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We study effects of charged particle beams crossing a third-order resonance in an accelerator. The
distortion of invariant torus during the resonance crossing is used to set 20% emittance growth or
2.5% of trap fraction as the cridtical resonance strength. We find a simple scaling law for the critical
resonance strength vs the tune ramp rate and the initial emittance. The scaling law can be derived
by solving Hamilton’s equation of motion with stationary phase condition. Such scaling law can be
used to evaluate the performance in high power accelerators, such as the FFAG and cyclotron.
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I. INTRODUCTION

Low order betatron resonances have been extensively
studied in the design and operation of accelerators [1–
4]. The third-order resonance plays a dominant role in
dynamic aperture and may also limit accelerator per-
formance. In particular, the betatron tunes of non-
scaling Fixed-Field-Alternating-Gradient (FFAG) accel-
erators are designed to ramp through many resonances
during the acceleration process. Careful studies of the
scaling laws for the emittance growth during the passage
of systematic space charge resonances are important [6–
8].

Besides the systematic space charge resonances, low or-
der random nonlinear resonance may also be important.
This paper studies the scaling laws in crossing a non-
space-charge-driven third-order resonance. This study
may also help us improve the slow beam extraction in
industrial and medical accelerators. The betatron tunes
of an isochronous cyclotron may cross a few low order
resonances during acceleration. Analysis of tolerable res-
onance is also important to the design and operation of
cyclotrons.

There were recent detailed experiments at an FFAG
accelerator on particle trapping efficiency of the third-
order resonance islands [3]. These experiments are very
important because a non-scaling FFAG accelerator may
have to ramp through many third or other low order order
resonances. Understanding the tolerance of these low
order resonances are important in the design of future
high power FFAG accelerators [9].

Earlier ambitious studies trying to derive a theoretical
“trap fraction” during resonance crossing, have met some
successes shown in Figs. 4 and 5 in Ref. [2]. However,
the nonlinear equation of motion is difficult to solve, and
the criterion that provides the trapping conditions needs
experimental verification. Experimental data seems not
able to fit well with the theoretical trap-fraction as shown
in Fig. 15 of Ref. [3]. As indicated in Ref. [3] that the
discrepancy may be due to imprecise modeling of the
experimental condition. Nevertheless, numerical simula-

tions agrees reasonably with the data.

When the betatron tune is ramped through a res-
onance, particles initially stream along the separatrix
around resonance islands [1]. However, particles can not
spontaneously jump into resonance islands. Trapping of
particles in resonance islands requires the size of reso-
nance islands to increase as the tune crosses the reso-
nance and particles moving along the separatrix at an
earlier time fall into the size-increasing islands. Such
process may be difficult to put into a dynamic equation.

In this paper, we take a different path. Our aim is to
derive a scaling law for a tolerable resonance strength in
resonance crossing. We will solve Hamilton’s equation
of motion based on stationary phase condition. Our nu-
merical simulation results, surprisingly, fit well with the
scaling law.

We organize this paper as follows. Section II discusses
our simulation model, where the accelerator lattice is
made of 24 FODO cells with superperiodicity 24. Sys-
tematic octupoles are used to produce betatron detuning,
and a single sextupole is used to generate an imperfect
third-order resonance. Section III discusses the Hamil-
tonian, stable and unstable fixed points, separatrix, and
phase space portraits near a third-order resonance. In
Sec. IV, we examine the effect of phase distortion of a be-
tatron phase space ellipse when a third order resonance
ramp through the phase space. We characterize the phase
space distortion via fractional emittance growth and the
fraction of particle trapped into resonance islands. In
Sec. V, we discuss the resonance crossing characteris-
tics and scaling law for a Gaussian beam. We find that
Hamilton’s equation of motion may be used to explain the
scaling properties of a Gaussian beam. Trapping of par-
ticles in resonance islands is discussed in Sec. VI, where
we also compare our scaling law with that of Ref. [3].
The conclusion is given in Sec. VII.
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II. THE MODEL

In our multi-particle simulation, we use an accelera-
tor lattice with 24 FODO cells, where each FODO cell
is composed of a focusing and a defocusing quadrupole
with dipoles in between. The superperiodicity of our
model lattice is P = 24 with betatron amplitude func-
tions: βx,F = 40 m, βz,F = 8.3 m at the center of the
focusing quadrupoles and βx,D = 6.3 m, βz,D = 21.4 m
at the center of the defocusing quadrupoles. The hori-
zontal betatron tune ramps downward from around 6.4 to
6.28 crossing a third-order resonance line at νx = 6 + 1

3

in various number of revolutions. The vertical tune is
kept constant at all time. Octupoles are placed at all fo-
cusing quadrupole and defocusing quadrupole locations
to provide nonlinear detuning. With 24 superperiods,
these systematic octupoles do not drive resonance at the
betatron tune of 6.25. A single sextupole is placed at
one defocusing quadrupole location to create a random
(or imperfection) sextupolar resonance, which occurs at
3νx = ℓ for ℓ = integer. On the other hand, a system-
atic resonance can only occur at ℓ = nP , where n is an
integer.

The initial transverse distribution of the beam is as-
sumed to be bi-Gaussian cut-off at 6ǫ, where we use ǫ
exclusively as the statistical rms emittance in this paper
[10]. The maximum action of the initial distribution is 3ǫ.
The transverse rms beam radii and emittances are calcu-
lated and updated at the end of each revolution. Detailed
discussion of our simulation model has been discussed in
Refs. [6, 7]. Our goal is to obtain a scaling law to be
compared with that of Ref. [3], where space charge force
was not included in simulations.

