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Abstract

Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely.

These oscillations are colloquially called “dancing bunches”. Although the dancing proton bunches

do not cause single bunch emittance growth or beam loss at injection, they lead to bunch length-

ening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this

dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can

also be stopped by an appropriate change in the bunch distribution. This paper describes the

Tevatron experiments which support this theory.

PACS numbers: 29.27.-a,29.27.Bd,29.27.Fh
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I. INTRODUCTION

Since the start of Run II, the proton bunches in the Tevatron have been observed to

have longitudinal oscillations which persist indefinitely. The initiators of these oscillations

for coalesced [1] bunches come from the coalescing process (see section IIIA 2) and possibly

also from injection errors [2]. The reason for the persistence of these oscillations has been

traced to the loss of Landau damping (LLD) caused by the inductive impedance of the

Tevatron [3]; these oscillations are colloquially called ”dancing bunches”. At the injection

energy of 150 GeV, these oscillations do not seem to cause any emittance growth or any

beam loss. But at the flattop energy of 980 GeV, they lead to an effective bunch length

growth which reduces luminosity. A longitudinal damper system has been built which damps

out the dance [4].

Recent theoretical work has predicted that the dance can also be stopped by flattening

out its phase space distribution at low synchrotron frequencies [5, 6]. In particular, this

flattening can be achieved by modulating the RF phase at the synchrotron frequency of the

low amplitude particles [7]. The goal of this paper is to demonstrate experimentally that

the dance can be stopped by changing the beam distribution appropriately.

II. THEORY

The Boltzmann-Jeans-Vlasov (BJV) equation [8] is conventionally used to describe longi-

tudinal motion of bunched beams. This equation has a continuous spectrum and, possibly,

a discrete one [9, 10]. The discrete van Kampen modes are described with regular functions

and some of them do not decay. Therefore, in principle, any coupled bunch wake drives an

instability when there is LLD. However, in practice, the coupled bunch wake has to be high

enough to give an observable growth rate. If the growth rate is too small, LLD results in

persistent oscillations caused by initial perturbations.

For bunched beams, LLD was first discussed and estimated by F. Sacherer [11]. Later,

his main results were re-derived and discussed in more detail by other authors [12–16]. For

a dipole mode, all of the approaches were actually based on the assumption that the bunch

moves as a rigid body. However, recent solutions of the eigenvalue problem [5, 6] show that

the rigid bunch approximation can lead to significant overestimation of the LLD threshold.
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As it is shown in the original paper by Sacherer [11], the threshold bunch population

Nth is a strong function of the bunch length `. In particular, for an inductive wake above

transition,

Nth ∝ `5. (1)

This scaling law can be derived from the idea that Landau damping is lost whenever the

incoherent tune shift ∆Ω ∝ NZ||(c/`)/`2 exceeds the incoherent tune spread δΩ ∝ `2,

where N is the bunch population and Z|| is the longitudinal impedance at frequency c/`.

For the inductive impedance, the incoherent tune shift decreases with the bunch length as

∆Ω ∝ `−3. The combined action of this decrease with increasing nonlinear tune spread

δΩ ∝ `2 results in `5 in Eq. (1). This high sensitivity to bunch length indicates that

approximations of the bunch profile or arbitrary assumptions about the eigenfunctions can

lead to significant errors in the calculated LLD threshold because they can change the

effective bunch length. For example, for a full bucket of a single-harmonic RF system with

an inductive impedance above transition, the threshold relative tune shift ∆Ω/Ω was found

to be as low as 10% for the Hofmann-Pedersen distribution, and just ∼ 1% for a model

of the Tevatron coalesced bunch [5]. In terms of bunch population, the two thresholds

differ by almost two orders of magnitude. It turns out that the onset of LLD is highly

sensitive to the steepness of the distribution function at low amplitudes: the flatter the

distribution, the more stable it is. This prediction appears to be generally correct when

the bare RF synchrotron frequency monotonically decreases with amplitude and the wake

field is repulsive, i.e. the wake lowers the incoherent synchrotron frequencies. For example,

space charge below transition, inductance or resistive wall above transition are all repulsive.

