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ABSTRACT

A logarithmic transform of the convergence field improvése‘information content’i.e., the overall pre-
cision associated with the measurement of the amplitudbetbnvergence power spectrum by improving
the covariance matrix properties. The translation of thipriovement in the information content to that in
cosmological parameters, such as those associated wkhedergy, requires knowing the sensitivity of the
log-transformed field to those cosmological parametersthig paper we us&l-body simulations with ray
tracing to generate convergence fields at multiple sourtghifts as a function of cosmology. The gain in in-
formation associated with the log-transformed field doed ke tighter constraints on dark energy parameters,
but only if shape noise is neglected. The presence of shape quickly diminishes the advantage of the log
mapping, more quickly than we would expect based on thenmétion content. With or without shape noise,
using a larger pixel size allows for a more efficient log-sfammation.

Subject headings: cosmology: theory - gravitational lensing large-scaladure methods: numerical

1. INTRODUCTION [Seo et al.[(2011) showed that a Taylor expansion of the loga-
The nature of the dark energy is one of the most intrigu- rithmic transformation that includes up to the bispectrum-c

ing mysteries of the Universe. As a result, various large sky tribution captures most of the improvement on large scales,

area surveys are being conducted and designed to stalystica suggesting that the log-transform draws its extra inforomat

determine the properties of this energy component with high o™ higher order statistics.
precision. Wepof Fc):ourse wish to ext%z\ct thg most informg- In these works, the benefits of the log-transform have been

tion available from the data. Recently, it has been sugdeste Studied only when a singl% paﬁ;}mgter — the amplitudf of the
that the two-point statistics of the logarithmically tréorsned ~ POWEr Spectrum —is varied. This does not necessarily trans-
nonlinear density or weak-lensing convergence field may late into an improvement in the measurements of other cos-

contain more information than the conventional nonlinear Mological parameters, such as dark energy parameters. |f
fields without the transformation (e. the power spectrum of the transformed field is less sensi-

Seo etal 2011). In linear theory (i.e., at high redshitig t tive to, eg., dark energyi(e., smaller derivatives with re-
convergence (and density) field is Gaussian, which means thaSPect to the parameﬁersl) or SUf;erS more deg%neraue?f be-
the two-point function contains all the information. Due to “ween parameters, the log-transform may not be as effec-

the structure growth, the field however becomes more nonlin-iVé @S expected based on the improved information content.
ear and non-Gaussian at low redshift. The cosmological in-In order to test this, we need to understand the dependence

formation in the two-point function therefore decreasethwi  2f the log-transformed field as a function of cosmology. In
increasing nonlinearity, the lost information moving teeth Seo-etal.[(2011), which we refer to as Paper | hereafter, we

higher order statistics (Takada & Jain 2004) used a modified log-transform for the weak-lensing conver-
A logarithmic transform of the nonlinear rﬁass/galaxy den- 9gence field and showed the increased information content af-

sity field or the weak-lensing convergence field, which makes t€r the log transform. Here we extend the previous work and
the one-point distribution of the field more Gaussian (e.g., gwtestlgatet Whetp?t: Orantkth'S |mprovementtpropaAga}tdsietott

Coles & Joné$ 1991 Kayo eflal. 2001 Taruya 61 al. 2002), determination of the dark energy parameters irst step
appears to produce a final field that alleviates this problem!n this direction was taken in_Joachimi et al. (2011) for the

imicking properties of a Gaussian field (Neyrinck et al. weak lensing field, wherein mapping the required derivative
ﬁo

Seo etal. 2011; Yu etal. 2011). The two-point func- with respect to cosmological parameters were computed ana-
tion of the transformed field has a more diagonal covariance!Ytically. They showed that the Box-Cox transformationttha

: : ; loses the logarithmic transformation, when optimiized
matrix (e.g.[ Neyrinck et 4l. 20111a) and (therefore) inseeh ~ ENC'OSE : . * h
information contenti(e., the overall precision associated with deed gives a tighter constraint 6n, — os. Also,INeyrincl

(2011¢) has recently shown that, using Coyote Universe sim-

the measurement of the amplitude of the convergence/gensit I o 1 ; dd p
power spectrum) to a level comparable to the Gaussian field Y auonsl(,l:l_e_umann_e_t_ﬁL_ZQll ), log-transformed denstifi
gives tighter, but unmarginalized, constraints on cosigiokd

parameters.
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ized errors on 6-8 cosmological parameters, including dark For the power spectrum and the covariance calculations, we

energy parametergé., Qx, wy, andw,). As far as we know,
this paper is the first to conduct the full Fisher matrix anal-

need to determine the multipole bin width. An important re-
quirement is that the dimension of the covariance matrix is

ysis of weak-lensing power spectrum tomography using thesmaller than the total number of realizations that are used f

numerical simulations to compute the derivatives and govar
ance matrices (but also 011, for peak atatist
tomography).