III. HAMILTONIAN AND THE FIXED POINTS

In our simulation model, particle motion can be de-
scribed very well by a single resonance Hamiltonian near
3ν = ℓ, in terms of action-angle variables [4, 10],

H = νJ +
1

2
αJ2 +GJ3/2 cos(3φ− ℓθ + ξ) (1)

where J and φ are the conjugate action-angle variables
for betatron oscillations, θ is the orbital angle serving as
the independent “time coordinate”, ν = νx is the beta-
tron tune, α = αxx is the nonlinear betatron detuning
parameter arising from octupoles, the integer ℓ is 19 in
our model, G = |G30ℓ| is the resonance strength and ξ is
the phase of G30ℓ [10]. Equation (1) can be canonically
transformed to

H̃ = δI +
1

2
αI2 +GI3/2 cos(3ψ) (2)

by the generating function F2 = (φ − ℓ
3
θ + ξ

3
)I, where

I = J and ψ = φ− ℓ
3
θ+ ξ

3
are the action-angle variables

for the new Hamiltonian, δ = ν − ℓ
3

is the proximity of

the betatron tune to the resonance. Hereafter, we use
either I or J symbol to represent the action in betatron
motion, and may drop all trivial indices for simplicity.

The Hamilton’s equations of motion are

İ = 3GI3/2 sin(3ψ), (3)

ψ̇ = δ + αI +
3

2
GI1/2 cos(3ψ), (4)

where the over-dot is the derivative with respect to the
orbital angle θ. Fixed points (Ifp, ψfp) of the Hamilto-

nian are given by İ = 0 and ψ̇ = 0. For α > 0 and G > 0,
the quantity (Ifp, ψfp) are given by

• δ < 0: UFP are ψfp = 0,±2π/3 and

αI
1/2

fp

|G| = −3

4
+

3

4

√

1 − 16αδ

9G2

• 0 ≤ δ ≤ 9G2/16α: UFP are ψfp = π,±π/3 and

αI
1/2

fp

|G| = +
3

4
− 3

4

√

1 − 16αδ

9G2

• δ ≤ 9G2/16α: SFP are ψfp = π,±π/3 and

αI
1/2

fp

|G| = +
3

4
+

3

4

√

1 − 16αδ

9G2

For α > 0 and G < 0, the Jfp listed above is still correct,
except the phase angle ψfp increases by π. The bottom
plot of Fig. 1 shows the stable and unstable fixed points

for α > 0. With α > 0, fixed points exist when δ < 9G2

16α ,

where δbif = 9G2/(16α) is called the bifurcation tune.
For α < 0, these fixed points has mirror reflection with
respect to the line δ = 0 shown at the top plot of Fig. 1.

The unstable motion near the UFP is given by

d2∆J

dθ2
− 9|G|J1/2

ufp

(

|α|Jufp +
3

4
|G|J1/2

ufp

)

∆J = 0, (5)

where ∆J = J − Jufp. The exponential growth rate at

the UFP is proportional to
√
G, for small G.

Note that Jsfp is always larger than Jufp with
√

Jsfp−
√

Jufp = |3G
2α | for δ < 0. The radial distance between the

stable and unstable fixed points in the normalized phase
space coordinates is

√
2βx|3G/2α|. The separatrix of the

Hamiltonian is the torus that passes through the UFP.
For the third-order resonance, the separatrix is given by

δJ +
1

2
αJ2 +GJ3/2 cos 3ψ =

1

3
δJufp − 1

6
αJ2

ufp. (6)

Phase space portraits, including separatrices, across a
third-order resonance have been shown in Fig. 12 of
Ref. [3]. The separatrix in action-angle coordinates is
shown in Fig. 2. The right plot shows the phase space
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FIG. 1: The fixed points |α|I1/2

fp /|G| vs |α|δ/G2 for α < 0

(top) and α > 0 (bottom). The Stable and unstable FPs
are shown as solid and dashed curves respectively. Bifurca-
tion of the third-order resonance occurs at δbif = 9G2/(16|α|)
marked by a rectangle.

FIG. 2: Left: The separatrix for α = 400 (πm)−1, G = 0.2

(πm)−1/2 for the proximity parameter δ = δbif , 0, and
−0.0025, and −0.01 are drawn in action-angle variables in
semi-log plot. SFPs are marked by X in red, and UFPs are
marked diamond symbol in blue. The island size increases
as the proximity parameter becomes smaller. Note that the
vertical axis is in log scale. Right: the phase space of area of
each resonance island vs the resonance proximity parameter
δ. The phase space area of resonance island is found to scale
with G1/2α−5/4.

area of one island vs the resonance proximity parame-
ter. As δ becomes more negative, the phase space area
of resonance island increases.

It is difficult to find an analytic formula for the area
of the resonance islands. However, the island area in the
asymptotic region: |δ| ≫ G2/α, where Jufp ∼ Jsfp ≈

∣

∣

δ
α

∣

∣, can easily be obtained from Eq. (6) to be

Area =
16

π
|G|1/2|δ|3/4|α|−5/4. (7)

The area of the island for all cases can be numerically
integrated along the separatrix, shown in the right plot
of Fig. 2. The total island area (3 islands) indeed obeys a
simple scaling property shown in Fig. 3, where the phase
space area multiply the factor G−1/2α+5/4 is plotted vs
the resonance proximity parameter for a number of reso-
nance strengths and detuning parameters. Equation (7)
is drawn as a dashed curve for comparison. At a given
α and G, the effect of the third-order resonance becomes
more important for a beam with a larger emittance be-
cause the beam covers a larger action shown in the left
plot of Fig. 2.