This conclusion agrees with Ref. [15], where the LLD threshold was calculated for several

distributions with the inductive impedance above and below transition. It was shown there

that below transition LLD is sensitive to the edges of the distribution, while above transition,

it is sensitive to the flatness of the bunch core.

As was discussed in Ref. [5], in the case of a sinusoidal RF system, any combination of

inductance, wall resistivity, high order cavity modes above transition, or space charge below

transition will shift the incoherent spectrum down to lower frequency and the coherent mode

will emerge above it. Since the incoherent frequencies of low amplitude particles are close to

the mode frequency, their wieght in the mode dominates. Hence, for a single-harmonic RF

system and a repulsive wake function, the discrete mode causes dipole motion of the bunch
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center while its tails remain still. This is the behavior of the bunches in the Tevatron [3].

A. Flattening out the distribution for particles with small amplitudes

To flatten out the bunch distribution at small amplitudes in the Tevatron, resonant phase

modulation of the RF phase was suggested [7], with the idea of using anomalous diffusion

within a controlled phase space area; see Ref.[17–19] and references therein.

Let it be assumed that the RF phase is modulated at a frequency Ωm, which is close

to the synchrotron frequency Ωs. Let the amplitude of the modulation φm(t) adiabatically

grow from zero, then stay a while at some value φ0 and then adiabatically decrease to

zero. To prevent excitation of the tail particles and the coherent modes, the process must be

adiabatic. However, even when the process is generally adiabatic, i.e. when |dφm/dt| ¿ Ωsφ0,

the adiabaticity for some particles will be broken. Indeed, resonant RF phase modulation

results in either one or two stable fixed points (SFPs) inside the bucket. In the last case, there

is an inner separatrix between the two SFPs and when the modulation amplitude changes,

the separatrix moves and some particles cross it. Separatrix crossing is a non-adiabatic

process resulting in classical chaos and anomalous diffusion.

Thus, the phase space density can be changed only in the case of two SFPs which occur

when the modulation frequency is lower than the synchrotron frequency, Ωm < Ωs, and

the modulation amplitude is lower than its bifurcation value, φm < φb = 3.08ε3/2 with

ε = 1 − Ωm/Ωs. When the modulation amplitude grows from zero to its bifurcation value,

and when it comes back to zero later, the irreversible change of the phase space density

occurs for the phase space area with action J ≤ Jlim, where

Jlim ≈ 6εJbucket, (2)

and Jbucket is the bucket acceptance. For dimensionless variables associated with the un-

perturbed Hamiltonian H(z, p) = p2/2 + 1 − cos z, the acceptance Jbucket = 8/π. The

dimensionless variables are the same as in Ref. [19], p. 265, with time measured in radians

of the synchrotron phase. The numerical factor “6” in Eq. (2) was approximated using a

numerical solution discussed below and it is about two times larger than the separatrix bor-

der at zero amplitude. After this adiabatic cycle, the phase space density becomes nearly

constant for the entire area J < Jlim, provided that the modulation amplitude crosses its
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bifurcation value, i.e.

φ0 ≥ 3.08ε3/2 (3)

It is worth mentioning that the adiabatically ramped modulation does not excite any

coherent motion when the modulation is turned off. Thus, to make a flat phase space

density within a certain action Jlim, the adiabatic RF phase modulation has to be applied

slightly below the synchrotron frequency, ε = 0.16Jlim/Jbucket, and its amplitude must cross

the bifurcation value in Eq. (3).

A simulation of how the bunch distribution is modified with RF phase modulation has

been done using the following map

zn+1 = zn + pn∆t

pn+1 = pn −∆t sin

[
zn+1 − φm(tn) sin(1− ε)tn

]
(4)

tn+1 = tn + ∆t

where zn and pn are the coordinate and momentum respectively in dimensionless units, tn

is the time variable in radians of the synchrotron oscillation, and ∆t is its numerical step.

