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Abstract

Coherent transverse beam oscillations in the Tevatron were analyzed with the Model-Independent

Analysis (MIA) technique. This allowed to obtain the model-independent values of coupled be-

tatron amplitudes, phase advances and dispersion function around the ring from a single dipole

kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of

determination of the optical functions we have developed a new technique of rotational MIA mode

untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated

in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the beta-

tron phase advance between any BPM and its counterpart shifted by one turn should be equal to

the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore,

we describe a MIA-based technique to locate vibrating magnets in a storage ring.
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I. INTRODUCTION

Turn-by-turn readings from beam position monitors (BPMs) in a storage ring are often

used for accelerator optics measurements. The main advantage of this approach in compar-

ison with alternative methods (e.g. the orbit response matrix technique [1]) is that it takes

very little time to acquire turn-by-turn data. For example, one needs 2 hours of beam time

to obtain the full orbit response matrix for the Fermilab Tevatron collider, compared to the

160 ms necessary to register 8000 turns of coherent betatron oscillations excited by a dipole

kick.

The conventional harmonic analysis of turn-by-turn measurements is based on the accu-

rate betatron tune determination [2]. In the Tevatron collider the betatron tunes are close

to the linear coupling resonance and normally synchrobetatron sidebands overlap. Owing to

this fact, it is difficult to use harmonic analysis for calculation of the optical functions from

turn-by-turn measurements. This triggered our study of the model-independent analysis

(MIA) [3, 4] as an alternative method. MIA is based on the correlational studies of signals

from different BPMs and does not require accurate betatron tune determination.

In order to find the coupled betatron amplitudes and phase advances with MIA it is

necessary to solve the MIA mode mixing problem [4]. Previously this problem was addressed

with two different approaches, namely the rotational mode untangling proposed in [4] and the

Independent Component Analysis (ICA) [5] approach based on some statistical criterion of

mutual signal independence. Both these methods rely on Fourier analysis as a way to confirm

that the mode separation algorithm actually works. However due to the large chromatic tune

spread and synchrobetatron sideband overlapping in the case of the Tevatron it is often

difficult to determine the quality of MIA mode separation from the Fourier transformations

of the modes. In this paper we describe a new method of MIA mode untangling which

does not rely on the Fourier spectrum information. Furthermore, we describe a MIA-based

technique to locate vibrating magnets in a storage ring.

The paper is organized as follows. In Section II we outline the basics of MIA with some

motivational considerations based on the particle tracking simulations. Section III presents

the results of MIA applied to the Tevatron turn-by-turn measurements. In Section IV we

define the coupled betatron functions and determine their relation to MIA modes. Sec-

tion V describes a new method of untangling the mixed MIA modes with applications to the
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Tevatron turn-by-turn measurements and simulation. Here we also compare our approach

with other techniques. Section VI describes our MIA-based method to find the locations of

vibrating quadrupoles in the Tevatron. Finally, Section VII presents conclusions.

II. MODEL-INDEPENDENT ANALYSIS

Let ztm represent horizontal or vertical beam centroid position recorded at the m-th

monitor for the t-th turn. Then BN×M ≡ (ztm) is the beam history matrix of N beam turns

recorded simultaneously at M monitors (each BPM signal is represented by some column of

matrix B). The MIA is accomplished via singular value decomposition (SVD) of the beam

history matrix

B = UΣV T , (1)

where UN×M and VM×M are orthogonal matrices (i. e. the matrices with orthonormal

columns) and ΣM×M = diag(σ1, · · · , σM) is the diagonal matrix of declining singular val-

ues. Written separately for each BPM signal in the beam history matrix, Eq. 1 reads



z1m

...

zNm




=
M∑

j=1

σjvmj




u1j

...

uNj




, (2)

where vmj are the elements of matrix V and unj are the elements of matrix U . This sum can

be truncated at some point because singular values decline rapidly. The remaining columns

of matrix U are the orthogonal basis of source signals also referred to as the temporal

modes of MIA. For each temporal mode in U there is one spatial mode represented by the

column of matrix V . Spatial mode represents the amplitude variation along the ring for

the corresponding temporal mode. Singular value with a proper index gives the overall

amplitude of these two modes in the beam history matrix.