FIG. 3: The total phase space of 3 resonance islands multi-
plying the factor G−1/2α5/4 vs the resonance proximity pa-
rameter δ for 25 cases. The phase space area of resonance
island is found to scale with G+1/2α−5/4. Eq. (7) based on
the asymptotic approximation is shown in dashes for compar-
ison. When α is large and G is small, the island area can
be approximated by asymptotic limit shown as the red curve.
When α is small and G is large, the phase space area deviates
more from the asymptotic limit shown as the blue curve.

Based on Hamilton’s equation (4), the stationary phase
condition can occur around δ ∼ αǫ ∼ |G|√ǫ, where ǫ is
the rms beam emittance, which is defined as the rms
phase space area of the beam. Experimental measure-
ment of the third-order resonance shows that |G30ℓ| ∼ 1
(πm)−1/2 is a strong resonance. Using a pencil beam,
we measured G = 2.2 (πm)−1/2 at the IUCF Cooler [4].
Typical strengths of the 3rd order random resonances
for FFAG accelerator designs [5] are about 0.01 to 0.5
(πm)−1/2. The effective resonance strength is G30ℓ

√
ǫ.

Accelerators and storage rings are designed to have typ-
ically α ∼ 10− 1000 (πm)−1. Its effect on tune spread of
the beam is αǫ.

When the tune of an accelerator is slowly changing,
the Hamiltonian is quasi-adiabatic. If there were no res-
onance, the action of each particle and the emittance of
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the beam would be constant. However, when a resonance
exists, the action of each particle will be perturbed. The
fixed points and resonance islands are time dependent.
Particle motion will still follow the quasi-static resonance
dynamics moving along the separatrix.

We consider a beam with 6ǫ = 30 πµm in an accel-
erator with α = 400 (πm)−1 encountering a third-order
resonance with G = 0.2 (πm)−1/2. The bifurcation tune
of this resonance is δbif = 5.625 × 10−5. If the bare be-
tatron tune is ramped downward to ν = 6 + 1

3
+ δbif ,

the SFP and UFP will appear for particles at action
J = 0.14 πµm, near center of the beam. The separatrix
is shown as a curve with magenta color in Fig. 2. When
the bare tune reaches ν = 6+ 1

3
or δ = 0, we find Jufp = 0

and Jsfp ≈ 0.56 πµm. The separatrix is marked as the
dashed curve in black color. When the betatron tune
reaches ν = 6 + 1

3
− 0.0025, we find the Jufp ≈ 4.7 πµm

and Jsfp = 8.5 πµm. The dashed magenta colored curve
in Fig. 2 is the separatrix. These resonance islands inside
the beam emittance move outward as the betatron tune
continues to move downward.

Now, we consider the case of an upward ramping be-
tatron tune. When the bare betatron tune reaches ν =
6+ 1

3
−0.01, we find Jufp = 21 πµm and Jsfp = 29 πµm.

Particle actions larger than 12 πµm are strongly per-
turbed as shown in the separatrix on Fig. 2. Particles
stream along the separatrix to larger actions. When
the betatron tune reaches ν = 6 + 1

3
− 0.0025, we have

Jufp ≈ 4.7 πµm and Jsfp = 8.5 πµm. The separatrix
is marked as a dashed magenta colored curve on Fig. 2
and the size of resonance islands becomes smaller. When
the bare tune reaches ν = 6 + 1

3
, we have Jufp = 0 and

Jsfp ≈ 0.56 πµm. The separatrix is marked as dashed
curve with black color. When ν = 6 + 1

3
+ δbif , the SFP

and UFP are located at action J = 0.14 πµm. They
disappear together as the tune moves further upward.

Without loss of generality, we consider in the rest of the
paper the ramping of tune from a higher value to a lower
value crossing a third-order resonance, i.e. δ changes
from positive to negative in Fig. 1. The scenarios with
α > 0 or α < 0 cases are demonstrated as follows.

A. The case with α > 0

If |G| is not very large, the bifurcation action 9
16

(G/α)2

is less than the phase space area. The resonance will cre-
ate empty islands inside the bunch phase space. Particle
motion will stream along the separatrices. As the beta-
tron tune is further lowered to δ = 0, the UFP moves
inward to the Jufp = 0 and SFP moves outward to
Jsfp = 9

4
(G/α)2, as shown in Figs. 1 and 2. When the

betatron tune moves past δ < 0, both the UFP and SFP
move outward and the size of resonance islands increases,
and some particles will be trapped in resonance islands.
These trapped particles will be carried outward in phase
space as the tune is further lowered.

We demonstrate this effect in multi-particle simulation

shown in Fig. 4. Particles are driven out of the center by
the resonance and may be captured into resonance is-
lands. The resonance first starts near the center of the
beam, particles are driven out along the separatrix, and
later captured and trapped by the ever increasing islands.
These islands keep moving outward with the SFPs until
the aperture limit is reached. The continuous growth of
the SFPs accounts for the linear increase of the horizon-
tal emittance in the bottom left plot of Fig. 5. In this
case, particles trapped in the resonance islands around
the SFPs will eventually be lost.

FIG. 4: (Color) Top-left: Horizontal bare betatron tune is
ramped downwards from (νx, νz) = (6.40, 6.45) starting from
turn 200 to (6.25, 6.45) at turn 2200 (ramp rate −0.000075 per
turn) through a third-order resonance 3νx = 19 at turn 1100.
Bottom-left: Red and blue curves are respectively the hori-
zontal and vertical emittances. Horizontal emittance grows
when the resonance is crossed. Right: Horizontal phase-space
distribution at turn 2200 shows 3 resonance islands. The de-
tuning parameter is α > 0.

