
ar
X

iv
:1

11
1.

66
21

v2
  [

as
tr

o-
ph

.C
O

] 
 1

9 
D

ec
 2

01
1

Draft version December 20, 2011
Preprint typeset using LATEX style emulateapj v. 5/2/11

THE SDSS COADD: CROSS-CORRELATION WEAK LENSING AND TOMOGRAPHY OF GALAXY
CLUSTERS

Melanie Simet1,2, Jeffrey M. Kubo3, Scott Dodelson 1,2,3, James T. Annis3, Jiangang Hao3, David Johnston3,
Huan Lin3, Ribamar R. R. Reis4, Marcelle Soares-Santos3, Hee-Jong Seo5

1Department of Astronomy & Astrophysics, The University of Chicago, Chicago, IL 60637
2Kavli Institute for Cosmological Physics, Chicago, IL 60637

3Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510
4Instituto de F́ısica, Universidade Federal do Rio de Janeiro, Brazil and

5Berkeley Center for Cosmological Physics & Berkeley Lab, University of California, Berkeley, CA 94720

Draft version December 20, 2011

ABSTRACT

The shapes of distant galaxies are sheared by intervening galaxy clusters. We examine this effect
in Stripe 82, a 275 square degree region observed multiple times in the Sloan Digital Sky Survey
and coadded to achieve greater depth. We obtain a mass-richness calibration that is similar to other
SDSS analyses, demonstrating that the coaddition process did not adversely affect the lensing signal.
We also propose a new parameterization of the effect of tomography on the cluster lensing signal
which does not require binning in redshift, and we show that using this parameterization we can
detect tomography for stacked clusters at varying redshifts. Finally, due to the sensitivity of the
tomographic detection to accurately marginalizing over the effect of the cluster mass, we show that
tomography at low redshift (where dependence on exact cosmological models is weak) can be used to
constrain mass profiles in clusters.
Subject headings: Galaxies: clusters: general — Gravitational lensing

1. INTRODUCTION

Weak lensing, the distortion of observed galaxy
shapes by the gravitational potential of large-scale struc-
ture, has great potential to help determine cosmolog-
ical parameters (Albrecht et al. 2006; Hoekstra & Jain
2008; Huterer 2010; Mellier 1999; Munshi et al. 2008;
Peacock et al. 2006). Lensing by galaxy clusters can
constrain the mass and mass distribution of those
clusters (Kaiser & Squires 1993; Schneider et al. 2006;
Johnston et al. 2007), which has implications for the am-
plitude of the matter power spectrum σ8, the matter den-
sity Ωm, and the evolution of dark energy (Marian et al.
2009; Wang & Steinhardt 1998; Albrecht et al. 2006).
Since the lensing cross-section varies with the dis-

tances between the observer, the lens, and the lensed
galaxy, it is also possible to obtain information about
the time-dependent cosmic geometry. Tomography
can constrain parameters such as the dark energy
density ΩΛ and its equation of state w (Hu 1999)
and can also test general relativity on large scales
(Zhao et al. 2009). Tomographic analysis for cosmology
requires deep, wide, high-resolution surveys (Bernstein
2007; Albrecht et al. 2006; Peacock et al. 2006), so there
is great potential for results from upcoming large-
scale surveys such as the Dark Energy Survey (DES;
http://www.darkenergysurvey.org).
Tomography has previously been observed around a

small number of clusters. The change in shear with red-
shift can be observed by binning source galaxies into red-
shift slices and determining the amplitude of the signal
in each bin around single clusters, as Medezinski et al.
(2011) and Taylor et al. (2004) have done; in addition
Taylor et al. fit a three-dimensional gravitational poten-
tial for the clusters in their survey. Gavazzi & Soucail
(2007) and Shan et al. (2011) take an inverse approach,

using the expected change with redshift to infer the
redshift of potential clusters identified through shear
peaks and to distinguish noise peaks from real clus-
ters. Simon et al. (2011) look for shear peaks in three-
dimensional convergence maps of the Abell 901/902 su-
percluster, detecting additional structure behind the
known clusters using the lensing strength at a series of
redshift slices. Here we restrict ourselves to the question
of the redshift-distance relation, using a stacked sample
of many clusters rather than making a detection for sin-
gle clusters in high signal-to-noise data.
In this work, we detect lensing around the clusters in