The paper is organized as following. 48, we explain the
details of oulN-body simulations and Fisher matrix analysis.
In §[3, we revisit the general properties of the log transform,
such as the one-point probability distribution functio),

generating it. The dimension of the covariance matrix with
three source redshift bins is three times bigger than thidat wi
a single source redshift bin. We choasé = 200 so that go-

ing up tol,,.x = 2000 requires &80 by 30 covariance matrix.
The dimension of the covariance matrix is then smaller than
the 1000 realizations. Another reason for usihg = 200
rather than a smaller bin width is to reduce the sample vari-

the information content, and the covariance matrix from the ance effect in the derivatives calculation and therefored&e

N-body results using three source redshift bins.§ [, we
present the numerical derivatives before and after theiibga
mic mapping and the results of the full Fisher matrix analysi
deriving the dark energy figure-of-merit. We compare this re
sult with the Fisher matrix obtained from semi-analytic fiits
the power spectrum. I§[E, we include shape noise; #16,
we discuss the effect of the size of pixels;§iffl, we discuss
the analytic, Gaussian Fisher matrix results in comparison
ourllg-body results for the fiducial field. Finally, we conclude
in §[8.

2. NUMERICAL FISHER MATRIX ANALYSIS

To study the cosmological information from the log-
transformed field numerically, we use a large set of ray-
tracing simulations. The ray-tracing simulations are con-
structed from %200 realizations oN-body simulations with
box sizes of 240 and 480 'Mpc on a side, respectively. The
number of particles in each simulation is 256-or the fidu-
cial cosmology, we adopt the concordant€DM model:
matter fraction(2,,, = 0.238, baryon fraction2, = 0.042,
dark energy fractiof2x = 0.762 (therefore a flat universe),
the equation of state parametars = —1 andw, = 0, spec-
tral indexn, = 0.958, normalization4, = 2.35 x 10~2, and
Hubble parametet = 0.732. Note that the fiducial cosmol-
ogy givesog = (.76 (the variance of the present-day density
fluctuation in a sphere of radigs: ~'Mpc). We assume three
delta-function like source redshifts at= 0.6, 1.0, and1.5
for a tomographic study. From the 408body simulations,
we generate 1000 realizationsi5fx 5° lensing convergence
fields (i.e., a total of 25000 square degrees) RiHS? pix-
els (0.15 arcmin per pixel) at each source redshift using ray

the derivatives smoother.

2.2. Log-mapping

We use the logarithmic mapping that was introduced in Pa-
per I. A log field is defined as:

mn(_')znoln 1+ —= (1)

wherex is a constant with a value slightly larger than the ab-
solute value of the minimum value gffor a given cosmology,
source redshift, and survey pixel — this keeps the argunfent o
the logarithm positive. In detail, to generate the covaréan
matrix for the fiducial cosmology, we Usg = |#min|+0.001
whereks iy is the minimum pixek of the 1000 convergence
fields at each source redshift;,;, = —0.01348, —0.02940,
—0.04874 at source redshifts; = 0.6, 1, and 1.5, respec-
tively. While xy, reduces to the standard convergence in the
limit of small x, the log alterss in very high or low conver-
gence regimes. The parametgrtunes the degree of the al-
teration such that, the smalleg, the more we alter the field.
Note that various properties of the, field that will be dis-
cussed in this paper show a slow, asymptotic behavior as a
function of kg near the minimum value of. Therefore fine-
tuning is not necessary faf,.

2.3. Derivatives

For the Fisher matrix calculation, we need to first calcu-
late numerical derivatives of the lensing power spectré wit
respect to cosmological parameters. To do this, we ran ray-
tracing simulations of the convergence fields for cosmolog-

tracing (a total of 3000 convergence fields). Details ofg er
tracing can be found i al. (2D09) (see, lalso Sato et alical models perturbed around the fiducial cosmology. We

).
We resample the convergence fields #82 pixels (2.4 ar-

varied each of the following cosmological parametess;,
ns, the cold dark matter densify.k? (the fiducial values for

cmin per pixel) by averaging over nearby 16 by 16 pixels as Q.h? = 0.1054), Qx, andw, by +=10%, respectively, and,

our fiducial case. As will be discussed §i6, we find that
using a larger pixel leads to a more efficient logarithmic map
ping. We compute the power spectra of thex 1000 con-

by 40.5, respectively. The Hubble parametgi,,,, and2,[8
are then dependent parameters. For each of the 12 different
cosmological models, we built 40 realizations of the conver

vergence fields assuming periodic boundary conditions be-gence fields for each of the three redshift bins. Therefore we
fore and after logarithmic mapping. The covariance matrix use a total 08(40 x 12) = 1440 simulated convergence fields
is derived by calculating covariance between band powers afor calculating the derivatives. We then computed powecspe

different wavenumber bins and at different source redshift
The resulting covariance matrix represents dispersiotisan
lensing power spectra for an area®f x 5°. We assume

a future, wide-field weak lensing survey of 5000 square de-

grees, just as in the Dark Energy Survey (Dmﬂ al.