The statistical analysis described here is also called the Principal Component Analysis

(PCA) [6] and it is particularly known for its ability to compress data and reduce noise.

PCA is used as a first step in numerous Independent Component Analysis (ICA) algorithms

[7], where the final signal separation is achieved according to some statistical criterion of

mutual signal independence. Previously ICA was successfully applied to the turn-by-turn

data analysis at the Fermilab Booster synchrotron [5]. At the end of Section V we compare

different ICA algorithms as applied to the Tevatron.
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FIG. 1: Fourier amplitudes and singular values for single particle experiencing betatron and syn-

chrotron oscillations in the Tevatron. Beam history matrix B was obtained via tracking simulation

in Elegant [11] using two different sextupole settings corresponding to small and large chromatic-

ities. For a) and c) ξx = −3, ξy = 3; for b) and d) ξx = 19, ξy = 26. Initial non-zero particle

coordinates are: x′ = 6 · 10−6 and ∆p/p0 = 4 · 10−5.

Fig. 1 shows singular values and fast Fourier transformation (FFT) amplitudes of two

simulated turn-by-turn data sets for the Tevatron lattice with different sextupole settings

corresponding to small and large chromaticities. In this tracking simulation the closed orbit

passes through the centers of all sextupoles and the linear optics remains the same as the

sextupole strength is changed. Singular value spectra in both cases are almost identical. In

terms of the PCA data compression that means a good approximation exists for the beam

history matrix B with 5 temporal and 5 spatial modes in both cases of overlapping and

non-overlapping synchrobetatron sidebands. This property of MIA can be understood if we

clarify the physical meaning of the leading MIA modes in this case.

Since the single-turn particle motion is dominated by the linear lattice properties, a good

approximation for particle (and beam centroid) turn-by-turn positions can be written as

X(t, s) ≈ R(s)X0(t) + D(s)δ(t), (3)

where X = (x, px, y, py)
T is the vector of particle canonical coordinates in transverse phase

space, R(s) is the 4 × 4 transport matrix along the ring from location 0 to location s,

D(s) = (Dx, Dpx
, Dy, Dpy

)T is the vector dispersion function, and δ(t) = ∆p(t)/p0 is the
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FIG. 2: Coherent transverse oscillations of proton beam in the Tevatron recorded by horizontal

and vertical BPMs (left). At about 900th turn beam was kicked in the horizontal plane. FFT

amplitude of the vertical BPM signal is shown on the right. Timing errors of BPM electronics with

the periodicity of five turns produce coherent lines at tunes of 0.2 and 0.4. Oscillation amplitude

damping is due to nonlinear decoherence of betatron oscillations. Proton beam parameters in the

Tevatron: momentum spread (rms) — 1.2 · 10−4 (at 980 GeV), normalized emittance (95%) — 18

π mm mrad.

relative momentum deviation performing slow synchrotron oscillations (i. e. the synchrotron

tune νs ≪ 1).

Although the exact form of X0(t) ≡ X(0, t) − D(0)δ(t) may be complicated due to

accumulation of weak nonlinear effects over multiple turns, Eq. 3 means that the particle

transverse coordinates x(t, s) and y(t, s) anywhere in the ring can be described with a lin-

ear combination of 5 functions x0(t), px0(t), y0(t), py0(t), and δ(t). Therefore the leading

temporal MIA-modes in this case represent an orthonormal basis in the 5-dimensional space

of all linear combinations of these five functions. Corresponding spatial modes represent an

orthonormal basis in the space of four linear orbits and dispersion function. Notice that

the leading spatial modes are defined here only by the linear optics (up to some arbitrary

rotation in the 5-dimensional space).

As we can see the structure of MIA modes near the coupling resonance is simple in spite

of the complicated phase space dynamics leading to the turn-by-turn BPM signals with

Fourier spectra that are difficult to interpret.
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FIG. 3: Temporal (left) and spatial (right) modes of MIA corresponding to the largest 8 singular

values.

