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ABSTRACT

We present and describe a catalog of galaxy photometric redshifts (photo-z’s) for the Sloan
Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique
to calculate photo-z’s and the Nearest Neighbor Error (NNE) method to estimate photo-z errors
for ~ 13 million objects classified as galaxies in the coadd with r < 24.5. The photo-z and
photo-z error estimators are trained and validated on a sample of ~ 83,000 galaxies that have
SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7),
the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep
Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the VIsible imaging Multi-
Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy
Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the
validation set have a photo-z error smaller than ogg = 0.031. After presenting our results and
quality tests, we provide a short guide for users accessing the public data.

Subject headings: photometric redshifts sdss — Sloan Digital Sky Survey

1. Introduction

In recent years, digital sky surveys obtained
multi-band imaging for of order a hundred mil-
lion galaxies, however we have spectroscopic red-
shifts available for only over one million galax-
ies. Deep, wide-area surveys planned for the next
decades will increase the number of galaxies with
multi-band photometry to a few billion and we will
only be able to obtain spectroscopic redshifts for
a small fraction of these objects, due to techno-
logical and financial limitations. As a result, sub-
stantial effort has been going into developing pho-
tometric redshift (photo-z) techniques, which use
multi-band photometry to estimate approximate
galaxy redshifts. For many applications in extra-
galactic astronomy and cosmology, the resulting

photometric redshift precision is sufficient for the
science goals at hand, provided one can accurately
characterize the uncertainties in the photo-z esti-
mates.

Two broad categories of photo-z estimators are
in wide use: template-fitting and training set
methods. In template-fitting, one assigns a red-
shift to a galaxy by finding the redshifted spec-
tral energy distribution (SED), selected from a li-
brary of templates, that best reproduces the ob-
served fluxes in the broadband filters. By con-
trast, in the training set approach, one uses a
training set of galaxies with spectroscopic redshifts
and photometry to derive an empirical relation be-
tween photometric observables (e.g., magnitudes,
colors, and morphological indicators) and redshift.
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Examples of empirical methods include Polyno-
mial Fitting (Connolly et al. 1995), the Near-
est Neighbor method (Csabai et al. 2003), the
Nearest Neighbor Polynomial (NNP) technique
(Oyaizu et al. 2008a), Artificial Neural Networks
(ANN) (Collister & Lahav 2004; Vanzella et al.
2004; d’Abrusco et al. 2007), and Support Vec-
tor Machines (Wadadekar 2005). When a large
spectroscopic training set that is representative of
the photometric data set to be analyzed is avail-
able, training set techniques typically outperform
template-fitting methods, in the sense that the
photo-z estimates have smaller scatter and bias
with respect to the true redshifts (Oyaizu et al.
2008a). On the other hand, template-fitting can
be applied to a photometric sample for which rel-
atively few spectroscopic analogs exist. For a
comprehensive review and comparison of photo-z
methods, see Oyaizu et al. (2008a).

In this paper, we present a publicly available
galaxy photometric redshift catalog for the coadd
data which is part of the Seventh Data Release
(DR7) of the Sloan Digital Sky Survey (SDSS)
imaging catalog (Blanton et al. 2003; Eisenstein
et al. 2001; Gunn et al. 1998; Ivezi¢ et al. 2004;
Strauss et al. 2002; York et al. 2000; Abazajian
et al. 2009). We use the ANN photo-z method,
which has proved to be a superior training set
method (Oyaizu et al. 2008a), and briefly com-
pare the results using different photometric ob-
servables. Since the SDSS photometric catalog
covers a large area of sky, a number of deep spec-
troscopic galaxy samples with SDSS photometry
are available to use as training sets, as shown in
Fig. 1.