Stripe 82 of the Sloan Digital Sky Survey (SDSS), a re-
gion observed multiple times so that it probes ∼ 2 mag-
nitudes deeper than the SDSS sample overall, reaching a
depth (50% completeness) of 23 in the i-band (York et al.
2000; Frieman et al. 2008; Annis et al. 2011). Like the
DES, Stripe 82 of the SDSS achieves its depth by
coadding many images of the same region of the sky. This
process can introduce systematic errors to the lensing sig-
nal (Schneider et al. 2006, Part 3, §3.3), so one motiva-
tion for this study is to check if coadding adversely affects
the cluster lensing signal. The deeper sample also opens
up the possibility of detecting tomography. In principle,
tomography offers the promise of determining cosmolog-
ical parameters, but in this study we aim only to detect
the greater shear in distant galaxies.
Our lensing and cluster data are described in §2. We

analyze the data using a likelihood method described in
§3. Results of the analysis are given in §4.

2. DATA

2.1. Images

For our lensing catalog, we use the publicly available
coadded images from Stripe 82 (Annis et al. 2011). The

http://arxiv.org/abs/1111.6621v2
http://www.darkenergysurvey.org
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total area of the stripe is 275 deg2, with a declination
between -1.25◦ and +1.25◦ and a right ascension from
20h to 4h. The stripe was observed a number of times,
in some cases with the same seeing requirements as the
rest of the SDSS and in others as part of a supernova
survey that also took images in worse seeing and during
times of bright moonlight or bad photometric conditions.
After cuts were made, the best images were coadded to
obtain deeper images (20-30 images combined for most
of the stripe, selected based on seeing in the r band,
r-band sky brightness, and sufficiently small photomet-
ric corrections required during photometric calibration);
the median seeing in the coadded images is 1.1”. See
Annis et al. (2011) and §3 of Abazajian et al. (2009) for
more detail. The Johnston et al. (2007) sample, in com-
parison, covers single (not coadded) images in a subset of
Data Release 4 selected for extinction and distance from
the survey edge, some of which overlap with our sample
(Sheldon et al. 2009).
We select objects from the Stripe 82 images that are

classified as having an object type of 3, which are ob-
jects the pipeline identified as galaxies. The galaxies are
then selected for extinction-corrected i-band magnitudes
in the range 18.0 < deredi < 24.0 and for object size
(Mrrcc, the sum of the second-order moments in the de-
tector row and column directions) greater than 1.5 times
the size of the best-fit point spread function (Mpsf

rrcc) at
the position of each galaxy. We also reject objects that
contain saturated pixels or that triggered flags indicat-
ing problems in the adaptive moment measurements. To
correct for the PSF anisotropy and dilution, we use the
linear PSF correction scheme described in Appendix B of
Hirata & Seljak (2003). We fit polynomials to the resid-
ual differences between measured and model PSF ellip-
ticities and sizes for bright stars, in order to improve the
PSF model subsequently used in correcting the measured
galaxy shapes. In addition, we find that the average el-
lipticities in each camera column (detector) are nonzero,
so we subtract this small bias from the final results to
force the averages to zero. Further details are available
in Lin et al. (2011). We reject galaxies with a total cor-
rected ellipticity ecorr > 1.4. A histogram of the mag-
nitudes of the galaxies included in our coadded catalog,
after the photo-z cuts described in §2.2, is shown in Fig.
1.
We select clusters from the MaxBCG catalog of

