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13LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3,
Institut National Polytechnique de Grenoble, Grenoble, France

14CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
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20III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
21Physikalisches Institut, Universität Freiburg, Freiburg, Germany

22II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
23Institut für Physik, Universität Mainz, Mainz, Germany

24Ludwig-Maximilians-Universität München, München, Germany
25Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

26Panjab University, Chandigarh, India
27Delhi University, Delhi, India

28Tata Institute of Fundamental Research, Mumbai, India
29University College Dublin, Dublin, Ireland

30Korea Detector Laboratory, Korea University, Seoul, Korea
31CINVESTAV, Mexico City, Mexico

32Nikhef, Science Park, Amsterdam, the Netherlands
33Radboud University Nijmegen, Nijmegen, the Netherlands and Nikhef, Science Park, Amsterdam, the Netherlands

34Joint Institute for Nuclear Research, Dubna, Russia
35Institute for Theoretical and Experimental Physics, Moscow, Russia

36Moscow State University, Moscow, Russia
37Institute for High Energy Physics, Protvino, Russia

38Petersburg Nuclear Physics Institute, St. Petersburg, Russia
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We report a search for a narrow tt̄ resonance that decays into a lepton+jets final state based on
an integrated luminosity of 5.3 fb−1 of proton-antiproton collisions at

√
s = 1.96 TeV collected by

the D0 Collaboration at the Fermilab Tevatron Collider. We set upper limits on the production
cross section of such a resonance multiplied by its branching fraction to tt̄ which we compare to
predictions for a leptophobic topcolor Z′ boson. We exclude such a resonance at the 95% confidence
level for masses below 835 GeV.

PACS numbers: 14.65.Jk, 13.85.Rm

Narrow resonances that decay to top-antitop quark (tt̄)
pairs are predicted by many models of physics beyond the
standard model. Such heavy neutral gauge bosons (X)
appear in grand unified theories with symmetry groups
larger than SU(5) [1], as Kaluza-Klein excitations of the
gluon or of the Z boson that predominantly decay to tt̄

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cUPIITA-IPN, Mex-
ico City, Mexico, dSLAC, Menlo Park, CA, USA, eUniversity
College London, London, UK, fCentro de Investigacion en Com-
putacion - IPN, Mexico City, Mexico, gECFM, Universidad Au-
tonoma de Sinaloa, Culiacán, Mexico, and hUniversität Bern, Bern,
Switzerland. ‡Deceased.

pairs [2, 3], as axigluons [4], and in theories of new strong
dynamics [5, 6]. Some resonances are expected to have
a large decay width and would be hard to detect over
standard model tt̄-pair production. Here we search for
a tt̄ resonance with a width that is significantly smaller
than the detector resolution for reconstructing its mass.

Searches for tt̄ resonances were previously carried out
by the D0 and CDF collaborations at the Fermilab Teva-
tron Collider, and no evidence was found for resonant
production [7, 8]. To extract limits on the mass MX of a
resonance, limits on cross sections were compared to pre-
dictions for a leptophobic topcolor Z ′ boson with width
Γ = 0.012MZ′ [6]. To simplify comparisons with previous
limits, we use the same model as a reference. The lower
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limit for the mass of such a topcolor Z ′ boson published
by the D0 Collaboration is 700 GeV [7] based on 0.9 fb−1.
The CDF Collaboration excludes Z ′ boson masses below
900 GeV [8] using 4.8 fb−1 of integrated luminosity. Both
limits correspond to 95% confidence level (C.L.).

We carry out the search using lepton+jets (`+jets)
events in which one of the top quarks decays “leptoni-
cally”, t → Wb → `ν̄b, and the other “hadronically”,
t → Wb → qq̄′b (charge conjugate states are implicitly
included in our notations). This final state is character-
ized by an isolated charged lepton (electron or muon),
imbalance in transverse momentum 6pT from the unde-
tected neutrino, and jets from the fragmentation of the
four quarks. The data correspond to an integrated lu-
minosity of 5.3 fb−1 and were acquired by the D0 exper-
iment at the Fermilab Tevatron Collider in pp̄ collisions
at
√
s = 1.96 TeV.