The amplitude of the RF phase modulation φm(t) was taken to be a trapezoid similar to

that shown in Fig. 4.

Here are the typical parameters used in the simulations:

• the adiabaticity parameter
.

φm/(Ωsφ0) ∼ 200.

• ∆t = 0.01 radians which is small enough for the results to be independent of its specific

value.

• Initial phase space density is assumed to be F (J) ∝ (Jmax − J)2 with the emittance

Jmax set close to the bucket acceptance.

• Number of macro-particles N = 4× 104.

The simulation results before and after phase modulation are shown in Fig. 1 for ε = 0.03,

φ0 = 0.025 and two consecutive phase modulation cycles with Tsim = 600 radians or about

90 synchrotron periods each. Each cycle time was equally divided into three parts of about
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30 synchrotron periods each: a linear growth of the modulation amplitude from 0 to φ0,

staying at φ0, and a linear decrease from φ0 back to 0.

Clearly the action distribution PDF[J] has successfully flattened out and there is even

a little divot that is less pronounced after the second phase modulation cycle. Except for

this small difference, the second cycle does not significantly change the distribution. The

phase distribution PDF[ψ] after every cycle is as flat as before, showing that no coherent

oscillations were excited.

The time dependence of the unperturbed Hamiltonian H(z, p) = p2/2+(1− cos z) calcu-

lated for the bunch average values of the canonical variables 〈z〉 and 〈p〉 is shown in Fig. 2.

This simulation shows that the adiabaticity of the phase modulation is very important: af-

ter every cycle, the Hamiltonian goes to zero. The irregular features of this plot probably

reflect the chaotic nature of the anomalous diffusion responsible for the flattening of the

distribution.

III. EXPERIMENT

The block diagram of the phase modulation hardware used for phase modulating the

beam is shown in Fig. 3. A signal generator generates a sine wave where its amplitude and

frequency can be programmed and its output is fed into a phase shifter module. The phase

shifter modulates the Tevatron low level RF (LLRF) and the result is fed into the Tevatron

high level RF (HLRF). Essentially, the components shown in the block diagram produce the

following

fHLRF = A sin

[
2πfLLRFt+ φm(t) sin(2πfmt) + θ

]
(5)

where fHLRF is the phase modulated signal sent to the HLRF, A is the amplitude of the

signal sent to the HLRF, fLLRF is the frequency from the LLRF, θ is an arbitrary phase. The

amplitude φm and frequency fm for the phase modulation are set by the signal generator.

The time evolution of the bunch during the experiment is measured using the Sampled

Bunch Display (SBD) [20]. Its block diagram is shown in Fig. 3. The SBD measures the

bunch profile using a resistive wall current monitor with an oscilloscope that has a 2 GHz

bandwidth. The collected data is processed with a LabView program which calculates the

following parameters:

• bunch centroid.
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FIG. 1. (a) distributions over action PDF[J], original (blue) and after the first ramp (pink); the

overlapped area is in violet. (b) a similar comparison of the distributions before and after the

second ramp. (c) a comparison of the phase distributions PDF[ψ] before and after the first ramp.
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FIG. 2. Time dependence of the unperturbed Hamiltonian taken for the bunch-average coordinate

and momentum.

• bunch current.

• rms bunch length.

These parameters are then returned to the control system and can be plotted as in Figs. 5

and 9. Furthermore, the snapshots of the bunch from the resistive wall signal can also be

downloaded. The SBD trigger has been set up to take five consecutive snapshots of the

bunch at 1 Hz. These snapshots are presented in the figures below.

A block diagram of the phase detector used to measure the longitudinal motion of the

bunch with respect to the Tevatron RF is shown in Fig. 3. The I/Q phase detector is a

part of the Tevatron longitudinal damper system [4] which essentially takes the sum signal

from a stripline pickup, down-converts it with the Tevatron LLRF and low pass filters it

to produce a quadrature signal. The quadrature signal is then measured with a spectrum

analyzer.

