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find agreement between data and standard-model backgrounds. We calculate 95% confidence level
upper limits on the cross section of the process pp̄ → X2X2 → ZZX1X1 ranging from 50 fb to 1
pb, depending on the masses of X1 and X2.
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A natural extension to the standard model of particle
physics is a fourth generation of quarks and leptons. The
inclusion of a fourth generation provides a source of CP
violation in Bs decays and can accommodate a heavy
Higgs boson [1, 2]. Searches for fourth generation quarks
at the Fermilab Tevatron have constrained the mass of
up-type quarks (u4), that decay as u4 → Wq, where q is
a generic down-type quark, to be mu4 > 340 GeV/c2 at
95% confidence level (CL) [3], while limits on the mass of
down-type quarks (d4) decaying via d4 → Wt are md4 >
372 GeV/c2 at 95% CL [4].

Following the trend of mass hierarchy in the standard
model, the least massive and therefore most accessible
particle of this fourth generation may be the neutrino.
Such a neutrino need not be solely a Dirac or Majorana
state, but may be a mixture of the two [5]. This leads to
two mass eigenstates N1 and N2, where N2 is the unstable
heavy eigenstate and N1 is the stable and least massive
eigenstate of the fourth generation neutrinos. These par-
ticles would partially evade the neutrino mass constraints

Maria, 110v Valparaiso, Chile, ddYarmouk University, Irbid 211-63,
Jordan,
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from Z width studies at LEP [6].
The dominant production mechanism of N1 would

be via a Drell-Yan process, pp̄ → Z/γ∗ → N2N2 →
N1ZN1Z, giving a final state of two Z bosons and large
missing transverse momentum. This signature is shared
by several other interesting new physics processes, most
notably supersymmetric production, χ0

2χ
0
2 → Zχ0

1Zχ0
1,

where χ0
1 and χ0

2 are neutralinos. We consider the
mode in which one Z decays hadronically and the other
decays leptonically, giving a detector signature of two
charged leptons, two jets and large missing transverse
momentum. For this search we use pp̄ collisions at√

s = 1.96 TeV corresponding to 4.2 fb−1 of integrated
luminosity collected by the CDF II detector.

Events were recorded by CDF II [7, 8], a general-
purpose detector designed to study collisions at the Fer-
milab Tevatron pp collider. The CDF II detector is com-
posed of a charged-particle tracking system immersed
in a 1.4 T magnetic field consisting of a silicon mi-
crostrip tracker and a drift chamber. Electromagnetic
and hadronic calorimeters surround the tracking system
and measure particle energies. Drift chambers located
outside the calorimeters detect muons.

The data acquisition system is triggered by e or µ can-
didates with transverse momentum pT , greater than 18
GeV/c. We retain electron and muon candidates with
pseudorapidity [8] |η| < 1.1, pT ≥ 20 GeV/c and that
satisfy the standard CDF identification requirements [9].
For muons, the track fit χ2 per degree of freedom is used
to reject poorly fit tracks likely resulting from charged
pion and kaon decays in flight. Electrons from photon
conversions are suppressed by rejecting electron candi-
dates with a nearly collinear intersecting reconstructed
track. Jets are reconstructed in the calorimeter using
the jetclu [10] algorithm with a clustering radius of
0.4 in azimuth-pseudorapidity space. Measured jet ener-
gies are corrected to account for η-dependent variations
in detector response, calorimeter coverage, and the ex-
pected contribution from additional pp̄ interactions in the
same event [11]. Jets are selected if they have pT ≥ 15
GeV/c and |η| < 2.4. Missing transverse energy [12], 6ET ,
is reconstructed using calorimeter and muon information
including the corrections described above.

To isolate the ZZ signature, we require two opposite-
charge, same-flavor lepton candidates (e or µ) with pT >
20 GeV/c for which the lepton-pair invariant mass is
consistent with decay from a Z boson: m`` ∈ [76, 106]
GeV/c2. Additionally, we require at least two jets, each
with pT > 15 GeV/c and |η| < 2.4, and without identified
secondary vertices resulting from b-hadron decay [13].
The ZZ + 6ET signature has the further requirement of
large 6ET , varying with hypothetical N1 and N2 masses,
as shown in Table II.