2. SDSS Photometric Catalog and Galaxy
Selection

The SDSS comprises a large-area imaging sur-
vey of the north Galactic cap, a multi-epoch
imaging survey of an equatorial stripe in the
south Galactic cap, and a spectroscopic survey
of roughly 10° galaxies and 10° quasars (York
et al. 2000). The survey uses a dedicated, wide-
field, 2.5m telescope (Gunn et al. 1998) at Apache
Point Observatory, New Mexico. Imaging is car-
ried out in drift-scan mode using a 142 mega-pixel
camera (Gunn et al. 2006) that gathers data in
five broad bands, ugriz, spanning the range from

3,000 to 10,000 A (Fukugita et al. 1996), with an
effective exposure time of 54.1 seconds per band.
The images are processed using specialized soft-
ware (Lupton et al. 2001; Stoughton et al. 2002)
and are astrometrically (Pier et al. 2003) and pho-
tometrically (Hogg et al. 2001; Tucker et al. 2006)
calibrated using observations of a set of primary
standard stars (Smith et al. 2002) observed on a
neighboring 20-inch telescope.

The seventh SDSS Data Release (DR7) imag-
ing footprint increased ~ 22% when compared to
the previous data release (DR6) which covers an
essentially contiguous region of the north Galactic
cap. The additional coverage includes the small
missing patches in the contiguous region of the
north galactic cap, and the stripes which are part
of the SEGUE (Sloan Extension for Galactic Un-
derstanding and Exploration) survey. In any re-
gion where imaging runs overlap, one run is de-
clared primary' and is used for spectroscopic tar-
get selection; other runs are declared secondary.
The area covered by the DR7 primary imaging sur-
vey, including the southern stripes, is 11,663 deg?
(Abazajian et al. 2009).

The SDSS stripe along the celestial equator
in the Southern Galactic Cap (“Stripe 82”) was
imaged multiple times in the Fall months. This
was first carried out to allow a co-addition of the
the repeat imaging scans in order to reach fainter
magnitudes, roughly 2 mag fainter than the single
SDSS scans (see Table 1). The co-addition in-
cludes a total of 122 runs, covering any given piece
of the ~ 250 deg? area between 20 and 40 times.
The co-addition runs are designated 106 and
206 under the Stripe82 database in the Catalog
Archive Server (CAS) (see the SDSS CasJobs web-
sitehttp://casjobs.sdss.org/casjobs/). The
reader can find a detailed description of the co-
addition in Annis et al. (2011).

The SDSS database provides a variety of
measured magnitudes for each detected object.
Throughout this paper, we use dereddened model
magnitudes to perform the photometric redshift
computations. To determine the model magni-
tude, the SDSS photometric pipeline fits two mod-
els to the image of each galaxy in each passband:
a de Vaucouleurs (early-type) and an exponential

lFor the precise definition of primary objects see
http://cas.sdss.org/dr7/en/help/docs/glossary.asp#P
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Fig. 1.— Normalized r magnitude distributions
for various catalogs. Top three rows: the dis-
tributions of the spectroscopic catalogs used for
photo-z training and validation are shown for
CNOC2, DEEP2, VVDS, WiggleZ and SDSS
DR7. FEntries denotes the number of unique
galaxy measurements used from each catalog.
Bottom left: distribution for the whole spectro-
scopic sample. Bottom right: the distribution
for the SDSS coadd galaxy sample, where objects
were classified as galaxies according to the photo-
metric TYPE flag (see text).
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(late-type) light profile. The models are convolved
with the estimated point spread function (PSF),
with arbitrary axis ratio and position angle. The
best-fit model in the r band (which is used to
fix the model scale radius) is then applied to the
other passbands and convolved with the passband-
dependent PSFs to yield the model magnitudes.
Model magnitudes provide an unbiased color esti-
mate in the absence of color gradients (Stoughton
et al. 2002), and the dereddening procedure re-
moves the effect of Galactic extinction (Schlegel
et al. 1998).