Koester et al. (2007). The MaxBCG algorithm detects
galaxy clusters by matching the galaxy distribution to
a cluster model that depends on the clustering in spa-
tial and color space as well as the presence of a bright-
est cluster galaxy (BCG) at the center of the cluster.
Cluster member galaxies are selected as within ±2σ of
the corresponding red sequence, fainter than the identi-
fied BCG but brighter than 0.4L∗ at the cluster redshift.
The catalog covers the redshift range 0.1 < z < 0.3. We
then divide the catalog into richness bins, where the rich-
ness N200 counts the number of cluster member galaxies
within a radius r200 of the cluster center. The radius r200
is the radius inside which the average density of the clus-
ter is 200 times the critical density ρc of the universe at
the lens redshift; in the case of the MaxBCG catalog, an
observational proxy for the theoretical r200 is used, but
previous studies have found the two to be in good agree-

Fig. 1.— Histograms of i-band magnitudes (top) and photometric
redshifts (bottom) for our selected objects in the Stripe 82 coadd.
While our selection criteria allow i-band magnitudes up to 24, most
of the galaxies with i-band magnitudes above 22 have been removed
by our photo-z selection criteria; the σz selection criteria also re-
moved many galaxies beyond z = 0.5.

ment (e.g. Johnston et al. 2007). There are 492 clusters
with richness N200 ≥ 10 with a maximum richness of 88.
We bin these clusters into the 6 richness bins shown in
in Table 2.1, which follows the scheme of Johnston et al.
(2007) to facilitate comparison. We note that the rich-
est bin has only one cluster, but we confirm in §4 that
this does not bias our results. The Johnston et al. DR4
sample is much brighter, so the background galaxies are
at lower redshift and are less dense than our Stripe 82
sample (at about 1 galaxy per square arcminute in the
DR4 sample compared to 6 galaxies per square arcminute
in the coadd). On the other hand, the selected region of
DR4 covers much more area than Stripe 82 and so it con-
tains a larger number of clusters in our redshift range.
The combination means our study is complementary to
Johnston et al. (2007) and our constraints on mass as a
function of richness should be consistent with their re-
sults.

2.2. Photometric redshift catalog

In our analysis we use photometric redshifts for
the SDSS coadd catalog generated by Reis et al.
(2011). Briefly, this method uses the same neural
network algorithm that was used in the SDSS DR6
(Adelman-McCarthy et al. 2008; Oyaizu et al. 2008).
Here a spectroscopic training sample of 83,000 galax-
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N200 Number of clusters
10-11 167
12-17 182
18-25 85
26-40 38
41-70 19
88 1

TABLE 1
Richness ranges for our selected bins

ies from five different surveys are used: the SDSS
DR7 (Abazajian et al. 2009), CNOC2 (Yee et al. 2000),
WiggleZ (Drinkwater et al. 2010), DEEP2 (Weiner et al.
2005), and VVDS (Garilli et al. 2008). Futher details
on the SDSS coadd photometric redshift catalog can be
found in Reis et al. (2011).
Cuts were made on the photometric redshifts to select

galaxies with zphot < 0.8 and photometric redshift error
zerr < 0.1. After these cuts, 4.12 million background
galaxies remain with projected distance less than 5 h−1

Mpc from a cluster center. The photometric redshift
distribution of these galaxies is shown in Fig. 1.