The D0 detector consists of central tracking, calorime-
ter, and muon systems [9, 10]. The central tracking sys-
tem is located inside a 1.9 T superconducting solenoidal
magnet. Central and forward preshower detectors are
located just outside the coil and in front of the calorime-
ters. The liquid-argon/uranium sampling calorimeter is
divided into a central section covering pseudorapidity
|η| < 1.1 and two end calorimeters extending coverage up
to |η| ≈ 4. The calorimeter is segmented longitudinally
into electromagnetic, fine hadronic, and coarse hadronic
sections with increasingly coarser granularity. The muon
system, located outside the calorimeter, consists of one
layer of tracking detectors and scintillation trigger coun-
ters inside a 1.8 T toroidal magnet and two similar layers
outside the toroids. A three-level trigger system selects
events that are recorded for offline analysis.

Events must satisfy one of several trigger conditions,
all requiring an electron or muon with high transverse
momentum, in some cases in conjunction with one or
more jets. The event selection requires one isolated lep-
ton with pT > 20 GeV, missing transverse momentum
above 20 GeV (30 GeV) for the e+jets (µ+jets) data,
and at least three jets with pT > 20 GeV. The leading
jet must have pT > 40 GeV. We require at least one jet
to be tagged as originating from the fragmentation of a
b quark. Further details about the `+jets event selection
can be found in [11] and [12]. After applying these cri-
teria, the dominant background is continuum tt̄ produc-
tion. We discriminate between continuum and resonant
tt̄ production using the invariant mass of the tt̄ system.
The `+jets events are divided into four subsamples de-
fined by lepton flavor (e, µ) and jet multiplicity (3 jets
and ≥ 4 jets).

The two main standard model processes that yield an
isolated lepton, 6pT , and several jets are tt̄ and W+jets
production. The third most important background arises
from multijet events in which a jet is misidentified as an
electron, or a muon from heavy-flavor quark decay ap-
pears isolated, and 6pT is mismeasured. Single top quark,

Z+jets, and diboson production can also give rise to such
final states, but have much smaller yields.

We simulate tt̄, W+jets and Z+jets production using
the alpgen+pythia event generators [13–15]. Three
subsamples, W+ bb̄, W+ cc̄, and W+light-partons, are
generated separately. Similarly, the Z+jets samples are
divided into Z+ bb̄, Z+ cc̄, and Z+light-parton sam-
ples. We simulate single top quark production using
the comphep-singletop [16, 17] generator and dibo-
son (WW , WZ, and ZZ) production with pythia. For
all simulations, we set the top quark mass to mt =
172.5 GeV and use the CTEQ6L1 parton distribution
functions [18]. We simulate detector effects using geant-
3 [19] and add randomly triggered events to all simulated
events to account for multiple pp̄ collisions in the same
bunch crossing. These events are reconstructed using the
same procedures as for data.

To estimate backgrounds we use either data-driven
methods or simulation. We estimate the number and
distribution of multijet events that are contained in each
subsample using a control data sample [20]. We scale tt̄
production to the theoretical approximate next-to-next-
to-leading order (NNLO) prediction of σ(pp̄ → tt̄) =
7.48+0.56

−0.72 pb [21]. We normalize single top quark produc-
tion in the s and t channels to the NNLO cross section
with next-to-NNLO threshold corrections of 3.3 pb [22].
We normalize diboson processes to their next-to-leading
order (NLO) cross sections, as computed with mcfm [23],
of 12.0 pb forWW , 3.7 pb forWZ, and 1.4 pb for ZZ pro-
duction. We fix the relative normalization of the Z + bb̄,
Z+cc̄, and Z+light parton samples and the relative nor-
malizations of the W+ bb̄, W+ cc̄, and W+light parton
samples to NLO predictions computed with mcfm [23].
We then normalize the inclusive Z boson production such
that σ(pp̄→ Z)×B(Z → µ+µ−) agrees with the NNLO
prediction of 256 pb [24]. We normalize the number of
W+jets events such that the total number of events pre-
dicted by all background sources equals the number of
events observed in each of the four subsamples before
imposing the b-tagging requirement. This corresponds to
increasing the total number of W+jets events expected
by a factor of approximately 1.3 which is close to the
NLO k-factor for W+jets production.