To construct the photometric sample of galax-
ies for which we wish to estimate photo-z’s, we
obtained a catalog drawn from the SDSS CasJobs
website. We checked some of the SDSS photo-
metric flags to ensure that we have obtained a
reasonably clean galaxy sample. In particular,
we selected all primary objects from Stripe82
that have the TYPE flag equal to 3 (the type
for galaxy) and that do not have any of the flags
BRIGHT, SATURATED, or SATUR_CENTER
set. For the definitions of these flags we refer
the reader to the PHOTO flags entry at the SDSS
website? or to Appendix A. We also took into ac-
count the nominal SDSS coadd flux limit by only
selecting galaxies with dereddened model magni-
tude r < 24.5. In addition, the co-addition does
not propagate information on saturated pixels in
individuals runs, and therefore the photometry of
objects brighter than » = 15.5 is suspect. To cir-
cumvent this issue we selected only galaxies with
r > 16. The full database query we used is given
in Appendix A.

The final photometric sample comprises 13, 688, 828

galaxies. Only 2,267 objects are in DR6 photo-
metric redshift catalog from Oyaizu et al. (2008a).
The r magnitude distribution of this sample is
shown in the bottom right panel of Fig. 1; the
g—r and 7 — 1 color distributions are shown in the
bottom panels of Fig. 2.

3. Spectroscopic Training and Validation
sets

Since our methods to estimate photo-z’s and
photo-z errors are training-set based, we would
ideally like the spectroscopic training set to be

%http://cas.sdss.org/dr7/en/help/browser/browser. asp



TABLE 1
SDSS CoADD PROPERTIES

AB magnitude limits

u 23.25
g 23.51
r 23.26
i 22.69
z 21.27

NoOTE.—Magnitude limits
are for 50% completeness for
galaxies in typical seeing (An-
nis et al. 2011). The median
seeing for the SDSS imaging
survey is 1.4".

fully representative of the photometric sample
to be analyzed, i.e., to have similar statistical
properties and magnitude/redshift distributions.
Training-set methods can be thought of as inher-
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not be biased by the prior). Given the practical
difficulties of carrying out spectroscopy at faint
magnitudes and low surface brightness, such an
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Fig. 2.— Normalized distribution of g — r and
r — i colors. Top row: the color distributions for
galaxies in the full spectroscopic sample. Bottom
row: the color distributions for galaxies in the pho-
tometric sample. As above, galaxy classification
used the photometric TYPE flag.

We have constructed a spectroscopic sample
consisting of 82,741 galaxies that have SDSS
coadd photometry measurements and that have
spectroscopic redshifts measured by the SDSS or
by other surveys, as described below. We im-
posed a magnitude limit of 16 < r < 24.5 on the
spectroscopic sample and applied additional cuts
on the quality of the spectroscopic redshifts re-
ported by the different surveys. Each survey pro-
viding spectroscopic redshifts defines a redshift
quality indicator; we refer the reader to the re-



spective publications listed below for their precise
definitions. For each survey, we chose a redshift
quality cut roughly corresponding to 90% redshift
confidence or greater. The SDSS spectroscopic
sample provides 57,020 redshifts with confidence
level zeont > 0.9. The remaining redshifts are:
1,355 from the Canadian Network for Observa-
tional Cosmology Field Galaxy Survey (CNOC2;
Yee et al. 2000), 9,955 from the Deep Extragalac-
tic Evolutionary Probe (DEEP2) (Weiner et al.
2005)% with zquality > 3, 8,702 from the WiggleZ
Dark Energy Survey (Drinkwater et al. 2010) with
QoP > 3, 5,709 from the VIsible imaging Multi-
Object Spectrograph - Very Large Telescope Deep
Survey (VVDS) (Garilli et al. 2008) with flag 3
and 4.

The spectroscopic sample obtained by combin-
ing all these catalogs was divided into two catalogs
of the same size (~ 42,000 objects each). One of
these catalogs was taken to be the training set used
by the photo-z and error estimators, and the other
was used as a wvalidation set to carry out tests of
photo-z quality (see §4.1).