FIG. 4: FFT amplitude spectra of temporal modes presented in Fig. 3.
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III. MIA DECOMPOSITION RESULTS

The Tevatron collider has 118 horizontal and 118 vertical BPMs which can simultaneously

record turn-by-turn beam position histories over many thousand turns. Fig. 2 shows typical

turn-by-turn readings of the Tevatron BPMs when beam is kicked in the horizontal plane

(full beam history matrix file is available in the supplementary material [19]). Fig. 3 shows

the MIA modes calculated from this measurement. First four modes correspond to the

betatron oscillations. 5th mode is the low-frequency mode which is caused by the coherent

synchrotron oscillations of the beam. The spatial component of this mode is proportional to

the dispersion function. 6th mode is caused by the mechanical vibration of one of the final

focus quadrupoles in the Tevatron (see Section VI for details). 7th and 8th mode is excited

by timing errors of BPM electronics with periodicity of five turns resulting in coherent lines

at the tunes of 0.2 and 0.4. The spatial components of the last two modes have a typical

random pattern. By looking at the spatial component of a particular mode it is easy to

tell whether the mode contains some useful information about the beam motion or it is a

“noise” signal generated by BPM electronics.

If we retain more singular values then other less significant noise signals and vibrational

modes will appear. For example the noise with the tune of 0.4 is below the selected singular

value threshold in Fig. 3.

Fourier amplitudes of the temporal modes (see Fig. 4) reveal the residual “mixing” be-

tween the modes corresponding to different physical phenomena, i. e. each temporal mode

contains low amplitude harmonics that are the leading harmonics for other modes. Such

mixing provides limitations for some practical applications of observed MIA modes like dis-

persion function measurement. There are several ways to deal with this mode mixing. First

of all one can apply a Fourier bandpass filter to data before MIA. Fourier prefiltering is

useful in order to treat the low frequency and the high frequency signals separately. For

example, the low-pass Fourier filter makes it possible to clearly observe another vibrational

mode (u3 in Fig. 9) in the turn-by-turn measurements presented in Fig. 2.

If Fourier filter is not sufficient to remove the mixing between MIA modes, one can try

the ICA or the general rotational mode untangling method [4] i. e. the untangled temporal

modes can be found as

Unew = UO, (4)
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where O is some rotation matrix. In order to find the angles of this rotation one still needs

a criterion of mode separation (Fourier amplitudes of temporal modes were used in [4]).

However in the case of overlap between synchrobetatron sidebands all these methods do not

provide good betatron mode separation and simply it’s hard to tell whether the betatron

modes are mixed or not. Therefore we had to develop another model-independent approach

which is explained in the next two sections.

IV. COUPLED BETATRON FUNCTIONS

In this section we outline the relation between the spatial MIA modes and the optical

functions that are used to describe the coupled betatron oscillations. More detailed analysis

is available in [4].

Let us consider single particle betatron oscillations with linear coupling between horizon-

tal and vertical planes. Let L be the ring circumference, then R(L) is the full turn transport

matrix i. e.

R(L)X(t, 0) = X(t + 1, 0). (5)

The R(L) matrix has 4 complex eigenvectors ν1, ν∗
1 , ν2, ν∗

2 (where ∗ denotes complex

conjugation) and 4 corresponding eigenvalues e±iµ1 , e±iµ2 [8]. Any vector of initial particle

coordinates X(0, 0) can be represented as a linear combination of the four eigenvectors

X(0, 0) =
a1ν1 + a2ν2 + a∗

1ν
∗
1 + a∗

2ν
∗
2

2
. (6)

Therefore turn-by-turn values of X are

X(t, s) = R(s)X(t, 0) = R(s)Rt(L)X(0, 0) =

= Re
[
a1f1(s)e

iµ1t + a2f2(s)e
iµ2t

]
, (7)

where f1(s) = R(s)ν1 and f2(s) = R(s)ν2. To describe coupled betatron oscillations we

introduce the betatron amplitude and phase advance functions as the phases and amplitudes

of x and y components of these vector functions, correspondingly, for f1x we have

f1x(s) = |f1x(s)|e
iψ1x(s). (8)

For simplicity of notation, let us assume that initial conditions of particle motion correspond

to a1 = a2 = 1. Then x or y component of Eq. 7 reads

z(t, s) = |f1z(s)| cos(ψ1z(s) + µ1t) +
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+ |f2z(s)| cos(ψ2z(s) + µ2t), (9)

or in a matrix form

z(t, s) =




cos µ1t

sin µ1t

cos µ2t

sin µ2t




T 


|f1z(s)| cos ψ1z(s)

−|f1z(s)| sin ψ1z(s)

|f2z(s)| cos ψ2z(s)

−|f2z(s)| sin ψ2z(s)




. (10)

The beam history matrix can be written as

B = UfV
T
f , (11)

where

Uf =




...
...