As a model for tt̄ resonance production, we use pro-
duction of a Z ′ boson in pythia, that decays exclusively
to tt̄ pairs. We consider 18 resonance mass values MX

between 350 and 1200 GeV. The intrinsic widths of the
resonances are set to ΓX = 0.012MX .

We reconstruct the tt̄ invariant mass, mtt̄, using up to
four jets with the highest pT , the charged lepton, and
the neutrino. We determine the momentum of the neu-
trino by equating the neutrino pT to the measured 6pT
constraining the invariant mass of the charged lepton-
neutrino system to the W boson mass and choosing the
smaller solution of the resulting quadratic equation for
the neutrino momentum component pz along the beam
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FIG. 1: Distributions of mtt̄ for resonances with mass MX ,
normalized to the predicted σB from Table II.

direction. If there is no real solution we set neutrino
pz = 0 and scale the 6pT to satisfy the W boson mass
constraint. Figure 1 shows the expected distribution of
the reconstructed mtt̄ from the production of narrow tt̄
resonances of different mass values. The detector reso-
lution for mtt̄ varies between 65 GeV for MX = 400 GeV
and 270 GeV for MX = 1.2 TeV, which is much larger
than the widths of the tt̄ resonances considered.

We use the reconstructed tt̄ mass to test for the pres-
ence of a signal in the data and to compute upper lim-
its on the production cross section of a narrow tt̄ reso-
nance times branching fraction to tt̄, σB, as a function
of its mass. For each hypothesized value of the resonance
mass, we fit the data to background-only and to sig-
nal+background hypotheses. For each hypothesis we also
vary the systematic uncertainties given in Table I subject
to a Gaussian constraint to their prior values to maximize
the likelihood [25]. We then use the profile likelihood ra-
tio L = −2 ln(Ps+b/Pb) as the test statistic, where Ps+b

is the Poisson likelihood to observe the data under the
signal+background hypothesis and Pb is the Poisson like-
lihood to observe the data under the background-only
hypothesis. For the background-only hypothesis, we fit
three components to the data. We constrain the tt̄ pro-
duction to its theoretical cross section, and the multijets
background to the predicted number of events. For the
other backgrounds, we constrain the relative fractions of
the individual background sources to their predicted val-
ues and treat the overall normalization as a free param-
eter. For the signal+background fit we add σB for the
resonance as a parameter to the fit.

We use the CLs method [26] to determine the limits on
σB. Using pseudoexperiments, we determine the prob-
ability to measure values of L that are larger than the
value observed in the data sample if there is a tt̄ reso-
nance signal, CLs+b, and if there is no such signal, CLb.

TABLE I: Summary of systematic uncertainties above 2%.
Some values vary with subsample. The numbers give the
range of the uncertainties.

Source resonance tt̄ multijets
tt̄ cross section — 9% —
Multijets normalization — — (30–50)%
Integrated luminosity 6.1% 6.1% —
Monte Carlo model — 4.3% —
Trigger efficiency ≤5% ≤5% —
b-tagging efficiency (3–11)% (3–5)% —
Lepton identification (3–4)% (3–4)% —
Jet energy calibration (2–4)% (2–5)% —
Jet energy resolution (3–5)% (3–5)% —
Jet identification ≤7% ≤10% —

The value of σB for which 1−CLs+b/CLb = 0.95 is the
95% C.L. upper limit. We repeat this procedure at every
resonance mass value.

Table I summarizes the sources of systematic uncer-
tainties in the normalizations of the components of the
model used in the limit calculation. No uncertainties are
given for the physics backgrounds other than tt̄ produc-
tion because their normalizations are free parameters of
the fit. When estimating the effect of uncertainties in
the jet energy scale, the jet identification efficiency, and
the jet energy resolution, we vary the shape of the mtt̄

distributions. We also assign an uncertainty to the shape
of the mtt̄ distribution from tt̄ production equal to the
difference between the default simulation using alpgen
and pythia and a simulation using mc@nlo and her-
wig. We also considered variations in the amount of
initial and final state radiation but concluded that the
resulting changes in the mtt̄ distribution were negligible
relative to the uncertainties that we already consider.