B. The case with α < 0

For α < 0, the fixed points move inward as shown in
the top plot of Fig. 1 when the tune is ramped from a
higher value to a lower value. large amplitude particles
see the resonance first, and the resonance The resonance
islands encroach the beam phase space and drive particle
outward along the separatrices. These particles move
along the separatrix, and cause emittance growth. How
much emittance growth depends on how long the beam
stays near the resonance and how strong the resonance
is.

As the tune is further lowered, the islands move inward
and get smaller in size, until the point of bifurcation. No
particle will be trapped into resonance islands, but emit-
tance of the beam will increase. Unlike the α > 0 case,
these escaping particles are not captured by the SFPs due
to the decreasing size of resonance islands. Instead, they
spiral along the separatrix and the emittance becomes
larger. When δ becomes negative and less than δbif , the
resonance disappears. Figure 5 shows the simulation of
5000 particles ramping through a third-order resonance
with α < 0. Note that the emittance begins to increase
before the bare tune reaches the third-order resonance.
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After the resonance is crossed, the emittance becomes
constant because no particle is trapped into resonance
islands.

FIG. 5: (Color) Top-left: Horizontal bare betatron tune is
ramped downwards from (νx, νz) = (6.40, 6.45) starting from
turn 200 to (6.25, 6.45) at turn 2200 (ramp rate −0.000075 per
turn), where the third-order resonances 3νx = 19 is crossed at
turn 1100. Bottom-left: Red and blue curves are respectively
the horizontal and vertical emittances. Horizontal emittance
increases before the bare tune crosses the resonance. Right:
Horizontal phase-space distribution at turn 2200 shows no
particle being trapped in resonance islands. Here the detuning
parameter α < 0.

IV. RESONANCE CROSSING OF A
RING-BEAM

In this section, we study emittance growth of a ring-
beam in resonance crossing. We consider a beam which
consisting of particles uniformly distributed on a ring in
phase space with a constant action J . The rms emittance
of the ring-beam is ǫi = J [10].

When the betatron tune is ramping downward at a rate
of |dν/dn| crossing a third order resonance, the phase
space ellipse will be distorted. Particles will move along
the separatrices and possibly captured by the resonance
islands. Figures 6 and 7 shows the time-lapsed Poincaré
maps during the resonance crossing.

For α < 0, it is easy to characterize the emit-
tance growth by defining the fractional emittance growth
(FEG) as

FEG =
∆ǫ

ǫi
, (8)

where ǫi is the initial emittance. For α > 0, the beam
emittance continues to grow as trapped particles being
transported outward in the resonance islands. We can
characterize the effect of resonance as the fraction of par-
ticles being trapped in resonance islands, i.e.

Trap Fraction =
Number of particles in islands

Total number of particles
(9)

Figure 8 shows the FEG and trap-fraction exhibit oscil-
lation vs the tune ramp rate. This oscillation reveals the

FIG. 6: (Color) The time lapse of the Poincaré maps of a ring-
beam during the passage of a third order resonance crossing
for the case of α = αxx > 0. Note that particles moves
along the separatrices and are captured into resonance islands,
which carry the captured particles outward. The Green curve
at the bottom-right plot is the initial beam distribution.

complex dynamics of particle motion along the separatri-
ces. As particles moves along the separatrices, particles
are folded into slices. When particles accumulated near
the separatrix are resides at the outer part of the reso-
nance island at the time the resonance crosses the ellipse,
the FEG will be large. On the other hand, if these par-
ticles move to the inner section of the island at the time
resonance moves away, the FEG becomes small. The os-
cillatory structure in Fig. 8 reflects the dependence of the
island tune vs resonance parameters.

We first consider the case with α < 0. Figure 9 shows
the FEG vs the ramp rate for different detuning α. The
FEG is nearly independent of α at fast resonance cross-
ing rates. However, at adiabatic slow crossing rates, the
limiting values of the FEG do depend on α.

We examine the physics of the adiabatic FEG limit.
Figure 10 shows the time lapse of particle motion when
the resonance is slowly crossing the phase space ellipse.
The time lapse phase portraits reveal the emittance
growth mechanism. As the resonance reaches the ellipse,
the phase space is adiabatically deformed to the inner
ellipse, and as the resonance moves away, particle will
distributed along the outer orbit of the separatrices. The
FEG is the ratio of the island-area divided by the initial
phase area, which is equal to the are of the inner area
bounded by the separatrices shown in the top 4 plots of
Fig. 10. After the resonance moves away, the phase space
ellipse follows the Hamiltonian torus and the phase space
area does not change.
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FIG. 7: (Color) The evolution of a ring-beam during the pas-
sage of a third resonance crossing the beam ellipse for the case
of α = αxx < 0. The phase space ellipse is distorted, squeezed
out along the separatrix, and left distorted as the resonance
moving inward after crossing the ellipse. The Green curve at
the bottom-right plot is the initial beam distribution.

We calculate the island-area of the resonance Hamilto-
nian at the instant that the inner stable area is equal to
initial phase space ellipse to compare with numerically
obtained FEG. Figure 11 compares the simulation result
with theory (in green), i.e. ∆ǫ ≈ 7.3G

√
ǫ/α. The adi-

abatic condition can be used to calculate the fractional
emittance growth for an arbitrary initial beam distribu-
tion. For example, if the initial beam distribution is ρ(J)
with

∫

ρ(J) = 1 and ǫrms =
∫

Jρ(J)dJ . The resulting
fractional emittance growth becomes

FEG = 7.3

∫

G
√
J

α
ρ(J)dJ. (10)

For a Gaussian beam, the adiabatic fractional emittance
growth is 7.3Γ(3/2)G/(|α|√ǫrms), where Γ is the Gamma
Function.