...
...

cos µ1t sin µ1t cos µ2t sin µ2t
...

...
...

...




, (12)

V T
f =




· · · |f1z| cos ψ1z · · ·

· · · −|f1z| sin ψ1z · · ·

· · · |f2z| cos ψ2z · · ·

· · · −|f2z| sin ψ2z · · ·




. (13)

Eq. 11 is the exact solution for the beam history matrix in the case of linear single particle

betatron oscillations. According to Eq. 3 in the general case of many-particle nonlinear

coupled betatron and synchrotron oscillations the turn-by-turn position of beam centroid

anywhere in the ring can be written as a linear combination of just 5 functions i. e. the

δ(t) and the 4 components of X0(t). Using Fourier filter it is easy to filter out the low-

frequency components of BPM signals proportional to δ(t) and leave only the high-frequency

components given by X0(t). Such filtered BPM signals are given by the x or y component of

R(s)X0(t). Since the matrix elements Rij(s) and the columns of matrix Vf are both linear

orbits of the same lattice one can always write any Rij(s) as a linear combination of the

columns of matrix Vf (because Vf represents a complete basis of 4 linear orbits). Therefore

the filtered version of matrix B (labeled as B̃) can be written in the form similar to Eq. 11:

B̃ ≈ ŨfV
T
f , (14)

where the Ũf is the generalized version of Uf matrix for the case of many-particle beam

experiencing nonlinear coupled betatron and synchrotron oscillations. The 4-column matrix
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Ũf is difficult to find analytically, however one can obtain it using the particle tracking

simulation data as

Ũf ≈ B̃(V †
f )T , (15)

where V †
f is the pseudoinverse of Vf (i. e. Eq. 15 is the solution of Eq. 14 with respect to

Ũf ). Therefore we can study the properties of Ũf matrix using tracking simulation.

One important property of Uf matrix is that if betatron tunes are far enough from integer,

half-integer and coupling resonances, if

N |µ1 − µ2|/2π ≫ 1, (16)

then Uf is proportional to the orthogonal matrix

UT
f Uf ≈

N

2
I4×4. (17)

This property (with obvious modification for a1 6= 1 6= a2) is still true in the general case

for the Ũf matrix. For example, in both simulations with different chromaticities presented

in Fig. 1 the product of ŨT
f Ũf yields the matrix which is very close to expected diagonal

matrix (in particular, the off-diagonal elements in this matrix are about 100 times smaller

than diagonal elements).

For large number of monitors V T
f Vf tends to be diagonal as well, although due to strong

modulation of |f1,2z(s)| near collider interaction points and because typically N ≫ M , the

diagonality of UT
f Uf holds much better than the diagonality of V T

f Vf . Therefore let us

orthogonalize Vf using the SVD

Vf = V̂fΣfO
T
f . (18)

Now Eq. 11, or similarly Eq. 14, can be rewritten in the form of SVD (see Eq. 1)

B =




√
2

N
UfOf







√
N

2
Σf


 V̂ T

f . (19)

Finally, we can relate the coupled betatron amplitudes and phase advances to the SVD of

beam history matrix B (or B̃ in the general case).

Uf ≈

√
N

2
UOT

f , (20)

Vf ≈

√
2

N
V ΣOT

f , (21)
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FIG. 5: Beam centroid trace in the normalized phase space (beam turn from 930 to 2100). uf,1

is the first column of Ũf matrix, determined from the SVD of turn-by-turn measurements (see

Fig. 2, 3) using the mode untangling technique described in Section V.

where we assume that only first four modes are retained in SVD of B. From the four columns

of matrix Vf one can easily calculate the coupled betatron amplitudes and phase advances.