[2005), by rescaling each elements of the covariance matrix b
1/(5000/25).

2.1. I binwidth

tra with and without the logarithmic transformation frontba
realization, averaged them, and derived the derivativetifby
ferencing them. The value,,;, (Eq.[d) is derived for each
cosmology and therefore different for different cosmotadi
models. Meanwhile, calculating derivatives becomes yrick
in the presence of shape noise for the logarithmic transferm
tion, as will be discussed in the next section.

6 We holdQ;, h2 fixed.
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2.4. Shape noise covariance matrices, we can compute the Fisher informa-
The intrinsic ellipticities of source galaxy shapes cause fion matrix for cosmological parameters of our intergst,

white noise contamination to the lensing power spectrum (189marx 1997; Tegmark etlal. 1997):
(Kaiser[1998). For the simulated convergence map, we can

\ : i . . . oC., (I’
include the noise contamination by adding, to each pixek ra  F\'" = Z Z MCov‘l(l, 25, U, 22)75( ),
dom Gaussian noise with variance ., b 9p;
2 3)
o3 = - (;; —, (2) whereC. (1) is the measured convergence power spectrum at
g3 ipix

multipole bin/ andz,; Cov is the measured covariance matrix
whereo. is the rms of intrinsic shear per component,s the betwe(_en wavenumber_s and source redshifts. The set of cos-
mean number density of galaxies afigi, is the pixel area. ~ mological parameters is: the amplitude of the power spettru
We seto, = 0.22 andn, = 30 arcmim2 as for our fidu- (In As), the slope of the primordial spectrum,, therhysp
cial values at each redshift, therefore a total of 90 gataxie Cal matter density in units of the critical density,(/~), the
per arcmifd , which is much deeper than current weak lensing dark energy densit2 x, and two parameters for the dark en-
surveys such as Dark Energy Survey (Abbott ét al. 2005). In€rgy equation of statev = wo + z/(1 + z)w,. Note that, by
the presence of shape noise, the fidueiafield is closertoa  incorporating the information from the three source reftshi
noise; the log-transform becomes less efficient. We measurdnd information (Hii 1999; Takada & Jein 2004). The error on
kmin IN the presence of the shape noise and use it when calihei-th parameter including marginalization over uncertain-
culating the covariance matrix of the log-transformed field  ties in other parameters is estimatedds;) = /(F~ 1),

For the fiducial field before log mapping, we calculate the where F—1 is the inverse of the Fisher matrix. The un-
derivatives from the power spectra without shape noise, be-marginalized error is given as(p;) = 1/\/F;;. We have
cause the shape noise does not depend on cosmological paiso tried including independent, free shape noise as param
rameters. That is, the shape noise is included only in the co-eters for the three redshift bins, but find little effect oe th
variance matrix. This is consistent with what we would do constraints we derive.
in the likelihood analysis with real data. We would derive a
signal power spectrum after subtracting the shape noise con 2.6. Planck prior
tribution (Hikage et al. 2011) and compare it with a theory
power spectrum as a function of cosmology.

Including the shape noise effect in the derivatives calcula
tion is non-trivial for the log-transformed field. The shape
noise not only increases noise in the measured convergenc
field, but also makes the log-transform less efficient by in-
creasing|rkmin|. That is, when a convergence field is op-
timally log-transformed by using..;,, the power spectrum . ' . ;
is diff)e/relgt for a different ?/evel 0% shape ngise everﬁl after t DY 2dding the x 8 Planck Fisher matrix to thé x 6 dimen-
shape noise is, ideally, subtracted. In addition, while we-c  Sional convergence Fisher matrix:
duct a nominal subtraction of the shape noise from the power [ — FWL 4 pemb (4)
spectrum by subtracting a constant number that is derived * K v
from the difference in the variance of the field before and af- where the lensing Fisher matr}x»‘J’»VL has non-zero entries in

ter the log-transform in the presence of shape noise, ih,trut the6 x 6 block associated with: As, ., Q.h2 (or O h?),

the effect of the shape noise is neither scale-independent n . mb
cosmology-independent in the log-transformed field due to 2 wo. andw,, and the Planck Fisher matrf ;™ has non-

the nonlinear transformation. Therefore we need to derige t 2670 €ntries in alf x 8 elements including additional two pa-
derivatives differently for different cosmologies for theg- rameters(2,h" and{2x . The Planck Fisher matrix we use in-
transformed field. For each of the 12 cosmological model, €ludes marginalization over uncertainties in the opticgitt
we first estimated the,,;, value for the log-transformed field ~Parameter on WQ'Ch the CMB power spectra depend. The
with the shape noise. In order to minimize the impact of the Z8r0{2x and ;2= elements in the convergence Fisher ma-
random noise on the derivative calculation, for each cosmol trix reflect the fact that these two parameters are congtiain
ogy, we cloned each of the 40 realizations 25 times using asolely by the CMB information.
different random seed for the shape noise. This way we gen-
erate 1000 realizations from the underlying 40 realization 3. GENERAL PROPERTIES OF THE LOG
for each cosmology; the averaged power spectrum will have TRANSFORMATION
much smaller sample variance on the effect of shape noise. Before presenting the Fisher matrix analysis, we first ievis
We then log-transform the fields and differentiate the tesul the general properties of the log-transform that have been d
ing power spectra between different cosmologies and calcucussed in Paper I, such as the power spectra, 1-point prob-
lated the derivatives with respect to cosmological paramset  ability distribution (PDF), the information content, arluet

