astroparticle Physics 28,
448 (2007), 0708.2745.

[37] M. Sako, B. Bassett, A. Becker, et al., AJ 135, 348
(2008), 0708.2750.

[38] M. Sako, B. Bassett, B. Connolly, et al., ArXiv e-prints
(2011), 1107.5106.

[39] A. R. Zentner and S. Bhattacharya, ApJ 693, 1543
(2009), 0812.0358.

[40] D. M. Scolnic, A. G. Riess, M. E. Huber, et al., ApJ
706, 94 (2009), 0910.0075.

[41] Y. Gong, A. Cooray, and X. Chen, ApJ 709, 1420

(2010), 0909.2692.
[42] J. P. Bernstein, R. Kessler, S. Kuhlmann, et al., ArXiv

e-prints (2009), 0906.2955.
[43] N. Kaiser and Pan-STARRS Team, in Bulletin of the

American Astronomical Society (2005), p. 1409.
[44] LSST Science Collaborations: Paul A. Abell, J. Al-

lison, S. F. Anderson, et al., ArXiv e-prints (2009),
0912.0201.

[45] G. Bazin, V. Ruhlmann-Kleider, N. Palanque-
Delabrouille, et al., A&A 534, A43+ (2011),
1109.0948.

[46] J. P. Bernstein, R. Kessler, S. Kuhlmann, et al., ArXiv
e-prints (2011), 1111.1969.

[47] M. Kunz, B. A. Bassett, and R. A. Hlozek,
Phys. Rev. D 75, 103508 (2007), arXiv:astro-
ph/0611004.

[48] J. B. Oke and L. Searle, ARA&A 12, 315 (1974).
[49] R. P. Kirshner, J. B. Oke, M. V. Penston, et al., ApJ

185, 303 (1973).
[50] J. Guy, P. Astier, S. Baumont, et al., A&A 466, 11

(2007), arXiv:astro-ph/0701828.
[51] S. Jha, A. G. Riess, and R. P. Kirshner, ApJ 659, 122

(2007), arXiv:astro-ph/0612666.
[52] J. Newling, B. Bassett, R. Hlozek, et al., ApJ (2011).
[53] J. Marriner, J. P. Bernstein, R. Kessler, et al., ApJ

740, 72 (2011), 1107.4631.
[54] E. T. Jaynes and G. L. Bretthorst, Probability Theory

(Cambridge University Press, 2003).
[55] B. L. Falck, A. G. Riess, and R. Hlozek, ApJ 723, 398

(2010), 1009.1903.
[56] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,

et al., Journal of Chemical Physics 6, 1087 (1953).
[57] J. Dunkley, M. Bucher, P. G. Ferreira, et al., MNRAS

356, 925 (2005), arXiv:astro-ph/0405462.
[58] R. Kessler, J. P. Bernstein, D. Cinabro, et al., PASP

121, 1028 (2009), 0908.4280.
[59] R. Kessler, B. Bassett, P. Belov, et al., PASP 122,

1415 (2010), 1008.1024.
[60] R. Kessler, A. Conley, S. Jha, et al., ArXiv e-prints

(2010), 1001.5210.
[61] J. A. Frieman, B. Bassett, A. Becker, et al., AJ 135,

338 (2008), 0708.2749.
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[65] E. Gûnel and J. Dickey, Biometrika 61, 545 (1974).
[66] J. Newling, M. Varughese, B. Bassett, et al., MNRAS

414, 1987 (2011), 1010.1005.
[67] M. C. March, R. Trotta, P. Berkes, et al., ArXiv e-

prints (2011), 1102.3237.



25

Figure 15: Distance modulus-probability correla-
tions in the Level II SNANA simulations: while a cor-
relation exists between the Type Ia probability (determined
from the χ2 fit to the light curve models within SNANA)
and supernova type - ‘true’ Ias have a higher probability
of being Ia - there is no significant correlation between the
residual distance modulus of the SNANA simulation and
the PIa probability.

Appendix A: Probability correlations

As we highlighted in Section IV D, the normalization
parameter A is crucial to normalize the probabilities
in order to avoid biases introduced by the fitting or
typing procedure. Moreover, it provides a mechanism
for removing the strong dependence on probability di-
rectly, by allowing BEAMS to adjust the probabilities
according to the global fit to a distance modulus func-
tion. In Figure 15 we show that there are no strong
correlations between the Ia probability determined
from the SNANA fits to the light curve models and
the difference between the input cosmology and the
inferred cosmological model. In general there is more
spread in the non-SNIa population, however there are
some non-SNIa points with high probability, and there

are low-probability Ia data. We leave the investigation
of different forms for A to future work.

Appendix B: BEAMS troubleshooting

Analysis of purely photometric data brings its own
challenges to the fore. We briefly highlight some con-
siderations when applying the algorithm to such data.

• In order for BEAMS to recover the correct
cosmology, it requires the freedom to capture the
characteristics of the non-SNIa (and indeed the
SNIa) distributions. In particular, we found that
the error analysis has a significant impact on
the inferred cosmology, both within BEAMS but
equally for a basic χ2 approach. Our addition
of two different intrinsic dispersion terms for
the Ia and non-SNIa populations effectively
change the relative weighting of the populations
in a consistent manner, while still taking into
account the measurement error on each point,
which may or may not be a function of type.

• When applying fitting procedures such as
MLCS2k2 to the dataset, efficiency maps (to
account for Malmquist bias, for example) should
be carefully calibrated not to introduce redshift
dependent biases to the dataset. Alternatively,
the BEAMS likelihood can be adjusted from a
standard Gaussian to a truncated or deformed
Gaussian distribution to account for the selection
bias in the survey. We leave this investigation
for future work.

• As the amount of observations of the contami-
nants increases, new forms of the non-SNIa dis-
tance modulus function may be more strongly
motivated by the data. While we have tested
various forms for simulated SNANA data and for
the SDSS-II survey data, these functions should
be varied to allow the model enough freedom to
capture the deviations from the standard Ia dis-
tance modulus relation. In addition, future data
may motivate for multiple populations, a feature
which is easily included in BEAMS.