The trap-fraction shows oscillatory structure even at a
very slow tune ramp rate. as shown in Fig. 8. Even at
a very slow ramping rate of about |dν/dn| = 4 × 10−7,
the trap fraction vs the resonance strength, see Fig. 12,
shows oscillatory structure. As the resonance islands pass
through phase-space region of the beam, particles are
grouped together at resonance UFPs. If this group of
high density particles happen to be in the phase space
region that resonance islands move through, they will
be captured into resonance islands and the trap-fraction
will be high. On the other hand, if the high density group
happens to be outside of the resonance island bucket, the
trap-fraction will be low. The beam can be fully captured

FIG. 8: (Color) Top: Trap Fraction vs tune ramp rate for
α > 0. Bottom: FEG vs tune ramp rate for α < 0. Both cases
have ǫi = 2.5πµm and G = 0.2 (πm)−1/2. The oscillating
nature of these quantities reveals dynamics of particle motion
along the separatrices as the resonance passes through the
phase ellipse of the beam.

FIG. 9: (Color) The FEG vs the tune ramp rate. Note that
the FEGs reach limits which depend on the detuning param-
eter at small tune ramp rate. The FEG is nearly independent
of α at a large tune ramp rate. The oscillating structure de-
pends on details of particle motion along the separatrices.

only when the resonance strength is large. The capture
rate depends on the dynamics when the particles, moving
along the separatrices, fall into the enlarging resonance
islands as the tune ramps through the phase space ellipse
of the beam.
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FIG. 10: (Color) The time-lapse Poincaré maps as the 3rd
order resonance crosses the phase space ellipse at an adiabatic
(slow) crossing rate. The FEG is equal to the ratio of the area
of outer resonance islands divided by the inner stable area,
which is equal to the initial phase space area of the original
ellipse.

FIG. 11: (Color) The FEG obtained by multi-particle simu-
lation is compared with theory. Note that the FEG depends
nearly linearly with respect to G

√
ǫi/α.

V. RESONANCE CROSSING OF A GAUSSIAN
BEAM

In FFAG accelerators, betatron tunes ramp through
many resonances. The tune ramp rate depends on energy
gain per turn. The adiabatic fraction emittance growth
of Eq. (10) is too large. One tries to ramp through the
resonances as fast as possible. Typical tune ramp rate is

FIG. 12: (Color) Trap fraction vs resonance strength for dif-
ferent initial actions of the ring beam. The detuning param-
eter is 501 (πm)−1. Note that the resonance can not trap
particle only when the resonance strength is very small!

about 10−3 ∼ 10−5 per revolution.
Since the effects of resonance crossing are markedly

different for the α < 0 case, we define the emittance
growth factor (EGF) as

EGF =
ǫfinal

ǫinitial

= 1 + FEG (11)

to quantify the effect of resonance crossing. Here ǫfinal is
the final emittance after passing through the resonance,
and ǫinitial is the initial beam emittance. On the other
hand, the trap fraction defined in Eq. (9) is difficult to
quantify for α > 0. Furthermore, particles being excited
outside the original phase space area can be as dangerous
as particles trapped in resonance islands. Thus it is more
logical to define the quantity ftrap as:

ftrap =
NJ>Ji,max

Ntotal

, (12)

to quantify the effects of resonance crossing. Here, Ntotal

is the total number of particles in our tracking, and
NJ>Ji,max is the number of particles with action J larger
than that of maximum initial maximum action after pass-
ing through the resonance. We choose Ji,max = 3ǫinitial

in our initial beam distribution. Typically, we use about
5000 particles in multi-particle tracking. Note that our
definition of trapping efficiency differs from Eq. (9),
which may also differ from that of Ref. [2]. Our def-
inition of ftrap includes particles move along separatri-
ces and become lost. Nevertheless, our definition should
agree better with experiments using scraping method to
remove large amplitude particles.

For the negative α case, no particle will be trapped
in resonance islands after the resonance crossing. We
can use both EGF and ftrap to characterize the reso-
nance crossing. Although there is no particle trapped
in resonance islands, particles excited outside the initial
beam emittance is considered to be perturbed by res-
onance crossing. We characterize the relation between
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EGF and ftrap. The EGF of a Gaussian beam is an en-
semble average of the ring-beam with different actions
shown in Fig. 9. Figure 13 shows the relation between
EGF and ftrap. Since more particles being driven out
of original maximum action will produce a higher emit-
tance growth, the correlation between the EGF and ftrap
is evident. A 20% emittance growth is equivalent to 2.5%
of particles being driven outside the maximum initial ac-
tion. Although, the EGF has no meaning for α > 0,
the quantity ftrap is well defined and the prescription of
ftrap = 2.5% is applicable.

FIG. 13: (Color) The correlation between EGF and ftrap for
α < 0 for beams with different emittances (different colors).
It appears that the ensemble average has washed out oscilla-
tory structure of Fig. 9. For each emittance, the resonance
strength |G30ℓ| varies from 0.07 to 1.2 (πm)−1/2 and the cross-
ing speed varies from 1.2 × 10−3 to 2 × 10−5 per turn.

A. Resonance crossing with α < 0

We consider three cases with |G30ℓ| = 0.86, 0.44, and
0.15 (πm)−1/2. Figure 14 shows the EGF−1 or ∆ǫ/ǫ
vs the tune ramp rate for the case with a large detun-
ing parameter α = −783 (πm)−1 and rms emittance
ǫx0 = 4.62 π-µm. The initial distribution cut-off action
is 2Ji,max = 6ǫx0 in bi-Gaussian distribution. We find

that the scaling dependence varies from |dν/dn|−1/2 to
|dν/dn|−2/3. A larger resonance strength reaches satu-
ration earlier and at a high EGF, in agreement with the
scaling of the area of resonance islands. The first regime
with EGF−1 ≤ 0.2, the growth of EGF obeys the scaling
law of |dν/dn|−1/2 (shown as dash-dotted curve to guide
our eyes), while a larger EGF follows the scaling law of
|dν/dn|−2/3 (shown as dashed line).