3. METHODOLOGY

3.1. Theoretical Background

The azimuthally averaged tangential shear signal
around any distribution of mass with projected density
Σ(r) is given at radius R by

〈γt〉(R) =
∆Σt(R)

Σc
≡

Σ̄(R)− 〈Σ(R)〉

Σc
(1)

where brackets indicate the azimuthal average, the bar
indicates an average over all radii interior to R, and Σc

is defined by

Σc =
c2

4πG

Ds

DdDds
(2)

where Ds, Dd and Dds are the angular diameter dis-
tances from the observer to the source, from the observer
to the lens, and from the lens to the source, respectively
(Schneider et al. 2006). The most direct view of the lens-
ing signal in the data is the tangential ∆Σ profile,

∆Σt(R) = Σc〈γt〉(R), (3)

which removes the dependence on background galaxy
redshift and most of the dependence on cluster redshift.
We can also plot the ∆Σx profile, using γx, the compo-
nent of the shear oriented at 45◦ to a vector from the
object to the center of the lens, instead of γt, the com-
ponent oriented at 90◦. The ∆Σx profile should be zero.
We assume that each cluster has a Navarro-Frenk-

White profile (Navarro, Frenk & White 1997, NFW)
with concentration c200 = 4 (Gao et al. 2008;
Johnston et al. 2007) and one free parameter M200, de-
fined in a similar way to N200 as the mass inside a sphere
of radius r200. The density profile is

ρ(r) =
δcρc

(r/rs)(1 + r/rs)2
(4)

with scale radius

rs ≡
r200
c200

=
1

c200

(

3M200

800πρc

)1/3

, (5)

and

δc ≡
200

3

c3200
ln(1 + c200)− c200/(1 + c200)

. (6)

The tangential shear is then

γt =
rsδcρc
Σc

g(R/rs) (7)

where g(x) resembles a smoothed broken power law,
steeper than 1/r at radii r > rs and shallower, asymp-
totically approaching 1, at r < rs. The full form can be
found in Wright & Brainerd (2000).
There are several sources of contamination that must

be accounted for to extract an unbiased estimate of M200

for a cluster or a stacked set of clusters in a given rich-
ness bin. At very small distances from the cluster center
(∼ 0.1h−1 Mpc in the lens plane) a term from the mass in
the brightest cluster galaxy (BCG) becomes important,
and at very large radii (∼ 5 − 10h−1 Mpc in the lens
plane) the overlapping signal from nearby haloes comes
to dominate. To avoid such effects, we limit our analysis
to the background galaxies in the annulus 0.1-5h−1 Mpc
in the lens plane from the cluster center. Intervening
large-scale structure also has an effect on the observed
strength of the lensing; however, combining clusters at
different points on the sky should remove the depen-
dence on the large-scale structure as the extra lensing
along the different lines of sight should be uncorrelated
(Johnston et al. 2007). There is also a non-negligible
chance that the selected BCG is not at the center of the
cluster, which would dilute the shear signal at smaller
radii by essentially averaging over an annulus that in-
cludes background galaxies at varying radii from the clus-
ter center. We seek to understand this correction with
mock catalogs as described in §3.3.
A further distortion to the shear profile comes from

the misidentification of galaxies in the cluster as galax-
ies behind the cluster, which dilutes the average shear
signal. The correction for this effect is found by com-
paring the (appropriately weighted) number density of
galaxies close to clusters with the corresponding number
density around random points on the sky, as described in
Sheldon et al. (2004, §4.1). Specifically, for background
galaxies i around a set of clusters j and for background
galaxies k around a set of randomly chosen points l, the
correction factor is given by

C(r) =
Nrandom

Nclusters

∑

i,j〈Σ
−1
c,ij〉

2/(σi
γ)

2

∑

k,l〈Σ
−1
c,kl〉

2/(σk
γ )

2
(8)

where σγ is the error from both the intrinsic ellipticity
error and the measurement error, Nrandom and Nclusters

are the number of random points and clusters respec-
tively, and the expectation value 〈Σ−1

c 〉 is taken to make
the function well-behaved nearDs = Dd. This correction
does not account for magnification, but the error induced
in the correction by magnification is of the same order
as the convergence, itself the same order as the shear
(Mandelbaum et al. 2005) which is ≈ 0.01, and there-
fore we expect that it will be lower than other sources of
noise in this analysis. The spread of photo-z uncertainty
is accounted for in the calculation of 〈Σ−1

c 〉.
When performing the mass fits, the individual shears

are multiplied by C(r) to remove the clustering bias. We



4

Fig. 2.— Correction factor due to misidentification of cluster
member galaxies. Best-fit powerlaws are shown.