. . structure of the covariance matrix for the three sourcehiétds

2.5. Fisher matrix bins.

We want to propagate the errors on the convergence power The upper left panel of Figufé 1 shows the measured power
spectrum, our observable, into the projections of cosmelog spectra of the convergence field (open symbols and/or
cal parameters using a Fisher information matrix formalism dashed lines) and the log-transformed field (solid sym-
Using the numerical nonlinear derivatives and the measuredbols and/or solid lines) at, = 0.6 (triangles and/or black),

Lensing information alone cannot determine all the cos-
mological parameters simultaneously due to severe paeamet
degeneracies. We therefore include in these projectians th

MB information expected from the Planck experiment. The

MB is sensitive to two additional parameters, the baryon
density2; h2 and curvature densifQ . We combine the con-
vergence field information with the Planck prior (Hu 2002)
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FiG. 1.— Upper left: power spectra at= 0.6 (black), 1 (blue), and 1.5 (red) before (dashed lines/omentg) and after the log-transform (solid lines/filled
points). Upper right: PDF distribution before and after libg-transform. Lower left: the information content of thlividual redshift bins. Lower Right: the
information content from the combination of the threeebins. Since the three bins share information, the comhainaif the three bins (solid and dashed lines
with points) show less improvement after the logarithmamsformation. Dotted lines show the Gaussian limit.

1 (squares and/or blue), and 1.5 (circles and/or red). As ex-multipoles! and!’ subject tol, I’ < I,.x (Sato et all 2009;
pected, the log-transform reduces the small-scale nanline [Takahashi et al. 2009). As pointed out in Paper |, this infor-

clustering. The reduction is more prominent for the lower

mation content can be understood as the inverse of the frac-

source redshift, the reason for which is apparent in the PDFtional error on the amplitude of the observed, nonlineargrow

distribution in the upper right panel: the PDF ofdeviates
more from a Gaussian PDF at = 0.6 and therefore is more
improved by the log-mapping. The lower left panel shows
the improvement in the information content, the cumulative
signal-to-noise ratiq¢S/N)? integrated up to a given maxi-
mum multipolel,,., for each of the three, bins, defined

as:
5
N

where(; is the power spectrum of multipolebefore and af-
ter the log-transformCov is the covariance matrix describing
correlations between the power spectra of multipolasdi’
(I,I" < lmax) at eachz,, and the summation runs over all the

C,Cov™ (1,1 Cy (5)

(] 2

LV <lmax

spectrum before and after the logarithmic transform. The
Fisher matrix analysis will show to what extent this imprdve
fractional error on the observed amplitude remains when a
full set of cosmological parameters is used. In the lowdr lef
panel, the improvement in the information content due to the
log-transformis largest for, = 0.6 and smallest fog, = 1.5

due to the level of nonlinearities, as expected from the up-
per two panels. The dotted gray line is tff/N)? expected

for a Gaussian case. Due to the nonlinear structure growth
that causes significant off-diagonal covariances, the oreds
(S/N)? values of thes field are much smaller than the Gaus-
sian limit. We find that the),, field returns theS/N)? closer

to that of the Gaussian case, which confirms the results in Pa-
per | but using a differenf\/. The improvement is a factor

of ~ 6.9, 3.9, and 2.2 at, = 0.6, 1, and 1.5, respectively,

at l.x ~ 1000 and a factor of 12, 7.9, 4.6, respectively at
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FiG. 2.— Slices of the covariance matrix to show the covarianegrimproperty before (black dashed) and after (red sohé)log transform. Each panel
shows a different block of the covariance matrix constritte pairing two of the three; bins. The elements are normalized relative to the diagdeatents,

i.e, Cov(l,1")/(Cov(l,1)Cov(l’,1)) /2. In the notatiorCov;, i and; indicates a source redshift bin. For examgiley 1 is the normalized auto covariance
matrix of zs = 0.6. For each block of the covariance matrix, we find that#hefield is much more diagonal than That is, the covariance between differént
bins is significantly reduced after the log-transform, white covariance between differentgiven! remains similar before and after the log-transform.