The Tevatron parameters relevant to the experiment are shown in Table I. This exper-

iment uses only two coalesced proton bunches and measurements are either taken at the

injection energy of 150 GeV or at the flattop energy of 980 GeV.
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A. Results at the injection energy of 150 GeV

The studies presented in this section have been performed at the injection energy of

150 GeV. At injection, the bunch nearly fills the bucket and so there are small beam current

losses whenever the bunch is modulated. (Results at flattop do not have this problem. See

section III B.) In this experiment, fm has been set to 87.47 Hz because it is the measured

synchrotron frequency fs and the bunch is modulated once for 14 s. (Note: theoretically,

fm should have been set to a frequency which is smaller than fs. However, at the time, this

criterion was not appreciated so the experiment was not done.) The phase ramp used in

the 150 GeV experiments is not adiabatic and is shown in Fig. 4. The maximum amplitude

of the phase modulation has been tested for φ0 = 1 deg, 2 deg and 3 deg respectively.

Experimentally, φ0 = 3 deg has been found to produce the best effect for the duration of

the modulation.

Figure 5 shows the modulation duration and the behavior of the bunch current, centroid,

and rms bunch length before and after phase modulation. The beam current drops by about

2.3% and the rms bunch length grows by about 1.8% after being modulated. The beam

current drop is not surprising because the filled bucket is full. The change in rms bunch

length is due to the shape change which can be seen clearly in Fig. 6. After the modulation

is turned off, a divot structure forms which confirms the prediction previously discussed in

TABLE I. Tevatron Parameters Relevant To The Experiment

Parameter Value Units

Injection energy 150 GeV

Flattop energy 980 GeV

Synchrotron frequency at 150 GeV 87.47 Hz

Synchrotron frequency at 980 GeV 34.75 Hz

RF frequency at 150 GeV 53.103 MHz

RF frequency at 980 GeV 53.104 MHz

Harmonic number 1113 –

Buckets between two injected bunches 21 –

Intensity per bunch (200− 300)× 109 –
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FIG. 3. The block diagrams of the bunch phase modulator and detectors used to monitor the

bunches for the described experiments.
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FIG. 4. These are the phase ramps φm(t) used at 150 GeV and 980 GeV. For the 150 GeV

experiments, tstop is user defined.

section IIA.

1. Contrast to Dampers

The bunch distribution after it has been modulated can be contrasted to the distribution

when dampers are used instead to stop the dancing. The before and after distributions

are shown in Fig. 7. The effect of dampers on the bunch distribution is to make it more

triangular. This can be contrasted to the effect of the modulation technique shown in Fig. 6

where the distribution becomes more rotund. Also, after the dance stops and the dampers
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Beam Centroid

Beam Current

RMS Bunch Length

Shake

Duration

FIG. 5. The data from the SBD system taken at 150 GeV is plotted here: T:SBDPWS, T:SBDPIS

and T:SBDPCS. The beam is modulated for 14 s and there is some beam loss and bunch length

growth. Although the measured bunch centroid looks like it is still oscillating, the snapshots show

that the dancing has stopped. See Fig. 6.

are turned off, the bunches do not start dancing again even after the dampers have been off

for 5 minutes.

At first glance, the stability of the bunch after the dampers are turned off contradicts the

described theory of LLD. Indeed, according to this theory, the LLD threshold is lowered when

the distribution function becomes more steep and thus the beam distribution shown in Fig. 7

is less stable after the dampers are turned off than it was before they were turned on. This

seemingly contradictory observation can be explained by the extremely small growth rate of

the two bunch system. When Landau damping is lost, the growth rate is determined by the

coupled bunch wake forces. If these forces are weak enough, the instability takes too long to

grow and so it cannot be observed. There are two types of long range wake fields that can

be considered as possible candidates for driving the longitudinal coupled bunch instability

(LCBI): parasitic cavity modes and the resistive wall wake. Direct calculations show that the

resistive wall wake is extremely weak and can be ignored. Even for 36 Tevatron bunches,
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FIG. 6. These are snapshots taken by the SBD before and after modulation at 150 GeV. Before any

modulation, the bunch is dancing. The result after modulating the beam for 14 s is the creation

of a divot structure in the bunch and stoppage of the tip motion.