FIG. 14: (Color) The EGF−1 for large, medium, and small
resonance strengths are shown for comparison. At very slow
tune ramp rate, the EGF reaches a saturation. The satu-
rated value is proportional to the third-order resonance is-
land height, and thus proportional to

p

|G30ℓ| for the large
detuning cases.

B. Initial Growth Mechanism

When the resonance crossing rate is reasonably high,
particles will stream along the separatrix without reach-
ing adiabatic limit of Figs. 6 and 7. The increase of action
is most influenced by the stationary phase condition of
Eq. (3). The change of action is

∆J = 〈3GJ3/2 sin 3ψsp〉[2π(∆n)sp], (13)

where 〈· · · 〉 is the ensemble average of the beam distribu-
tion during the time the resonance separatrices reach the
beam phase space region, (∆n)sp is the number of revo-
lutions that the resonance phase remains stationary. The
evolution of phase obeys Eq. (4). At resonance with sta-

tionary phase, we find ψ̇sp ≈ 0 (but ψsp is not necessary
0), and its “time” derivative is

ψ̈ = δ̇ =
1

2π

dν

dn
, (14)

where (dν/dn) is the tune change per revolution. For a
constant ramping through a resonance, we find

∆ψ ≈ 1

4π

∣

∣

∣

∣

dν

dn

∣

∣

∣

∣

(2π∆n)2. (15)

The number of turn in stationary phase condition is

∆nsp ≈
(

∆ψsp

π
∣

∣

dν
dn

∣

∣

)1/2

(16)

The maximum change of action is obtained by substitut-
ing 2J = 6ǫx0. Identifying the largest change of action
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as ∆ǫ, we find

∆ǫ

ǫ
≈ G

√
ǫ

∣

∣

∣

∣

dν

dn

∣

∣

∣

∣

−1/2
{

6
√

3π〈sin 3ψsp〉(∆ψsp)1/2
}

.

(17)
The initial phase of emittance growth should obey the
scaling property:

∆ǫ

ǫ3/2

∣

∣

∣

∣

dν

dn

∣

∣

∣

∣

1/2

≈ FG (18)

where the constant is F ≈ 6
√

3π〈sinψsp〉 (∆ψsp)
1/2

. As
shown in Figs. 6 and 7, the initial growth is to squeeze
particles from the inner parts of the separatrices toward
the outer parts of the separatrices, and 〈sin 3ψsp〉 always
positive. A simple estimation with 〈sin 3ψsp〉 ≈ 1

2
and

∆ψsp ≈ 1
4

gives F ≈ 5. The initial growth is indepen-
dent of the detuning parameter! The left plot of Fig. 15
shows the emittance growth vs revolution number for var-
ious detuning parameters. When the tune ramp rate is
not too small as shown in Fig. 9, the emittance growth
is nearly independent of the detuning parameter α in ac-
cordance of Eq. (18). One can understand the result as
follows. When α is small, the island size is larger, and
some particles will be excited to a larger phase space po-
sitions. On the other hand, a large α will have a smaller
island size, but many more particles are driven out of the
core. The resulting rms emittances are about the same.

The right plot of Fig. 15 shows a compilation of sim-

ulation data: ∆ǫ
ǫ3/2

∣

∣

dν
dn

∣

∣

1/2
vs the resonance strength G.

The simulation data are compiled with simulations with
various parameters: α from 0 to −800 (πm)−1, G30ℓ from
0.02 to 0.8 (πm)−1/2, |dν/dn| from 10−5 to 10−2, and the
rms emittances from 0.93, 2.3, 4.62, 6.94, and 9.26 πµm.
A line (red) 7×G30ℓ +8×G2

30ℓ is drawn through data to
guide our eyes. The part that depends linearly on G is to
be compared with the constant F in Eq. (18). The spread
of the simulation result reflects the oscillatory structure
of Fig. 9. The deviation from the stationary phase con-
dition can be important.

C. Scaling law for the resonance strength

Our main task in this paper is to obtain a critical (tol-
erable) resonance strength when the betatron tune of a
beam ramps through a third-order resonance. We define
a critical resonance strength as the resonance strength
for an emittance growth of 20% in passing through a
resonance. Figure 16 shows the quantity EGF−1 for
α = −391 (πm)−1 and ǫ = 4.62 πµm as a function of
the resonance strength G30ℓ for different ramping rates.

A faster ramping rate has less emittance growth. A
line at EGF=1.2 intercepts all the lines on Fig. 16 is
used to define the critical resonance strength κ30ℓ, which
is the resonance strength for a 20% emittance growth
at a particular tune ramping rate. One can extract the

FIG. 15: (Color) Left: emittance growth in passing through
a third-order resonance at a tune ramp rate of |dν/dn| = 6×
10−5, G = 0.1483 (πm)−1/2 for various detuning parameters.