Imax ~ 2000; note that the improvement is largest for the  In addition to the improved information content, one of
lowest source redshift. The improvement is slightly better the potentially advantageous features of the log-mapgng i
than was reported in Paper I, which is mainly due to the loga-the improvement in the covariance matrix property: it re-
rithmic transformation seemingly being more efficientfoet  duces the size of the off-diagonal terms (Paper 1). Figlire 2
larger pixels used here. The lower right panel shows the im-shows two rows of the covariance matrix for= 306 and
provement in the information content when the information / = 1100. Each panel shows a different block of the nor-
from the threez, bins is combined. This is done by includ- malized covariance matrix constructed by pairing two of the
ing the measured covariance between differgttins in Cov threez, bins. For each block of the covariance matrix, we
in Eg. (3) and summing the signal-to-noise ratios up,tg. find that thexy, field is much more diagonal than That
and over all the three, bins. Since the threg, bins share is, the covariance between differehbins is significantly
some of the lensing structures, there are non-vanishing coteduced by the log-transform. Both and x),, fields show
variances between the power spectra of diffeegritins and a slightly higher level of off-diagonal covariance commhre
therefore the improvement due to the log-transform is some-to what we found in Paper |, partly due to the larget
what smaller when alt, are combined: 1.9 dt,.,. = 1000 bin used here (i.e.Al = 200 compared toAl = 100 in

and 2.7 at,ax = 2000. The Gaussian case in the lower right Paper I) and also probably due to sample variance. Note
panel is derived also taking into account the expected ¢ovar that the different bin width alters only the Gaussian covari

ance between different redshift bins. ance contributior (Meiksin & White 1999; Scoccimarro €t al.
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FiG. 3.— Derivatives of convergence power spectra ahdx,, fields with respect to various cosmological parameters sokite values. Points are derivatives
estimated fronN-body simulations; dotted lines use Halofit (for the fiduciep) as a comparison. Left: the fiducial map. Right: the l@pping. The fractional
derivatives (bottom panels) remain similar even after dgettansform for some parameters, especially at high sowdshifts. The fractional derivatives are
rescaled by the factor denoted in the legends for clarity.

11999; 1;_Takada & Jein 2009); the larger s, (right panels) fields with respect to various cosmologi-
bin width reduces the Gaussian covariance, the diagonal comcal parameters (square points). As a comparison, the dotted
ponents of the covariance matrix, and thus increases tae rel lines show the prediction based on Hal 003)
tive off-diagonal components. While the covariance betwee for the fiducial mapping. We see an obvious decrease in the
different wavenumbers is decreased, the covariance betweerelative amplitude of the derivatives due to the log-transf
differentz; given! remains similar before and after the log- (bottom panels) at, = 0.6. Such changes in the derivatives
transform by looking at the location of the peak<Jiov;; for will be combined with the changes in the covariance matrix
14 7. property in the Fisher matrix calculation. As a caveat, we fin

In summary, we observe general properties of the log- the relative amplitude of the derivative with respechtode-
transform that are consistent with the results in Paperd: th creases after the log-transform, while Neyrinck (2011a)din
1-point PDF is more Gaussian, the covariance matrix is close an increase on small scales; it might be due to a difference
to a diagonal matrix, and the information content is greatly in details of the log-transform between the weak lensing fiel
improved after the log-transform. We next propagate this im and the density field.
provement to the errors on cosmological parameters useng th
Fisher matrix formalism.

4.1. Without Planck prior

We first show the Fisher matrix results of the convergence
4. FISHER MATRIX ANALYSIS field without shape noise contamination and CMB informa-
We study how the improvement on the precision of the am- tion in Figurel4. We use all the information up e= 2000.
plitude, or the information content, propagates into the-pr  For reference, if the amplitude of the power spectrum were
cision of cosmological parameters. The improvement in the the only parameter (as in Paper 1), the log field would lead to
information content for thes, field is due to the improved —an errorAln(A) = 1.9 x 102 for these survey parameters
properties of its covariance matrix. The Fisher matrix falkm  while the standard field would haveA In(A4;) = 2.9x 1073,
ism then combines this with an extra piece: the sensitivity o We call this a factor of 1.5 improvement in ti® Figure of
thex andky, power spectra to cosmological parameters. Merit. When we generalize to 6 parameters, the correspond-
Before presenting the Fisher matrix results, we take a looking Figure of Merit (FoM, hereafter) is the square root of the
at the numerical derivatives calculated from the convetgen determinant of thé x 6 Fisher matrix. In this case, we find a
fields from a large set dfi-body simulations. Figurlg 3 shows factor of 23 improvement. This is better than the naive expec
the derivatives of the power spectrum ofleft panels) and  tation of 1.5 = 11, so our first conclusion is that the advan-



TABLE 1
MARGINALIZED ERRORS ON EACH PARAMETERS

In As N Qmh? Qx wo Waq Qph? Qx
~ alone 0.0642 0.897E-02 0.493E-02 0.472E-02 0.458E-01 0.119
Kin @lone | 0.0408 0.674E-02 0.325E-02 0.202E-02 0.189E-01 0.124
x+Planck | 0.0101 0.336E-02 0.I15E-02 0.367E-02 0.357E-01 0.997E-OM50E-03 0.272E-02
Kkin + Planck | 0.0102 0.304E-02 0.107E-02 0.149E-02 0.161E-01 0.632E-01148E-03 0.253E-02