The dominant background in the resulting sample is
production of a Z boson in association with two jets from
initial state radiation. We model this background using
alpgen [14] to describe the hard process and pythia [15]
for the showering and hadronization. This background is

strongly suppressed in events with large missing trans-
verse momentum, as shown in Figure 1 and Table I, and
is distinguished from the signal by the lack of a resonance
in the dijet mass, mjj .

The second largest expected background is due to W
boson production in association with three jets from
initial state radiation, where one jet is wrongly recon-
structed as a lepton. We model this using an independent
sample of events containing jets likely to mimic leptons,
following Ref. [16]. Additional backgrounds result from
standard-model production of two gauge bosons, includ-
ing ZZ, WW , and WZ, as well as tt̄ → WbWb, which
are all modeled using pythia.

Missing Transverse Momentum [GeV/c]
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FIG. 1: Distribution of missing transverse momentum in
events with the ZZ signature, for expected backgrounds and
observed data.

TABLE I: Expected number of events for each source of back-
ground to the ZZ → `+`−jj and ZZ +X1X1 → `+`−jj + 6ET

signatures, as well as the observed event yield in data with
4.2 fb−1 of integrated luminosity. The threshold in 6ET is
optimized as a function of the N1, N2 masses; one example
(N1 = 125 GeV/c2, N2 = 225 GeV/c2) is shown here. Uncer-
tainties shown include both systematic and statistical uncer-
tainty added in quadrature.

`+`−jj and
Process `+`−jj 6ET > 36 GeV
WW 4.4 ± 1.3 2.7 ± 0.8
tt̄ 14.8 ± 3.0 11.6 ± 2.3
W+jets 36.1 ± 16.7 21.7 ± 12.6
ZZ 99.4 ± 20.5 4.2 ± 0.9
WZ 105.6 ± 22.1 5.2 ± 1.1
Z+jets 10171 ± 4422 94.6 ± 38.5
Total 10432 ± 4485 140.0 ± 40.6
Data 10199 152

To isolate the double-resonance nature of the ZZ + 6ET

signature, we calculate the distance from the Z boson re-
constructed mass in the m``−mjj mass plane, accounting
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for the relative difference in the resolutions between the
leptons and jets as well as the observed bias in recon-
structed mjj , using the variable

∆m =

√(m`` −mZ→``

g``

)2

+
(mjj −mZ→jj

gjj

)2

, (1)

where m``(mjj) is the reconstructed lepton (jet) pair
mass, compared to the reference mZ→`` = 91.6 GeV/c2

(mZ→jj = 85.3 GeV/c2) found in simulated events. To
account for the superior lepton resolution, the dilepton
and dijet mass differences are scaled by factors related
to the resolutions: g`` = 10 GeV/c2, gjj = 15 GeV/c2.
The uncertainties of these reference values are small, and
may be neglected. The distribution of ∆m for data and
simulated background and signal is shown in Figure 2.

We model the production of the N2 signal and its
subsequent decay into N1 over a grid of masses in
the (MN1,MN2) plane using madgraph [17] with the
cteq5l [18] parton distribution fuctions; pythia [15]
is used for the showering and hadronization. To sup-
press the large backgrounds expected from standard-
model sources we require large 6ET ; as the expected mag-
nitude of missing transverse momentum depends strongly
on MN1 and MN2, we vary the selection threshold of 6ET

to optimize for sensitivity at each (MN1,MN2) pair con-
sidered, as seen in Table II. The acceptance for each mass
point can be seen in Figure 3. For each point in the mass
grid, we form template histograms as a function of ∆m
for the expected signal and background, as displayed in
Figure 2.

m ∆
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FIG. 2: Distribution of the variable ∆m, defined in the text,
for expected background, observed data and an example sig-
nal (scaled by 104) in data with 4.2 fb−1 of integrated lumi-
nosity. This example uses a missing transverse momentum
threshold of 6ET > 36 GeV, optimized for this (MN1, MN2)
mass point; see Table II. Background uncertainties are sta-
tistical and systematic added in quadrature.