In order to obtain Vf it is necessary to find the orthogonal 4 × 4 matrix Of .

It is interesting to note that the columns of matrix Ũf plotted against each other show

beam centroid trace in the normalized phase space (see Fig. 5).

V. UNTANGLING BETATRON MODES

The matrix Of describes some combination of rotations and reflections in 4-dimensional

space. Reflections only change signs of modes and can be determined if we require that

the phase advance ψ1z(s) and ψ2z(s) calculated from Vf increase with s. Any rotation in

4-dimensional space can be described in terms of the 6 angles, each corresponding to the

rotation in the plane of two basis vectors. Two of these angles are not relevant since they

describe a mixing between the modes with the same tunes. This kind of rotation results

simply in a phase shift, because




...
...

cos µ1t sin µ1t
...

...







cos θ sin θ

− sin θ cos θ


 =

=




...
...

cos(µ1t + θ) sin(µ1t + θ)
...

...




. (22)
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The remaining 4 angles in Of set the mixing between modes with the different tunes, i. e.

Of can be written as a product of the following 4 matrices

O13 =




cos θ13 0 sin θ13 0

0 1 0 0

− sin θ13 0 cos θ13 0

0 0 0 1




, (23)

O14 =




cos θ14 0 0 sin θ14

0 1 0 0

0 0 1 0

− sin θ14 0 0 cos θ14




, (24)

O23 =




1 0 0 0

0 cos θ23 sin θ23 0

0 − sin θ23 cos θ23 0

0 0 0 1




, (25)

O24 =




1 0 0 0

0 cos θ24 0 sin θ24

0 0 1 0

0 − sin θ24 0 cos θ24




. (26)

As it was proposed in [4] one can search for these 4 angles by looking at Fourier amplitudes

of the columns of matrix Uf given by Eq. 20. In the case of linear betatron oscillations

the Fourier spectrum of each column in Uf has a single peak at one of the two tunes µ1 or

µ2. This approach does not work well for the Tevatron turn-by-turn measurements because

of significant chromatic tune spread in the beam. Even if there is no overlap between

synchrobetatron sidebands (like in Fig. 2 signals) the nonlinearities in betatron oscillations

produce such a distortion of Fourier spectra that MIA modes have residual components

which are not possible to separate completely (see the Fourier spectra of u3 and u4 modes in

Fig. 4). Therefore looking at Fourier spectra is usually not enough for good mode separation.

We have developed another model-independent criterion of mode separation in MIA which

makes use of the fact that betatron phase advance over the entire ring is equal to the betatron

tune. The idea is to treat each BPM as two monitors separated in a ring exactly by one
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turn. Thus we can double the number of analyzed signals in the beam history matrix B.

B =




z11 · · · z1M z21 · · · z2M

...
. . .

...
...

. . .
...

zN−1,1 · · · zN−1,M zN1 · · · zNM




. (27)

Note that it is not necessary to fully double the number of signals in B. If calculation time

is the important issue one can duplicate only a small fraction of all available monitors.

The betatron phase advance between the monitor with readout (z1m, z2m, ...)T and its

counterpart shifted by one turn (z2m, z3m, ...)T does not depend on BPM index m and should

be equal to the corresponding tune. Indeed, if we denote the elements of Vf as

A1z(s) = |f1z(s)| cos ψ1z(s), (28)

B1z(s) = −|f1z(s)| sin ψ1z(s), (29)

A1z(s) = A1z(s + L) = |f1z| cos(ψ1z + µ1), (30)

B1z(s) = B1z(s + L) = −|f1z| sin(ψ1z + µ1), (31)

then the following expressions can be calculated at each BPM, and apparently they do not

depend on a BPM location s:

A1zA1z + B1zB1z

A2
1z + B2

1z

= cos µ1, (32)

B1zA1z − A1zB1z

A2
1z + B2

1z

= sin µ1. (33)

These expressions give a sensitive criterion of betatron mode separation in MIA. In particu-

lar, one may first assume that there is no mode mixing, i. e. Of = I, and calculate betatron

tunes at each BPM using the corresponding elements of matrix
√

2/NV Σ (see Eq. 21). If

the resulting BPM-by-BPM tune variation is significant then one can minimize it with a

proper Of matrix.