Figure 2 shows the distribution of mtt̄ observed in data
compared to expectations from standard model back-
grounds and a 950 GeV tt̄ resonance. We observe a small
excess of events at high mass values. The excess is present
in both the e+jets data and the µ+jets data. We can fit
the data best with an additional resonance signal with a
mass of 950 GeV and σB = 0.10 ± 0.05 pb. The value
of 1−CLb for the data gives the probability of getting a
deviation of at least the observed size at this mass value
from the standard model expectation in the absence of
physics beyond the standard model. We find a p value
of 0.018, corresponding to 2.1 Gaussian-equivalent stan-
dard deviations. This significance value does not take
into account that the excess may have occurred at any
place in the mass spectrum.

Figure 3 and Table II display the resulting limits on
σB compared to the limits expected in the absence of a
narrow tt̄ resonance and to the predicted NLO produc-
tion cross section of a topcolor Z ′ boson [6] as a function
of the resonance mass. The expected mass limit for pro-
duction of such a Z ′ boson that exclusively decays to
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FIG. 2: Distribution of mtt̄ for events that pass the final
event selection with (a) exactly 3 jets and (b) at least 4 jets,
compared with expectations for standard model processes and
a 950 GeV resonance signal with the best fitted σB = 0.10 pb.
The highest bin in each histogram shows the number of events
with mtt̄ > 1175 GeV.

tt̄ is 920 GeV. The observed cross section limit excludes
Z ′ boson production at the 95% C.L. for masses below
835 GeV.

In our previous publication [7], we computed a
Bayesian limit on σB for a tt̄ resonance. For reference,
we have repeated the same calculation using a subset of
the data sample reported in this paper, corresponding to
4.3 fb−1, and find results consistent with the limits on
σB given in Fig. 3. We also find that our results are in-
dependent of the couplings of the tt̄ resonance (pure vec-
tor, pure axial-vector, or standard-model Z-like) and are
therefore valid for any narrow resonance decaying 100%
to a tt̄ final state.

In conclusion, we searched for production of a narrow
tt̄ resonance in the lepton+jets channel. We do not ob-
serve a signal consistent with the production of such a
resonance, although we observe a slight excess of events
around 950 GeV. We set upper limits on the cross sec-
tion times branching fraction for production of such a
resonance for masses between 350 and 1200 GeV. We ex-
clude at 95% C.L. the production of a topcolor Z ′ that
decays exclusively to tt̄ for mass values below 835 GeV.

TABLE II: Observed and expected 95% C.L. limits on σB
compared with predictions for a topcolor Z′ computed as-
suming mt = 172.5 GeV and CTEQ6L1 parton distribution
functions.

MX predicted σB expected limit observed limit
(GeV) (pb) (pb) (pb)
350 7.85 1.13 1.13
400 12.79 1.18 0.96
450 8.59 0.92 1.16
500 5.35 0.62 0.95
550 3.32 0.42 0.39
600 2.03 0.34 0.28
650 1.24 0.26 0.19
700 0.76 0.20 0.24
750 0.46 0.16 0.16
800 0.28 0.12 0.20
850 0.17 0.10 0.19
900 0.11 0.08 0.20
950 0.059 0.07 0.18
1000 0.034 0.07 0.16
1050 0.020 0.06 0.14
1100 0.012 0.06 0.14
1150 0.0069 0.06 0.12
1200 0.0041 0.07 0.13

FIG. 3: Observed and expected upper limits on cross section
times branching fraction σB for a narrow tt̄ resonance as a
function of the resonance mass. The shaded regions around
the expected limit represent the ±1 and ±2 standard devi-
ation bands. The solid line shows the predicted topcolor Z′

production cross section assuming B(Z′ → tt̄) = 100%.
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