In addition to the templates formed for the nominal
expectation, we form alternate templates that incorpo-
rate the effects of systematic uncertainties under ±1σ
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FIG. 3: Acceptance of the ZZ + 6ET signature, including
BR(ZZ → ``qq), as a function of the masses of the fourth
generation neutrinos, N1 and N2. The threshold in 6ET is
optimized at each point on a grid in this plane. Linear inter-
polation is performed between the grid points. The apparent
structure in the plot results from statistical fluctuation.

variation. Fitting to these templates using the maxi-
mum likelihood method, we extract the best-fit signal
cross section, σN2. Systematic uncertainties affecting the
shapes of templates, including uncertainty in the jet en-
ergy scale [11], QCD radiation, PDFs, Q2 (square of mo-
mentum transfer in the interaction) and uncertainty in
lepton energy resolution, are accounted for as nuisance
parameters in our likelihood. The dominant source of
systematic uncertainty in this analysis is uncertainty in
the jet energy scale (40%), which can significantly modify
the number of jets in background processes that pass the
pT threshold, the location of the mjj resonance in the sig-
nal process, and the measured 6ET in an event. The sec-
ond largest systematic uncertainty is due to uncertainty
on the theoretical normalization of the background rates.
Finally, we apply the unified ordering principle [19] for
the Neyman construction to create confidence intervals
in the true value of σN2 for each N2, N1 mass point.

We find the candidate events in the data to be con-
sistent with expected standard-model backgrounds and
thus set upper limits at 95% CL on the cross section for
pp̄ → N2N2 → N1ZN1Z. Theoretical cross sections for
each mass point are presented in Table II, along with
their respective expected and observed limits in our data
sample. The expected and observed cross section limits
can be seen in Figure 4 and Table II.

In summary, we have performed the first search for new
phenomena in events with two reconstructed Z bosons
and large missing transverse momentum. This signature
is sensitive to processes pp̄ → X2X2 → ZZX1X1, where
X2 is an unstable particle decaying as X2 → ZX1 and
X1 being undetected. The particles X1 and X2 may be,
among other possibilities, fourth generation neutrinos or
supersymmetric particles. A specific model in which X2

and X1 are fourth-generation neutrinos is used without
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TABLE II: Acceptance of the ZZ + 6ET selection for vary-
ing thresholds in 6ET optimized for each point in the MN1,
MN2 mass plane. Also shown are the median expected and
observed 95% CL upper limits on the cross section (σN2) in
data with 4.2 fb−1 of integrated luminosity, as well as the
theoretical prediction [17, 20].

MN1, MN2 6ET Cut Acceptance σN2 [fb]
[GeV/c2] [GeV] [%] Theory Exp. /Obs. Limit

75, 175 37 0.99 0.51 511 / 702
75, 200 68 1.02 0.21 292 / 369
125, 225 36 0.85 0.16 684 / 1088
75, 225 92 0.93 0.081 156 / 273
75, 275 118 1.01 0.015 94 / 132
125, 300 119 1.06 0.013 99 / 138
175, 300 80 0.96 0.022 171 / 315
125, 350 156 1.05 0.003 75 / 48
225, 350 80 1.05 0.006 190 / 297
75, 350 167 1.06 0.001 71 / 55

loss of generality. In the final state in which one Z bo-
son decays to two charged leptons and the second decays
hadronically, we find agreement between the data and
the standard-model expectation using data from proton-
antiproton collisions with 4.2 fb−1 of integrated lumi-
nosity. Based on the results in Table II, we report
95% CL upper limits on the cross section of the pro-
cess pp̄ → X2X2 → ZZX1X1 ranging from 50 fb to 1 pb
depending on the masses of X1 and X2.
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FIG. 4: Upper limit at 95% CL on the cross section of
pp̄ → N2N2 → N1ZN1Z in data with 4.2 fb−1 of integrated
luminosity as a function of the masses of N1 and N2. Top
shows median expected limits; bottom shows observed limits;
see Table II.
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