The r-magnitude distributions for each spectro-
scopic sample are shown in Fig. 1, while Fig. 2
shows the color (g — r and r — ¢) distributions for
all objects in the final spectroscopic sample. As
for how representative the spectroscopic training
and validation sample are for the full photomet-
ric sample, we checked that the color/magnitude
space is fully covered by the spectroscopic sam-
ple up to redshift 0.75 - 0.8. Beyond this redshift
range, the spectroscopic sample partially cover
the color/magnitude space. Therefore, the reader
need to be cautious when using photo-z’s beyond
this range.

4. Methods

4.1. ANN Photometric redshifts

The ANN method that we use to estimate
galaxy photo-z’s is a general classification and in-
terpolation tool used successfully in a variety of
fields. We use a particular type of ANN called a
Feed Forward Multilayer Perceptron to map the
relationship between photometric observables and
redshifts, as implemented in Oyaizu et al. (2008a).

In this work we use X:15:15:15:1 networks to

Shttp://deep.berkeley.edu/DR2/

estimate photo-z’s, where X is the number of in-
put photometric parameters per galaxy, following
the notation of Collister & Lahav (2004). The
corresponding number of degrees of freedom (the
number of weights) is roughly 1,000, depending on
the actual value of X.

Following Oyaizu et al. (2008a), in order to
avoid over-fitting, the spectroscopic sample is di-
vided into two independent subsets, the training
and validation sets, and the formal minimizations
are done using the training set. After each mini-
mization step, the network is evaluated on the val-
idation set, and the set of weights that performs
best on the validation set is chosen as the final
set. To reduce the chance of ending in a less-than-
optimal local minimum, we minimize five net-
works starting at different positions in the space of
weights. Among these, we choose the network that
gives the lowest photo-z scatter in the validation
set.

We calculated photo-z’s using galaxy magni-
tudes, colors, and the concentration indices for all
passbands. The concentration index ¢; in a pass-
band ¢ is defined as the ratio of PetroR50 and
PetroR90, which are the radii that encircle 50%
and 90% of the Petrosian flux, respectively. Early-
type (E and SO0) galaxies, with centrally peaked
surface brightness profiles, tend to have low val-
ues of the concentration index, while late-type spi-
rals, with quasi-exponential light profiles, typically
have higher values of ¢. Previous studies (Morgan
1958; Shimasaku et al. 2001; Yamauchi et al. 2005;
Park & Choi 2005) have shown that the concen-
tration parameter correlates well with galaxy mor-
phological type, and we used it to help break the
degeneracy between redshift and galaxy type. We
present the photo-z results for different combina-
tions of input parameters in §5.

4.2. Photometric redshift errors

We estimated photo-z errors for objects in the
photometric catalog using the Nearest Neighbor
Error (NNE) estimator (Oyaizu et al. 2008b), pub-
licly available.* The NNE method is training-set
based, with a neighbor selection similar to the
NNP photo-z estimator; it associates photo-z er-
rors to photometric objects by considering the er-
rors for objects with similar multi-band magni-

“http://kobayashi.physics.1lsa.umich.edu/~ccunha/nearest/



tudes in the validation set. We use the validation
set, because the photo-z’s of the training set could
be over-fit, which would result in NNE underesti-
mating the photo-z errors. In studies of photo-z
error estimators applied to mock and real galaxy
catalogs, Oyaizu et al. (2008b) found that NNE ac-
curately predicts the photo-z error when the train-
ing set is representative of the photometric sam-
ple. In the following, oV V¥ will denote the nearest

z
neighbors error estimate.