plot the correction for the different richness bins of the
coadd in Fig. 2. We find that the correction scales ap-
proximately as a powerlaw in radius, with indices from
0.2− 1.4.
After applying these corrections to the underlying

shear profiles, we bin the clusters in richness and perform
a χ2 fit to the data in each bin to obtain an estimate of
M200 in the given bin. We have fixed the concentration
to c200 = 4. We expect that the masses will be related
to the richnesses via a power law,

M200 = M200|20

(

N200

20

)α

(9)

where M200|20 is the mass of a cluster with N200 = 20.
When doing the fits within each bin, we marginalize over
the powerlaw index α to avoid biasing the masses within
each bin. We then fit a relation of this form to the six
masses we have obtained, one for each bin.

3.2. Tomography

The second part of our analysis is to search for a to-
mographic signal. We write Σc for a source redshift z
as

1

Σc(z)
=

1

Σc(z̄)

(

1 + a

(

Σc(z̄)

Σc(z)
− 1

))

(10)

where z̄ = 0.45 is the median redshift of the background
galaxies and a is a free parameter whose true value is one.
We assume a fiducial cosmology of Ωm = 0.3, ΩΛ = 0.7,
andH0 = 100h km/s/Mpc to generate Σc. A survey with
no sensitivity to the background redshifts would not be
able to constrain a whereas a deep survey with reliable
redshifts would place tight constraints on a. For this
part of the analysis, we vary M200|20, fixing the slope
α to its best fit value. Then we marginalize over the
mass scaling to obtain a likelihood for a. Ultimately, one
would like to use tomography to constrain the geometry
of the Universe, but mock catalogs suggest that Stripe
82 will not have the sensitivity to probe cosmological
parameters, so we report the more agnostic constraint
on a.
For a more visual representation of the tomographic

signal, we bin the background galaxies by redshift, then

Fig. 3.— ∆Σt and ∆Σx profiles for six richness bins in one
realization of the mock catalog. Note the different scale in the
N200 = 88 bin. A color version is available online.

determine the amplitude of the NFW shear signal (not
∆Σ signal) for each bin, using all the clusters scaled to-
gether by N200 as in the previous section. We do not
correct for the differing redshifts of the clusters, how-
ever. We then plot the shear predicted by our fit for a
galaxy located at 1 h−1 Mpc from a N200 = 20 cluster
for each redshift bin.

3.3. Mock catalogs

We test our analysis by creating a set of mock catalogs
from our data. We preserve the positions, shape errors,
and photometric redshifts of the Stripe 82 galaxies and
the positions, redshifts, and richnesses of the clusters,
but replace the actual shears of the background galaxies
with the expected shear generated from a shear model
plus noise. The input mass-richness relation is set to
M200|20 = 9× 1013h−1M⊙ and α = 1.4. We generate 20
realizations of the mock catalog of the base model: an
NFW profile with Gaussian redshift errors, the expected
geometry (a = 1), and some of the haloes incorrectly
centered on the BCG with a richness-dependent prob-
ability from simulations in Johnston et al. (2007). The
shears are generated with an expectation value computed
from the shear model and a random Gaussian error based
on the variance of the observed shears with magnitude.
This error should contain both the intrinsic shape errors
as well as measurement errors, and it asymptotes to 0.21
at deredi = 18. The redshifts used to compute Σc are
drawn from a normal distribution using the photometric
redshift error as the width. A sample ∆Σ profile for one
realization of a mock catalog is shown in Fig. 3. In addi-
tion to these base model mock catalogs, we also generate
several alternate cases: a singular isothermal sphere pro-
file and an NFW model with c200 = 10 to check the effect
of incorrect profile assumptions; a true Gaussian redshift
error that is ten times larger than the error reported in
the catalog and used for analysis; and Ωm = 1 rather
than 0.3. We generate 5 realizations of each of the four
alternate scenarios and analyze all the mock catalogs us-
ing the same pipeline we use for the data, including the
assumption of an NFW model and photo-z errors as re-
ported.
Next, we fit an NFW lens model to the mock data using