NOTE. — Marginalized errors before and after the log-transfosing power spectrum information up t@ax =
2000. Both errors show distinct improvement after log-transfpthe improvement is mainly of x, wo andw, once
the Planck prior is included.
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FiG. 4.— Marginalized error contours before (solid black linasd after "TE88
log-transform (red lines) without shape noise contamimaéind CMB infor- © 5 it

mation. Thatis, we took th&x 2 sub-Covariance matrix and plotted the error
contours. We use power spectrum information upe 2000. One sees that
the marginalized errors are overall smaller £g5. The dotted contours show
constraints from the Plank alone. The Planck contours fios patweerf2 x,
wp, andw, do not show up here due to the extreme degeneracies.

FiG. 5.— Marginalized error contours before (solid black Inaad after
log-transform (red lines) when we combine the weak lensiaig avith the
Planck mission. We use power spectrum information up e 2000. One

. . sees thak,,, improves constraints mainly on the three dark ener arame
tages of the log estimator hold up — or even increase — whengg i_e.,Ql;, wE, andw,. Y wP

generalizing to multiple cosmological parameters.

Figurd4 shows some 2D slices of these constraints. The fig- ,
ure shows the marginalized— & error contours from weak of the error contours on the_8 cosmolqgmal parameters when
lensing tomography alone for various pairs of the 6 cosmolog We combine the weak lensing data with Planck (left panel).
ical parametefs The solid black lines show the result from The solid black line is for the field and the red line for the
the « field before the log mapping and the red lines show the Fin field after the Planck Fisher matrix is combined. The dot-
results of thes, field. The constraints are tighter for thg, ted contour shows the error contours for the_ Planck alone_ as
field: the error ellipses have shrunk and the projections are@ comparison. When the Planck priors are included, the in-
that ther,, field often leads to narrower allowed regions. Ta- formation on parameters other th@n, wy, andw, is dom-
ble[ lists the marginalized errors without the Planck prior inated by the Planck information, as evident in Fidure:d;

the log-transform shows improvement, especiallfbpand ~ improves constraints mainly on the three dark energy param-
wy. The dotted contours in Figufé 4 show constraints from eters. Table[1 shows that we achieve an improvement by
Planck alone: the Planck contours for pairs betw@en w, a factor of 2.5 forQ2y, 2.2 forwy, and 1.6 forw, by log-

andw, do not show up here due to the extreme degeneraciestransformation.
For all parameters other than the dark energy parameters, th )
information from the Planck mission dominates. 4.3. Improvement in the dark energy FoM

4.2. With Planck prior 8 The solid contours in Figuld 5 do not exactly agree with thieenarror
The situation is qualitatively similar when the Planck prio  contour combination of the solid contours in Figlite 4 anddbited Planck

is addedin. The Figure of Merit (now 8D) is Iarger by afactor contour: we would expect this agreement if we add the Fislarices from

. . . . the 2 by 2 sub-covariance matrices of the convergence fieldten Planck
of 12 when the log estimator is used. Figlie 5 shows slicesnission. However we are adding the two full Fisher matriceselsuch that

a given marginalized error contour is affected by the effe#cthe Planck
7 .e., we take th@ x 2 sub-Covariance matrix and plot the error contours. information on the rest of the parameters.
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We can also quantify the improvement due to the log-
transform using the Figure-of-Merit of dark energy parame-
ters (hereafterFoM,,, v, ) that is often used in literature to
characterize the performance of a dark energy survey missio
The Dark Energy Task Force (DETF) FoM (Albrecht et al.
2006) is defined as

1 B 1
o(wp)o(wa)  \/det(Coviwg, wa])’

wherew, is the dark energy equation of state at the “pivot”
redshift, at which the dark energy equation of state is b@st c
strained by given observables, a@dv|wg, w,] is the2 x 2
sub-matrix of the inverted Fisher matrik,~ 1, including only

its elements ofvg andw,. The FoM is proportional to the
area of the marginalized error ellipseiry andw, parame-
ter sub-space. In Figufé 6, the left panel shdwdly, .,
before (dashed lines) and after the log-transform (satield):

FoMyy—w, =

(6)

TABLE 2
FIGURE OFMERIT.
Tmax FOMWO —Wa FOMSD
K Kln R Rln
1000 301 803 | 3.56E+20 2.67E+21
2000 610 1423| 1.90E+21 2.21E+22

NOTE. — Figure of Merit inwp-w, and in the 8-D
before and after the log-transform.