In order to explain our algorithm for the mixing matrix Of determination let us assume

that the mixing is small, i. e. Of is close to the unity matrix

Of = O13O14O23O24 ≈

≈ I + δO13 + δO14 + δO23 + δO24, (34)
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FIG. 6: Tunes calculated at each BPM using Eq. 37 and the similar one for µ2. µ1(X) — betatron

tune µ1 calculated at horizontal monitors, µ1(Y) — the same for vertical monitors. In order to

compare these results with the FFT of temporal modes (solid lines) the tunes are plotted along the

horizontal f-axis, (vertical s-axis shows the positions of monitors along the ring). Fourier bandpass

filter from 0.413 to 0.429 (hard edge) was applied to signals before MIA for better accuracy.
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where, for example,

δO13 =




0 0 θ13 0

0 0 0 0

−θ13 0 0 0

0 0 0 0




. (35)

Now we can calculate the effect of any rotation on the BPM-by-BPM tune variation given

by Eq. 32 and 33, since it can be written as

δµ1(s) =
∂µ1

∂θ13

θ13 +
∂µ1

∂θ14

θ14 +
∂µ1

∂θ23

θ23 +
∂µ1

∂θ24

θ24. (36)

In order to do that let us take a derivative of

tan µ1 =
B1A1 − A1B1

A1A1 + B1B1

(37)

with respect to θ13. Here A1(s) and B1(s) are defined through




...
...

...
...

A1 B1 A2 B2

...
...

...
...




=




...
...

...
...

A1z B1z A2z B2z

...
...

...
...




O13, (38)

with a similar expression giving A1 and B1. The derivative of Eq. 37 yields

|f1z|

|f2z|

∂µ1

∂θ13

= sin(ψ1z + µ1) cos(ψ2z + µ2) − sin ψ1z cos ψ2z. (39)

The same operation for θ24 gives

|f1z|

|f2z|

∂µ1

∂θ24

= cos ψ1z sin ψ2z − cos(ψ1z + µ1) sin(ψ2z + µ2). (40)

One may note that as soon as ∆µ = µ2 − µ1 is small,

∂µ1

∂θ13

+
∂µ1

∂θ24

≈ −
|f2z|

|f1z|
cos(ψ2z − ψ1z)∆µ (41)

is also small, while

∂µ1

∂θ13

−
∂µ1

∂θ24

≈ 2
|f2z|

|f1z|
cos(ψ2z + ψ1z + µ1) sin µ1 (42)

is approximately twice as big as each of the derivatives. A similar result can be obtained for

θ14 and θ23, namely,

∂µ1

∂θ14

+
∂µ1

∂θ23

≈ −2
|f2z|

|f1z|
sin(ψ2z + ψ1z + µ1) sin µ1, (43)

15



and
∂µ1

∂θ14

−
∂µ1

∂θ23

≈
|f2z|

|f1z|
sin(ψ2z − ψ1z)∆µ. (44)

Therefore in order to find Of matrix which minimizes the BPM-by-BPM tune variation

δµ1,2(s) it is more convenient to use the following set of basic rotation transformations

instead of O13 — O24

Of1 = O13(θ1)O
T
24(θ1), (45)

Of2 = O14(θ2)O23(θ2), (46)

Of3 = O13(θ3)O24(θ3), (47)

Of4 = O14(θ4)O
T
23(θ4). (48)

The δµ1,2 is much more sensitive to Of1 and Of2 than to Of3 and Of4 rotation. Typically the

most of BPM-by-BPM tune variation can be reduced with Of = Of1Of2. Because |f2z/f1z|

and ψ2z−ψ1z tend to be approximately constant all over the ring, Of3 and Of4 add a constant

shift to δµ1,2 though this shift has a different value for horizontal and for vertical BPMs.