Right: ∆ǫ

ǫ3/2

˛

˛

dν
dn

˛

˛

1/2
derived from simulation data is plotted vs

G. The initial emittance is ǫ = 4.62 πµm. The simulation
data are compiled with simulations with various parameters:
α from 0 to −800 (πm)−1, G30ℓ from 0.02 to 0.8 (πm)−1/2,
and |dν/dn| from 10−5 to 10−2. A red line 7G30ℓ + 8G2

30ℓ is
drawn through data to guide our eyes. The linear part is to
compare with the constant F in Eq. (18). Because the large
range of α and G, the resulting spread in the EGF is large.
This spread also reflects the oscillatory nature of Figs. 8 and
9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

G
30L

(πm)−1/2  

E
G

F
−1

 

 

∆ν/∆n = 0.0000207

∆ν/∆n = 0.000025

∆ν/∆n = 0.0000316

∆ν/∆n = 0.0000667

∆ν/∆n = 0.00015

∆ν/∆n = 0.0002

∆ν/∆n = 0.0003

α
xx

=−391 (π m)−1

FIG. 16: (Color) With negative detuning coefficient αxx =
−391 (πm)−1, the emittance growth factor (EGF) increases
with resonance strength G30ℓ. Faster ramping rate results in
less emittance growth. Initial emittance is ǫx,0 = 4.62πµm.

critical resonance strength for different detuning param-
eters. Figure 17 shows a power law relationship between
the critical resonance strength κ30ℓ vs the betatron tune
ramping rate for various detuning parameters. As indi-
cated in Eq. (18), the initial emittance growth scales with
|∆ν/∆n|0.5 shown as a dashed line to guide the eyes. The



10

critical resonance strength for 20% emittance growth is
nearly independent of the betatron detuning parameter.

FIG. 17: (Color) The scaled critical resonance strength

κ30ℓ

p

ǫ/ǫ0 vs. tune ramping rate for various detuning co-
efficients and various initial emittances. The detuning coef-
ficients are varied at a fixed initial emittance ǫ = 4.62 πµm.
The emittance is then varied at a fixed detuning coefficient
αxx = −391 (πm)−1. The critical resonance strength is in-
versely scaled by the square root of the ratio of the initial
emittance to the reference emittance of ǫ0 = 4.62πµm.

The emittance growth also depends on the initial beam
emittance. The effective resonance strength for a beam
crossing the third-order resonance is “G

√
ǫ”. Thus the

critical resonance strength κ30ℓ should scale inversely
with 1/

√
ǫ. Figure 17 shows the scaled effective crit-

ical resonance strength, reference to that of the ǫ0 =
4.62 πµm data.

Combining these two case shown in Fig. 17, we find
the power law of the critical resonance strength is

κ30ℓ = 13

{

4.62 [πµm]

ǫ [πµm]

}0.5{∣
∣

∣

∣

∆ν

∆n

∣

∣

∣

∣

}0.5

[(πm)−1/2],

(19)
where ǫ is the initial rms emittance of the beam in the
unit of [πµm], and the reference emittance is 4.62 πµm
shown in Fig. 17. The factor 13 in Eq. (19) agrees with
Eq. (18) by setting the factor of F ≈ 7 and ∆ǫ/ǫ = 0.2.
If we select all data of Fig. 15 that have EGF ∼ 1.2. The

resulting plot of ∆ǫ
ǫ3/2

∣

∣

dν
dn

∣

∣

1/2
vs G is shown in Fig. 18. We

find that F ≈ 7 fits well with the data.

VI. TRAP OF PARTICLES IN RESONANCE
ISLANDS

Although EGF is an indicator for a resonance in the
negative detuning case, this indicator can not be used for
the positive detuning cases. We have introduced the trap
fraction defined as the fraction of particles kicked out of
the original beam size. Figure 13 shows the relationship

FIG. 18: (Color) ∆ǫ

ǫ−3/2

˛

˛

dν
dn

˛

˛

1/2
vs G for data with EGF falls

within 1.05 to about 1.3. For this set of data, the emittance
growth dynamics can be described by Eq. (14).

between the EGF and the trap fraction. One observes
that EGF=1.2 amounts to 2.5% of trap fraction. We thus
define the critical resonance strength as 2.5% of particles
being excited to have an action larger than the initial
maximum action of the beam.

Figure 19 shows the trap fractions calculated for dif-
ferent ramping rates with octupole detuning parameter
αxx = 391 (πm)−1. Particles, driven outward by the
third-order resonance and moved beyond a dynamic aper-
ture, are also considered as trapped particles. Larger
resonance strengths cause more particles to be pushed
out of the center core and captured by the resonance
islands. Data from Ref. [3] are also shown with blue
and red boxes. It appears that the experimental data
agree reasonably well with our simulation results with
tune ramp rates 8.6 × 105 and 1.4 × 104 per turn.

Similar to the scaling property shown in Sec. VC, we
define the equivalent resonance strength as

Geq
30ℓ = G30ℓ

(

ǫ [πµm]

4.62 [πµm]

)1/2

(20)

reference to the beam emittance of 6ǫ = 27.7 πµm. Fig-
ure 20 shows the trap fraction vs the equivalent resonance
strength for different emittances for a constant ramping
rate of dν/dn = 6 × 10−5. Our results show that the
equivalent resonance strength can be used to character-
ize the trap fraction. A line ftrap ≈ Geq

30ℓ − 0.07 (πm)1/2

drawn through data is to guide the eyes. The equiva-
lent resonance strengths of Ref. [3] are 0.27, 0.19, 0.31
(πm)−1/2 with the tune ramp rates of 8.6 × 10−5 and
1.4×10−4. We plot these data in Fig. 19 for comparison.

A. Scaling law for trap particles

For a given ramping rate, we define the critical reso-
nance strength κ30ℓ as the resonance strength that pro-
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FIG. 19: (Color online) With positive detuning coefficient
αxx = 391(πm)−1, the trap fraction vs resonance strength
G30ℓ for an initial ǫ0 = 4.62πµm with various ramping rates.
A horizontal line at 2.5% capture efficiency is shown as a
line in magenta color. The intercept is the critical resonance
strength defined in this paper. Data from Ref. [3] are shown
with blue and red boxes with tune ramp rates 8.6× 10−5 and
1.4 × 10−4 per turn, respectively.