5. FISHER MATRIX ANALYSIS WITH SHAPE NOISE

Any weak lensing survey contains shape noise, i.e., uncer-
tainty associated with intrinsic shapes of the galaxiesis Th
noise decreases with increasing galaxy number densitieln t
presence of large shape noise, the observed field is closer to
Gaussian (assuming Gaussian shape noise}ands larger
due to the additional dispersion: we therefore expect that a

we observe approximately a factor of two improvementwhen |og-mapping will be less efficient for a larger shape noise.

including the Planck prior (red and black lines with triaegl.

In the middle panel, we show the 8-dimensional figure-of-
merit as a function of,,,.. We find a factor of 7-12 im-
provement using,,., = 1000 — 2000, which can be read out
from the right panel where we show the ratiotafMgp be-
tween with and without the log-transform (black line). TelBl
presents the FoM values as a functior,@f, = 1000 — 2000.

Paper | have shown that, with a galaxy number density of
30 arcmin 2 atz, = 1 and a pixel size of 2.4 arcmin, a factor
of the improvement is 2.4 fal,., = 2000; we find a sim-

ilar result of 2.3 as shown in the left panel of Figlile 7. We
assume the total mean number density©®farcmin~2 and

the number densities of 30, 30, aB@l arcmin 2 for source
redshifts ofz, = 0.6, 1.0, and 1.5, respectively. Note that this
is a galaxy number density that is much higher than ground-
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Gaussianization scheme, particularly one not so sengitive
kmin, Might well work better. It is also possible that the in-
formation is hopelessly lost due to the shape noise and there
is not much to recover with log-transform. The encouraging
results to date in the absence of shape noise suggest that thi
is an important avenue of research.

6. THE EFFECT OF THE PIXELIZATION

Using a larger pixel appears more efficient in terms of the
information content than using a smaller pixel, whethehwit
and without shape noise, partly due to the smaltgr,,| that
we can reach for a larger pixel. The top panels of Fididre 9
shows the information content and the 8D FoM using a pixel
of 0.6 arcmin, instead of our fiducial pixel of 2.4 arcmin, in
the presence of no shape noise. From the left panel, one sees
that the information content after log-mapping (left pahel
is much lower when using a smaller pixel than when using a
pixel of 2.4 arcmin (in Figur&ll) (also see Neyrifick 2011b;
Joachimi et al. 2011). On the other hand, we find that the dif-
ference inFoMgp for different pixel sizes is not as drastic
as we have expected based on the information content result.
The left panel of Figure-10 shows the marginalized error con-
tours for the pixel of 0.6 arcmin without shape noise and with
out the Planck prior. Since this case is less efficient for the
log-transform, unlike the case of a 2.4 arcmin pixel (in Fegu
i, o) e T oo o ol g, B e changes i the erfor elipses are nota smple sfginka
mological pérameters after log-transform. Black: befogtransform. Red: of ellipses. The pr_Ojectlons_ are tha.t thg, field leads to nar- .
after log-transform. rower allowed regions, which implies stronger degenegacie
after the log-transform; the errors on cosmological patanse
do not decrease after the log-transform despite the improve
énent in the information content. When the Planck priors are
tombined (right), the strong degeneracies in the power-spec
trum of k), are lifted, and now the thin error ellipses observed
in the left panel finally translate to smaller errors(@g, wy,
andw,.

The bottom panels of Figufé 9 shows the information con-

Figure[8 shows the marginalized error contours with the tent and the 8D FoM using a pixel of 0.6 arcrainthe pres:

i L ; ce of shape noise. In comparison to Figuid 7 for pixel of 2.4
Planck prior in the presence of shape noise: the improvemen : . ! ;
due to the log-mapping is not found here despite the Iargeg?cmln,we find even less improvement with the log-transform

due to a smaller pixel. The effect of pixel we observe ap-

degree of improvement in the information content. There- . . :
fore, we find the improvement in the information content -Ze(?lrs)consstentwnh the effect of smoothing in Joachirallet

by the log-mapping does not propagate efficiently to the im-
proved cosmological information in the presence of even an
optimistic limit of shape noise for future weak lensing sur- 7. ANALYTIC FISHER MATRIX RESULTS

veys. The effect of shape noise we find is consistent with We compare ouN-body Fisher matrix results with the an-
Joachimi et al. [(2011) despite the different set of cosmo- alytic Fisher matrix results using a Halofit (Smith et al. 2P0
logical parameters investigated, except that they find muchfor the fiducial mapping. As shown in the left panel of Figure
smaller improvement in the information content. In caltula [3, the derivatives derived from the Halofit slightly deviate
ing the information content (Ed.] 5), we set the signal to be from theN-body results, especially on highsuch that those

an averaged power spectrum of the log-transformed field af-for the dark energy parameters appear similar to what was
ter subtracting a constant power as an approximation for theshown in_ Casarini et al. (2011). Due to the discrepancy in the
shape noise effect; Joachimi et al. (2011) use a power specnonlinear convergence power spectrum between the Halofit
trum without shape noise as a signal. Since the constantrpoweand theN-body resultl), there seems to be a big-
we subtract does not include higher order contributions tha ger difference in the fractional derivatives (bottom ledngl).
mingles shape noise and the clustering signal, the signal wéNe conduct a Gaussian Fisher matrix analysis using Halofit
input is higher than that al. (2011) and there- results and the Gaussian assumption: we call this ‘Gaussian
fore our information content is larger. Fisher matrix results’.