5. Results

To test the quality of the photo-z estimates, we
use the photo-z bias zp.s and the photo-z RMS
scatter, o, defined by

N
1
Zbias — N ;(thot,i - Zspec,i)a (1)
N
1
U2 = N ;(thot,i - Zspec,i)zv (2)

and ogg, the range containing 68% of the val-
idation set objects in the distribution of §z =
Zphot,i — Zspec,i- 1N other words, ogg is the value of
|Zphot,i — Zspec,i| such that 68% of the objects have
|Zphot,i — Zspec,i] < 06s. Naturally, if the prob-
ability distribution function P(6z) is Gaussian o
and ogg coincide. We also consider og5, defined in
analogous way.

We computed photo-z’s using the ANN method
with different combinations of input photometric
observables. All tested combinations are listed in
Table 2. In case M, we use the five magnitudes
ugriz. In case C, we use the four colors u — g,
g—r,r—iand i—z. In case CC, we use the four
colors with the concentration indices c,cqcrcics.
We also repeat the cases M, C and CC splitting
the training set and the photometric sample into
4 bins of r magnitude, » < 18, 18 < r < 20, 20 <
r <22, 22 <r <24.5, and perform separate ANN
fits in each bin. These cases are dubbed Msplit,
Csplit and CCsplit, respectively. For all cases we
use the same network configuration, described in
Section 4.1.

In Fig. 3 we plot the photometric redshift,
Zphot, for 10,000 randomly selected objects from
validation set vs. true spectroscopic redshift,
Zspec, for all considered cases. In each panel, the

solid line traces zphot = Zspec and the dashed and
dotted lines show the corresponding 68% and 95%
regions (ogs and ogs ), respectively, defined in zgpe.
bins. We find that all cases produce very similar
results, in agreement with Oyaizu et al. (2008a).

Table 3 shows a summary of the performance
results of the different ANN cases. The standard
deviation in this values, estimated from the five
networks mentioned in Section 4.1, is 0.001. We
also show in Figure 4 the performance indicators
o and ogg as functions of r magnitude for all cases.
We see that the photo-z scatter increases consid-
erably for r > 22. This effect can be explained
by the small number of objects in the training set
covering this regime (see Figure 1). In addition,
we show in Figs. 5 and 7 zpqs, 0 and ogg as func-
tions of estimated photo-z and, in Figs. 6 and 8,
the same indicators as functions of the the spec-
troscopic redshift. We can see that the values of
these indicators increase for zppo+ > 0.75 regard-
less the case considered. We show in Table 4 an-
other important indicator, the fraction of catas-
trophic results, here defined as the number of ob-
jects for which we get |zphot — Zspee| > 0.1 divided
by the total number in the sample. This defini-
tion corresponds to ~ 12 % of the distribution of
|Zphot — Zspec| for this sample. Based on theses
results we choose Msplit as the best case. Specifi-
cally, Msplit has overall smaller ogg as a function
of magnitude (Figure 4) and a better fraction of
catastrophic results (Table 4).

In Fig. 9 we plot the colors u—g, g—r, r—i and
i — z versus spectroscopic redshift bright (r < 22)
and faint (r > 22) galaxies in the validation set.
We see that, for faint galaxies, colors and spectro-
scopic redshit are barely correlated. Such degen-
eracy explains the low efficiency of the method in
this magnitude regime.

In Fig. 10 we plot the normalized error distribu-
tion, i.e., the distribution of (zppot — zspec)/afNE,
for objects in the spectroscopic sample, using the
Msplit case, in r magnitude slices, without any
bias correction. The solid lines show Gaussian
distributions with zero mean and unit variance.
These plots indicate that, on average, the photo-z
estimates are nearly unbiased and the NNE error
is a good estimate of the true error, although we
can see some asymmetry in the distribution de-
pending on the magnitude range.

In Fig. 11 we show the distribution of the



estimated photometric redshift, corrected for the
bias, Zphot — Zbias for the photometric sample, in
r magnitude bins, for our best case (Msplit). The
bias was estimated from the validation sample in
photo-z bins with width 0.04 as in Fig. 5. The
bias correction is included in the final catalog.