a χ2 analysis with the mass as the only free parameter;
we do not include the C(R) misidentification correction
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Fig. 4.— Mean and variance of the best-fit mass as a function
of richness for twenty realizations of the mock catalog, analyzed
using true centers and observed centers.

Fig. 5.— Sample ∆Σ profiles for the N200 =26-40 richness bin
from one realization of the mock catalog. Light points were ana-
lyzed with the correct centers and dark points were analyzed with
the (offset) observed centers, with best-fit models for both.

as it was not used as an input to the mock catalogs.
The results from 20 base model cases are shown in Fig.
4. As expected, the mass is underestimated due to the
dilution of the miscentered clusters: the mean best fit
values of the twenty mock catalogs are M200|20 = (6.17±

0.32)× 1013h−1M⊙ and α = 1.62± 0.08. Using the true
centers, we we fit M200|20 = (8.89± 0.34)× 1013h−1M⊙

and α = 1.40 ± 0.06, very close to the input model. A
sample ∆Σ profile using the two different centers for one
bin in one realization of the mock catalog is shown in Fig.
5. Since the probability of miscentering decreases with
increasing richness, the underestimation of the mass also
decreases with increasing richness; we find

M200,true

M200,mis
= 1.44± 0.17

(

N200

20

)−0.21±0.18

(11)

which we will apply to the results of the Stripe 82 data
as a correction.
The likelihood curves for a for different realizations of

the mock catalog are shown in Fig. 6. The 1σ error
obtained from each mock catalog is of order 0.03, and

Fig. 6.— The likelihood of our tomography parameter a in twenty
realizations of the mock catalog.

Fig. 7.— Shear signal as a function of background galaxy redshift
for one realization of the mock catalog. This is the shear at 1 h−1

Mpc from a cluster of N200 = 20 based on the fit to all clusters in
the catalog.

we find the peak position of the curves is clustered near
our input value of 1 (mean= 1.01 ± 0.007). We use the
spread in the peaks to estimate the effects of the errors
that exist but that we have not explicitly included in the
fitting model, such as binning and photometric errors.
The errors as estimated from the standard deviation in
the peak values of a is σa = 0.025, similar to the width
of an individual likelihood curve, as we expect. We also
show the results for the shear as a function of redshift fit
for one realization of the mock catalog in Fig. 7.
The results of the alternate scenarios are shown in Fig.

8. We use the miscentered versions of these mocks to try
to understand what the effect on our results would be
from each of the errors described. The isothermal case
leads to overestimated masses and much too low peak
likelihood values of a. This means we should be able to
distinguish the models by the use of tomography. A sim-
ilar, though much less dramatic, effect is seen with the
NFW model with c = 10: the peak likelihood value of a
is low, so again the tomography acts as a check on our
profile assumptions. The slope of the mass-richness rela-
tion is altered, but as we do not know the true value, this
will not be distinguishable in the data. Greater redshift
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Fig. 8.— Mass determinations and likelihood curves for four al-
ternate mock data scenarios. A color version is available online.

errors lower the mass determinations, and they also sig-
nificantly lower the peak values of the likelihood curves.
The altered cosmological model affects the mass but does
not detectably alter the peak values of a, so we do not
expect to be sensitive even to very different cosmological
models.