Thereby after the θ1 and θ2 angles are determined by minimizing the δµ1,2 independently

in each plane, then usually there is some remaining constant difference between the tunes

calculated at horizontal and at vertical BPMs. This difference can be minimized with a

proper selection of θ3 and θ4 angles. If the mode mixing is strong (i. e. the angles are large)

then several iterations of the described procedure are required. In the case of strong mode

mixing it is helpful to try several different ICA algorithms as the first step (instead of plain

SVD) in the described mode untangling technique.

The smallness of ∆µ is not a critical requirement, we employ it here just in order to

explain the selection of the new set of basic rotations. The described algorithm also works

for large ∆µ ∼ 0.1.

Fig. 6 shows the result of our method applied to untangle the betatron modes for the

Tevatron turn-by-turn measurements presented in Fig. 2. As we can see from the Fig. 6

in this typical case of the Tevatron turn-by-turn measurements it is hard to determine the

quality of betatron mode separation looking at the Fourier amplitudes of temporal modes.

On the other hand our new criterion provides clear answer to this question and makes it

possible to further improve the mode separation. The initial mode separation provided by

the PCA in Fig. 6 is actually quite good, since the Fourier amplitudes of temporal modes

before and after rotation are almost identical (although this is not a typical situation).
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FIG. 7: Coupled betatron amplitude functions at BPMs (dots) obtained from the columns of

matrix Vf and compared to the model values (solid lines). The relative difference between the

model values of optical functions and their measured values (δ|f1x| = |f1x|measured − |f1x|model) is

shown on the right. The same measured turn-by-turn data was used as in the Fig. 2. Model was

calibrated with the orbit response matrix technique [13, 14]. However since we do not know the

real optics it is not clear which method (orbit response or MIA) provides the best accuracy.

The coupled betatron functions calculated from the untangled modes (see Fig. 7) show

good agreement with the linear model calibrated using the orbit response matrix measure-

ments [13, 14]. As a measure of quality of optical function determination we will use the

RMS-averaged (over all BPMs) difference between the model value of optical function and

its value given by the MIA. Fig. 7 may serve as a typical example of how such RMS-average

reflects the actual error distribution.

In order to benchmark our method of betatron mode untangling against some ICA al-

gorithms we have made the many-partice tracking simulation of Fig. 2 measurement with

similar decoherence of betatron oscillations and similar chromatic tune spread in the beam.

The errors of optical function determination for each algorithm applied to this simulated

data are shown in the Table I. Also it was possible to calculate the same optical functions

using the conventional Fourier analysis [2] since in this particular case there is no overlap

between the synchrobetatron sidebands corresponding to the different tunes. MIA accuracy

limit in Table I is the best possible accuracy of determination of optical functions using the

4 linear orbits (4 spatial modes) from the SVD-decomposition of the beam history matrix
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FIG. 8: Accuracy of betatron function determination versus tune separation. The turn-by-turn

data was obtained via many-particle tracking simulations with different skew-quadrupole settings.

Notations are the same as in the Table I. “EVD+rotation” means that the EVD algorithm (see

appendix) instead of plain SVD was used as initial step in our rotational mode untangling method.

This approach provides the best accuracy.

B. In a tracking simulation this MIA accuracy limit can be easily found since we know the

real lattice functions, i. e.

Vf, limit = V Obest = V V T Vf , (49)

where Obest = V T Vf is the best possible mode untangling matrix (note that V V T 6= I but

V T V = I). The difference between the model optics Vf and the best possible “measured”

optics Vf, limit is caused by nonlinearities in particle motion as well as by the finite number

of beam turns N (which is limited by the decoherence of betatron oscillations in our case).

In real measurements this limit on the MIA accuracy is also worsened by the accuracy of

BPM measurements.

As can be concluded from the Table I, our method has the following property when com-

pared to the rest of ICA algorithms: it significantly improves the accuracy of one betatron

function determination (i.e. f2y) at the expense of some slight increase of the errors for

another function (f1x).

None of the considered MIA algorithms outperforms the conventional Fourier analysis in

18



TABLE I: Our method compared to several ICA algorithms and conventional harmonic analysis of

turn-by-turn data. This table shows the errors of determination of betatron amplitudes via MIA.