FIG. 20: (Color online) Trap fraction vs the equiv-

alent resonance strength for initial emittances 6ǫ =
5.53, 13.8, 27.7, 41.5, and 55.3 πµm with tune ramp rate of
dν/dn = 6 × 10−5 and the nonlinear detuning parameters
of α = 391 and 783 (πm)−1 respectively. A single line
ftrap ≈ (Geq

30ℓ − 0.07) drawn through simulation data is to
guide the eyes.

duces a 2.5% trap fraction. Such a definition is equivalent
to an EGF of 1.2 for the positive detuning case. For a
small trap fraction (2.5%), the initial growth mechanism
discussed in Sec. VB should work, and a similar power
law may be found between the critical resonance strength
vs the tune ramping rate and the initial emittance.

Figure VI A shows the power law between the criti-
cal resonance strength κ30ℓ and the tune ramping rate

∆ν/∆n for 2.5% trap fraction for a number of detuning
parameters. A line of 13|dν/dn|1/2 is shown for reference,
which agrees well with the scaling law of the negative de-
tuning case.

Increasing the octupole detuning parameter, the slope
becomes steeper, and the power law is more like
|dν/dn|0.62 shown in Fig. VI A. For a given beam emit-
tance, a larger α will produce a larger tune spread for
the beam, and it will take longer time for the beam to
cross the resonance, and effectively more particles will be
trapped in resonance islands. Thus a beam with larger
detuning parameter can tolerate less resonance strength
G30ℓ, and has a smaller critical resonance strength κ30ℓ.

FIG. 21: (Color) The scaled critical resonance strength

κ30ℓ

p

ǫ/ǫ0 vs. tune ramping rate for various detuning coeffi-
cients and initial emittances. For cases with different detun-
ing parameters, the initial emittance is fixed at ǫ0 = 4.62πµm.
For cases with different initial emittances, the detuning pa-
rameter is fixed at α = +391 (πm)−1. The critical resonance
strengths fall within two lines shown in Eqs. (19) and (21).

Figure VI A shows the scaled critical resonance
strength vs the ramping rate for various beam emit-
tances. The resulting critical resonance strength is

κ30ℓ = 38

{

4.62 [πµm]

ǫ [πµm]

}1/2 ∣
∣

∣

∣

∆ν

∆n

∣

∣

∣

∣

2/3

[(πm)−1/2], (21)

B. Comparison with the scaling law of Ref. [3]

Although Ref. [3] may have different definition of the
trapping efficiency, the scaling law should be universal.
Based on the “fully adiabatic” parameter of Eq. (27) and
Fig. 18 in Ref. [3], the critical resonance strength is

Gref2 ≤ 1

73/2

∣

∣

∆ν
∆n

∣

∣

6π33/2|α|ǫ3/2
. (22)

This scaling law differs markedly from our critical reso-
nance strength shown in Eqs. (19) and (21) in its power-
law dependence on emittance and tune ramp rate. The
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Gref2 in Ref. [3] shows different dependence on the detun-
ing parameter compared to our results. Besides the ex-
treme difference in the detuning dependency, the depen-
dence on the tune ramping rate is also different. Accord-
ing to the scaling law of Ref. [3], the emittance growth
while crossing a resonance will be greatly reduced by in-
creasing the detuning, while according our scaling law,
this does not help at all.

VII. CONCLUSIONS

We study the effects of a beam crossing a third-order
resonance. The resulting emittance growth and particle
capture into the third-order resonance islands are used
to characterize the resonance. The phase space evolu-
tion depends on the sign of detuning coefficient. If the
betatron tune is ramped downward, a negative detun-
ing parameter α will produce emittance growth without
particles being captured into resonance islands. We pro-
pose a criterion of 20% emittance growth to define the
critical resonance strength shown in Fig. 17 and given
by Eq. (19), which can be derived from the stationary
phase condition on Hamilton’s equation of motion. The
resulting initial growth scaling law Eq. (18) is linear with
respect to the resonance G.

On the other hand, particles will be captured into res-
onance islands for the positive α case. These captured
particles will move outward in phase space as the bare
tune is further lowered. For α > 0, we propose to use
ftrap = 2.5% to define the critical resonance strength,

and find that the critical resonance strength vs the tune
ramp rate and initial emittance have a simple scaling
power-law shown in Fig. VI A. The scaling law falls be-
tween Eq. (19) and Eq. (21). Our calculation agrees rea-
sonably well with the experimental data of Ref. [3] shown
in Fig. 19. However, our scaling law differs from Eq. (22)
based on Ref. [3], which may have a different definition
of trapping efficiency or critical resonance strength.

Our method is also applicable to other resonances. We
believe that the stationary phase condition is a good cri-
terion in solving Hamilton’s equation of motion. The
scaling law should be applicable to other betatron res-
onances. For example, the critical resonance of an oc-
tupole resonance should scale like ∼ |dν/dn|1/2ǫ−1 and
nearly independent of the nonlinear detuning parame-
ter. Our scaling law can be used in the design of high
power accelerators, estimating the emittance growth in
cyclotron, and requirement of slow beam extraction using
the third-order resonance.

A non-scaling FFAG has recently been commissioned
[9]. Our scaling law should be timely for experimental
tests. Study of nonlinear resonance scaling law is impor-
tant for future high power accelerators. Since our scaling
law differs markedly from that of Ref. [3], experimental
verification would be very timely indeed.
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