For a significant fraction of the photometric
sample the nearest neighbors error estimate is
large (greater than 10% of photo-z value) and for
most of the science cases it will be necessary to
cut the catalog. We show in Fig. 12, the photo-z
distributions for the whole sample (as in Fig. 11)
and for objects with cYVE < 0.1. We also show in
Fig. 13 the photometric redshift, zpno:, for 10,000
randomly selected objects from validation set vs.
true spectroscopic redshift, zg,c. for the same low
error subsample.

We found that the use of concentration param-
eters does not improve significantly the result, in
contrast to our initial expectation, based on the
SDSS DRG6 results (Oyaizu et al. 2008b). O’Mill
et al. (2011) also found that these parameters im-
prove the results for the SDSS DR7 main data.
This is related to the error in the measured mo-
ments for higher magnitudes, which is specially
important for this sample, consequently the ad-
ditional noise roughly compensates the additional
information from these parameters. Similar con-
clusions can be found in (Singalet al. 2011), al-
though their definition of concentration is not the
same used here.

6. Accessing the Catalog

The best case bias corrected photo-z catalog
(Msplit) is publicly available as a SDSS value-

added catalog at http://www.sdss.org/dr7/products/value_

added/index.html.

7. Conclusions

We have presented a public catalog of photo-
metric redshifts for the SDSS coadd photometric
sample using photo-z estimates, based on the ANN
method, considering the five magnitudes ugriz as
input parameters and also performing the train-
ing in r magnitude bins separately (Msplit). Our
tests indicate that the photo-z estimates are most
reliable for galaxies with r < 22 and that the scat-
ter increases significantly at fainter magnitudes.
Based on our results, we advise the reader to use
carefully this catalog for zpno: > 0.75, since all
performance indicators show a lower efficiency of
the method, with the chosen spectroscopic sample,
at this redshift range. However, depending on the
specific science goals, a simple quality cut on the
photo-z error might be sufficient to compensate
this problem at the desired level.
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Fig. 3.— Zphot versus zspec for the validation set for different spectroscopic sets and different choices of
photometric observables. Top Left: Case C, where the input photometric data comprise the 4 colors (u — g,
g—r,r—1,i—2z) Top Middle: Case CC, where the input data are the 4 colorsu—g, g—r, r—1i,i— 2z, and
5 concentration parameters c,cqcrcic.. Top Right: Case M, where we use only magnitudes. Bottom Left:
Case Csplit, where we split the sample in r» magnitude slices. Bottom Middle: Case CCsplit, where we split
the sample in 7 magnitude slices. Bottom Right: Case Msplit, where we split the sample in r magnitude
slices. The solid line in each panel indicates zpnot = Zspec; the dashed and dotted lines show the 68% and
95% confidence regions as a function of zg,ec (06s and ogs), respectively. The points display results for a
random 10, 000 objects subset of the validation set.

TABLE 2
DESCRIPTION OF THE DIFFERENT COMBINATIONS

Case Inputs/Description
C u—g,g—r,r—1i,1—2
Csplit u—g,9—r,r—1,1— 2z, split in r slices
M U, g, T, %, 2
Msplit u, g, T, 1, z, split in r slices
CcC u—g,g—r,r—1,1— 2+ Cy,Cq,Cr,Ci, Cz

CCsplit w—g,g—1r,r—1%,1— 2 + Cy,Cq, Cr, G, Cz, split in 7 slices
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TABLE 3

SUMMARY OF ANN CASES

Case

g 068
C 0.16 0.046
Csplit 0.14 0.034
M 0.14 0.034
Msplit  0.14 0.031
CcC 0.15 0.043
CCsplit  0.14  0.032