It is quite possible that the problem of the shape noise lies We find theN-body Fisher result predicts better constraints
in the estimator. In the absence of shape noise, the log-on dark energy parameters than the Gaussian Fisher result,
transformed field is the obvious way to make the field nearly which is contrary td_Casarini etlal. (2011). In detail, theno
Gaussian. In the presence of shape noise, it is quite pessibllinear covariance matrix increases the error bars, reldtv
that one must work harder to find an estimator that recaptureshe Gaussian case, which is expected; howeverNthedy
the information lost to higher point functions. A different results appear to show less degeneracies between darkenerg

based, near-future weak lensing surveys.

Figure[T shows that, in the presence of this modest shap
noise, the improvement in the information content due to the
log-mapping is still large, but the 8D FoM is very similar for
the standard estimator and fok,,,. The improvement on the
full set of cosmological parameters is only a factor of 1.7 fo
Imax = 2000.
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Fic. 9.— Effects of pixel size. We use a pixel of 0.6 arcmin fostfigure. Top: without shape noise. Bottom: with shape naige= 30arcmin—2 for each
pixel). Left: the information content. Right: improvemsritue to log-mapping in terms of various quantities.

parameters{{y, wo, w,) than predicted by Halofit. As are- mapping: when Planck mission information is included as a
sult, theN-body Fisher matrix analysis gives better constraints prior, the log-transformed field greatly improves constigi
on dark energy parameters than the Halofit-based Gaussiaespecially on dark energy parameters suclf2gs wg, and
case. If we holdw, fixed orQx fixed, theN-body FoM be- wg. IN the presence of shape noise, however, the advantage of
comes worse than the Halofit result. In the presence of shapehe log mapping quickly diminishes. We find little improve-
noise, the nonlinear covariance matrix is closer to the Gaus ment on the cosmological parameters after log-transfoen ev
sian one. Therefore the constraints fromihbody resultare  with 7, = 30arcmin™? at each of the three source redshift
better than the Halofit-based Gaussian case to a largertextenbins. We find the information content is not necessarily a
Table[3 lists our results. good probe of the actual precision on the final cosmological
We comment that sample variance introduces a noisy fea-parameters. We also find using a larger pixel allows a more
ture in theN-body derivatives. We have uséd = 200 rather efficient log-transform with and without shape noise. Hipal
than a smaller bin width to reduce such noisy feature. How- we find that, for the fiducial mapping, the Halofit-based Gaus-
ever, any remaining noise might have affectedHeody re-  sian Fisher matrix calculation gives worse constraintsamk d
sults. We tried smoothing the derivatives, which did not de- energy parameters than the fibody Fisher matrix result.
crease the constrains from tikebody results and therefore  This appears to be due to less degeneracies among dark en-
did not reverse our finding. ergy parameters in th-body power spectra.

8. CONCLUSION We greatly appreciate the extremely helpful comments from

We have used the Fisher matrix formalism to test the impactBhuvnesh Jain. We thank Patrick McDonald and Jan M.
of the log-transform on the cosmological parameters. We find Kratochvil for useful discussions. H-JS is supported by the
that the log mapping performs much better than the fiducial Berkeley Center for Cosmological Physics. MS is supported
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TABLE 3
N-BODY FISHER ANALYSIS VS ANALYTIC GAUSSIAN FISHER
ANALYSIS.
[95% wo Wa
x + Planck 0.367E-02 0.357E-01 0.997E-01
Analytic 0.372E-02 0.451E-01 0.128
~ + Planck 0.335E-02 0.165E-01 -
Analytic 0.154E-02 0.154E-01 —
x + Planck - 0.294E-01 0.909E-01

Analytic - 0.171E-01 0.530E-01

r + Planck, shape noisg 0.626E-02  0.808E-01 0.220
Analytic, shape noise| 0.134E-01 0.169 0.409

x + Planck, shape noisge 0.525E-02 0.211E-01 -
Analytic, shape noise| 0.429E-02 0.237E-01 -

x + Planck, shape noisg - 0.603E-01 0.185
Analytic, shape noise - 0.409E-01 0.131

NOTE. — The analytic Gaussian Fisher results are derived us-
ing the Halofit results and the Gaussian assumption. Shape no
is based o, = 30 arcmin—2 for each source redshift bin. The
results on parameters other than dark energy parametevemgre
similar between the two methods, mainly because these ané do
nated by the Planck information; we do not show these pasmset
in this table for simplicity. The rows with “~" means that ther-
responding parameter is held fixed.
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