4. RESULTS

Fig. 9 shows the observed ∆Σ, which removes most
the dependence on cluster redshift so that clusters of the
same mass have the same profile. (The main dependence
on z, the lensing geometry, is removed, but we retain
a slight dependence due to the parameterization of the
mass as proportional to ρc.) As expected, the tangential
signal ∆Σt is large close to the cluster centers and drops
with radius, while the cross signal ∆Σx is consistent with
no signal at all radii. Also as expected, the signal is
largest in the largest richness bins.
When we compare the ∆Σ results shown in Fig. 10 to

the results of Johnston et al. (2007) for the entire SDSS
catalog, we see that our amplitude is consistent, so we do
not believe the coaddition process has diluted the lensing
signal.
The mass-richness relation is shown in Fig. 11. This

leads to best fit parameters M200|20 = (9.56 ± 0.75) ×

1013h−1M⊙ and α = 1.10± 0.12. These mass estimates
are also consistent with the Johnston et al. results for

Fig. 9.— ∆Σt and ∆Σx profiles for six richness bins in the Stripe
82 coadd. Note the different scale in the N200 = 88 bin. A color
version is available online.

Fig. 10.— ∆Σ profiles for our analysis of Stripe 82 coadd and the
results of Johnston et al. (2007) for a subset of DR4. The signal
increases close to the cluster centers, and also increases with rich-
ness, as expected. The results are consistent with Johnston et al.
(2007). Note the different scale in the N200 = 88 bin. A color
version is available online.

the entire SDSS catalog (with the 18% upward correction
of Rozo et al. (2010) due to photoz effects as described
in Mandelbaum et al. (2008)). We note again that our
largest mass bin has only a single object, but combining
this bin with the next lowest bin does not significantly
change our results (changingM200|20 by 1% and α by 3%)
so we choose the binning that matches other analyses.
A visual representation of the shear as a function of

redshift is shown in Fig. 12. We use the best-fit α
from the mass-richness fit to compute the likelihood in a,
which is shown in Fig. 13. We obtain a peak at a = 0.99.
From the spread in the peak values of the mock data (Fig.
6) this is consistent with the expected value of 1 and the
mean mock data value of 1.01; adding the width of the
likelihood curve and the dispersion of the peak values of
the mock data in quadrature, we take the 1 σ range in
the data to be 0.94-1.02. This results strongly disfavors
the singular isothermal sphere as a model of the cluster
profile. Our 1σ range is too large to draw conclusions
about the concentration, however. We also strictly rule
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Fig. 11.— Best-fit masses as a function of richness for the
Stripe 82 data. We find a mass-richness relation of M200 =
(9.56± 0.75)(N200/20)1.10±0.12 × 1013h−1M⊙.

Fig. 12.— Shear signal as a function of background galaxy red-
shift for the Stripe 82 coadded data. This is the shear at 1 h−1

Mpc from a cluster of N200 = 20 based on the fit to all clusters in
the catalog.

out the case a = 0, which corresponds to no redshift
dependence in the shear signal.

5. CONCLUSION

We have examined the lensing signal behind clusters
in Stripe 82 of SDSS. The signal is consistent with the
wider, shallower Data Release 4, as evidenced by Fig. 11,
which shows the amplitude and slope of the mass-richness
relation. The deeper sample considered here, supple-
mented with photometric redshifts, allowed us to mea-
sure the effect that galaxies further from the cluster are
sheared more than those nearby. Fig. 13 illustrates the
constraints on a parameter a that encodes this effect.
The estimate of a = 0.99 ± 0.04 represents a clean de-
tection of this tomographic signal. In addition, the de-
tection of a requires an accurate model of the lensing
profile to marginalize over, and we find that the singu-
lar isothermal sphere is not a sufficient description of the
masses of the clusters in this analysis.
The lensing signal does not appear to be systematically

corrupted by the coadd process, even though this was
not driven by lensing requirements. This bodes well for
future surveys that will rely on coadded data.

Fig. 13.— Likelihood for our tomography parameter a generated
using all the clusters in our Stripe 82 data set. The value is close
to 1, as expected.
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