the calculated resistive wall LCBI growth time is ∼ 10 days and so the only remaining

candidate is the RF cavity modes. According to Ref. [21], the LCBI observations at the top

energy for 36 proton bunches can be explained by a parasitic higher order mode at 311 MHz
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FIG. 7. The before and after effects of using the damper to stop the dance. The distribution after

the dampers have stopped the dancing is to make the distribution more triangular in shape.

with the caveat that the calculated growth time using the rigid bunch approximation is an

order of magnitude faster than the measured one. There are two possible reasons for this

discrepancy: the first is a decreased Q-value compared to the measured value done in 2000

[21, 22] and the second is that the rigid bunch approximation grossly overestimates both the
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threshold and the growth rate of the instability.

Growth time of the LCBI for the two bunches, τ2, driven by the parasitic cavity mode

can be calculated and compared with the growth time τM for M equidistant bunches. Using

Eqs. (4.123) and (4.128) of Ref. [23], it is straightforward to show that

τ2
τM

≥ M

4πνs

td
T0

exp(T0/td), (6)

where νs is the synchrotron tune, T0 is the revolution time, ωR is the angular frequency

of the parasitic mode and td = 2Q/ωR is its e-fold decay time. This formula was derived

under the assumption that the mode decay time td is shorter than the revolution time and

longer than the time separation between the neighboring bunches. This assumption allows

the neglect of all multi-turn terms in the wake sum of Eq. (4.123) of Ref. [23] for the two

bunch case. Application of this formula to the experimental parameters shows that the two

bunch growth time is at least 5× 103 times longer than the standard 36 bunch growth time.

According to the measurements of [21, 22], the 36 bunch growth time is 2 – 3 seconds.

Thus, Eq. (6) yields at least 3 hours for the growth time for the two bunch system which is

much longer than the ∼5 minutes of experimental observations with the dampers off.

2. Initial Bunch Shape Effects

The number of modulation cycles required to stop the bunch varied from case to case.

Most likely, this is due to the non-optimized detuning of the modulation frequency and some

variations in the bunch intensities and profiles which cause variations in the incoherent tune

shifts. Perhaps, a better choice of the detuning parameter ε = 1− fm/fs can lead to single

modulation damping of the dance, but there was no opportunity to test this.

In this experiment five bunch coalescing is used rather than the usual seven. The initial

bunch distribution between bunch 1 and 2 are quite different because the Main Injector

has not been tuned up for five bunch coalescing. Therefore, the random effects of untuned

coalescing has made bunch 1 dance much more than bunch 2 before the modulation is

applied. Figure 8 shows the result of modulating the two bunches at the same time. The

bunches are modulated for 7− 8 s at φ0 = 3 deg and the first bunch does not stop dancing

while the second bunch stops dancing and gets a divot.
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FIG. 8. The initial bunch shape can have an effect on how strongly it must be modulated to stop

the dancing.

B. Results at the flattop energy of 980 GeV

The bucket is about a factor of two larger than the beam size at 980 GeV, and thus allows

the beam to freely change shape without being constrained by the bucket edges. A φm ramp

has been created so that there are no abrupt changes in the RF as shown in Fig. 4. Previous

experiments have shown that sudden turn-ons can cause some beam loss even though the

bucket is large compared to the beam size.

In this experiment, the total phase ramp time is 3 s. The rise and fall time of the ramp

has been chosen to be 1 s because it is slow compared to the synchrotron period of 29 ms.

The flattop period can be varied, but for this experiment it has been set to 1 s.

The modulation frequency fm has been set to the measured synchtron tune 34.75 Hz and

the bunch is modulated seven times with the φm ramp.