NOTE.—o0¢ and ogg for
the validation set using
different input param-
eters (magnitudes, col-
ors, and concentration in-
dices) and training pro-
cedures (training with
the whole sample or in
magnitude bins indepen-
dently).
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TABLE 4
CATASTROPHIC REDSHIFTS

oo Range | 1ol 18<r<19|10<r<20|20<r<21|21<r<22|22<r<23|r>23| al

C 0.020 0.034 0.048 0.092 0.14 0.22 017 | 0.075
Csplit 0.0013 0.0063 0.0058 0.093 0.084 0.28 0.29 | 0.062
M 0.0012 0.0034 0.012 0.054 0.10 0.26 0.26 | 0.058
Msplit 0.0012 0.0042 0.0068 0.059 0.11 0.25 0.24 | 0.055
ccC 0.013 0.022 0.030 0.066 0.13 0.25 0.21 | 0.069
CCsplit 0.0012 0.0053 0.0056 0.089 0.083 0.28 0.28 | 0.060

NoTE.—Fraction of objects (Neat/Niotar) With |zphot — Zspec| > 0.1 for the validation set using different input
parameters (colors, concentration indices and magnitudes) and training procedures.
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Fig. 9.— Colors vs spectroscopic redshift for
galaxies in the validation set. Red squares (blue
circles) denote galaxies with r < 22 (r > 22). The (Zohor—Zepeo) TN - (Zohor—Zepeo) TN
curves are the predicted color-redshift relations for

different types of galaxies (E,Sbc,Im) obtained by

redshifting the k-corrected SEDs of Assef et al. Fig. 10.— Distributions of (zphot — 2spec)/oNNE
(2010) and applying the appropriate filters. for objects in the spectroscopic sample, in r mag-

nitude slices, for the Msplit case.
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Fig. 12.— Photometric redshift distributions, for
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A. Data Query Code

Here we provide the SDSS database query used to obtain the catalog containing the photometric sample
used in this paper. Notice that the query requires the TYPE flag to be set to 3 (galaxies) and selects objects
with dereddened model magnitude 16 < r < 24.5, which do not have any of the following flags: BRIGHT,
SATURATED and SATUR_CENTER. The full query is shown below

SELECT O0bjID,ra,dec,
dered_u,dered_g,dered_r,dered_i,dered_z,
petroR50_u/petroR90_u as c_u,petroR50_g/petroR90_g as c_g,
petroR50_r/petroR90_r as c_r,
petroR50_i/petroR90_i as c_i,petroR50_z/petroR90_z as c_z,
err_u,err_g,err_r,err_i,err_z

INTO coadd_mags_allinone

FROM Stripe82..PhotoObjAll

WHERE (flags_r & 0x0000080000040002)=0
AND type=3
AND mode=1
AND (run=106 or run=206)
AND dered_r BETWEEN 16 AND 24.5

We made an additional cut in order to select only objects which have positive values for petroR50/petroR90.
The final catalog has 13,688,828 galaxies.

Here we provide a brief description of the flags used in the query: BRIGHT indicates that an object is
a duplicate detection of an object with signal to noise greater than 2000; SATURATED indicates that an
object contains one or more saturated pixels; SATUR_CENTER indicates that the object center is close to at
least one saturated pixel. Note that in selecting PRIMARY objects (using PhotoPrimary), we have implicitly
selected objects that either do not have the BLENDED flag set or else have NODEBLEND set or nchild equal
zero. In addition, the PRIMARY catalog contains no BRIGHT objects, so the cut on BRIGHT objects in
the query above is in fact redundant. BLENDED objects have multiple peaks detected within them, which
PHOTO attempts to deblend into several CHILD objects. NODEBLEND objects are BLENDED but no
deblending was attempted on them, because they are either too close to an EDGE, or too large, or one of
their children overlaps an edge. A few percent of the objects in our photometric sample have NODEBLEND
set; some users may wish to remove them.

We also suggest that users require objects to have the BINNED1 flag set. BINNEDI objects were detected
at > 5o significance in the original imaging frame.

The SDSS webpage ° provides further recommendations about flags, which we strongly recommend that
users read.

Shttp://cas.sdss.org/dr7/en/help/docs/algorithm.asp?search=flags&submiti=Search
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