Figure 9 shows the seven φm ramps and the behavior of the bunch current, centroid,

and rms bunch length for the duration of the experiment. The beam current is constant

throughout the experiment but the rms bunch length grows by about 18% (from 1.67 ns to

1.97 ns) by the end of the experiment. It is interesting that the rms bunch length grows after
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each modulation because of the shape change. A comparison of the bunch shapes before

and after the modulation shows that the rms bunch length growth comes from the flatter

core of the bunch while its tails remain unchanged.

ϕm ramps

RMS bunch length

Beam current

Beam centroid

FIG. 9. The beam is modulated seven times using the φm ramp shown in Fig. 4 at 980 GeV. After

the seventh modulation the dancing stops but there is growth in rms bunch length because of the

shape change.

Figure 10 shows the bunch shape and the spectrum before modulation starts. The spec-

trum shows the revolution frequency and the synchrotron sidebands which are about 6 dB

smaller than the revolution harmonic. The beam has no quadrupole motion because there

are no resonances at twice the synchrotron frequency.

Figure 11 shows both the the bunch shape evolution and the spectrum from the phase

detector after the first, third, fifth and seventh modulations. It is clear from these plots that

after the first modulation the amplitude of the dance has increased by about 14 dB relative

to the amplitude before modulation. After each subsequent modulation, the amplitude

becomes smaller, and after the seventh modulation, the dance amplitude has decreased by

14 dB relative to the amplitude before the the first modulation. The shape of the bunch
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after the seventh modulation has clearly changed. Figure 12 shows superimposed snapshots

of the bunch before and after the seventh modulation.

IV. CONCLUSION

Similar ideas for bunch distribution flattening have been suggested and implemented in

the KEK-PS [24, 25] and the KEK Photon Factory [26]. This technique is also routinely

applied in the CERN SPS to blow up the longitudinal emittance for stabilizing the beam

[27]. However, in all of these cases, narrow band RF noise around the synchrotron sidebands

are used as the excitation. In the KEK-PS and SPS, the RF perturbation is applied to the

voltage amplitude while at the KEK Photon Factory, noise is applied to the RF phase.

The experiments described in this paper take a different approach: instead of noise, the RF

phase is excited at the synchrotron frequency, and its amplitude is ramped adiabatically.

This technique works because anomalous diffusion flattens the bunch distribution. It is also

possible that this technique is able to finely regulate the width where the distribution is

flattened while keeping the remaining distribution untouched.

As was previously discussed in section II, this method of bunch flattening is very sen-

sitive to the detuning of the modulation frequency from the synchrotron frequency. In all

these experiments, the RF phase was modulated at the measured coherent synchrotron fre-

quency which can be higher or lower than the proper value calculated with the potential

well distortions taken into account. In the experiments, several consecutive RF modulation

cycles are needed to stop the bunch oscillations, while theoretically, with the proper detun-

ing of the phase modulation frequency, only one modulation cycle should be able to stop it.

Presently, there is no convincing answer for the number of RF modulation cycles needed in

these experiments. However, part of the answer has to lie in controlling the detuning of the

phase modulation frequency. Unfortunately, due to the lack of machine studies time and the

shutdown of the Tevatron [28], the effects of detuning have not been explored. Hopefully,

future studies in other machines will shed light on this issue.

All of the Tevatron experiments discussed here show that an RF phase modulation that is

ramped to an amplitude of a few degrees for a duration of a few seconds can flatten the low

amplitude distribution of the beam. In some cases, a divot forms à la computer simulations.

These beam studies show that stabilization does happen as soon as the bunch is flattend,
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FIG. 10. These figures show the bunch dancing in both the time domain and the frequency domain

before any modulating is done at 980 GeV. The synchrotron sidebands which are ±34.75 Hz away

from the first revolution harmonic are indicated in the lower picture.
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FIG. 11. These figures show how the bunch shape evolves after the first, third, fifth and seventh

modulation. After the seventh modulation, the synchrotron amplitude is reduced by about 14 dB

with respect to its size before any modulation.
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FIG. 12. All the traces which are collected before and after the seventh modulation are plotted

together here. This clearly shows the shape change at the end of the experiment.

confirming the proposal that resonant RF modulation can stop the beam from dancing.
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