For example, δ|f1x| = |f1x|MIA − |f1x|model (RMS average over horizontal BPMs). Very similar

results are obtained for the accuracy of phase advance determination. The turn-by-turn data was

generated via tracking simulation with parameters similar to the measurement presented in Fig. 2.

Methoda δ|f1x|/|f1x| δ|f1y|/|f1y| δ|f2x|/|f2x| δ|f2y|/|f2y|

JADE 0.0100 0.050 0.194 0.096

Plain PCA 0.0080 0.041 0.225 0.044

Fast ICA 0.0076 0.037 0.133 0.029

AMUSE 0.0073 0.040 0.120 0.027

EVD 0.0078 0.042 0.073 0.014

Our method 0.0080 0.042 0.055 0.011

Fourierb 0.0077 0.041 0.050 0.007

MIA limit 0.0005 0.001 0.005 0.001

aMatlab implementations of JADE, AMUSE, and EVD (see appendix) algorithms are taken from the

ICALAB package [15]. Fast ICA algorithm is from a different package [16].
bIn the conventional harmonic analysis of turn-by-turn data [2] we used the precise values of tunes obtained

with Laskar’s Numerical Analysis of Fundamental Frequencies (NAFF) [12] which is implemented in the

SDDS-toolkit [10].

Table I. However the Fourier analysis is less accurate than MIA in the case of some overlap

between the synchrobetatron sidebands (but when we still can find the central peaks).

In order to investigate how the separation between tunes (i. e. the Eq. 16 condition)

affects the accuracy of optical function measurements we have performed another set of

tracking simulations. The tune separation was regulated with skew-quadrupoles, namely

in the beginning the minimum tune separation (the tune split parameter) was corrected to

zero and the working point was placed close to the coupling resonance. Then using skew-

quadrupoles the tune split parameter was gradually increased and at each step the tracking

simulation was performed providing the data for the MIA. The results of these tracking

simulations are shown in Fig. 8.

19



FIG. 9: Slow MIA modes. Low-pass Fourier filter (f < 0.004) was applied to BPM readings prior

to SVD.

VI. VIBRATING MAGNET LOCATION

To locate the source of the vibrational mode (u6 in Fig. 3 or u2 and u3 in Fig. 9) we

use an approach similar to the action and phase jump analysis [9]. Since the beam orbit

in the region free of vibrating magnets is a free betatron oscillation it can be represented

as a superposition of 4 linearly independent orbits. The coefficients of this superposition

i. e. 4 initial conditions for the beam orbit can be calculated using data from any 4 nearby

monitors (combined function monitor is treated as two separate monitors here). These initial

conditions plotted as a function of BPM sequence position along the ring should have sudden

change in the point where the beam oscillation is driven by the magnet vibration. In the

case of sufficiently weak coupling one can calculate two of the 4 initial conditions with any

pair of nearby monitors operating in the same plane. In terms of MIA this is written as




vvibr(s1) = C1vb1(s1) + C2vb2(s1)

vvibr(s2) = C1vb1(s2) + C2vb2(s2),
(50)

where vvibr is the spatial component of vibrational mode, vb1 and vb2 are the two linearly

independent orbits in one plane (i. e. v1 and v2 modes in Fig. 3).

From the Eq. 50 both initial conditions C1 and C2 as functions of BPM pair location

in the ring can be found. It is more convenient to use the initial phase and amplitude of

betatron oscillation defined as arctan(C1/C2)/2π and C2
1 + C2

2 . If there is one local source

of vibrational mode then there should be a single jump of the initial phase while amplitude

remains constant. Fig. 10 shows the initial phase calculated for the v2 mode in Fig. 9.

As we can see this MIA mode is driven by a single local source. On the other hand, the
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FIG. 10: Vibrating quadrupole location. Initial phase of the betatron oscillations excited by the

vibrating quadrupole is shown. The phase was calculated using the pairs of horizontal monitors

one after another.

same procedure applied to the less significant v3 mode in Fig. 9 reveals that there are two

vibrating quadrupoles located near different interaction points of the collider. v3 mode is

the result of both these vibrations. In fact it was already evident from the Fig. 9 that there

are two local sources of this mode: we can see that the amplitude of v3 mode experience

changes in two locations, while the amplitude of v2 mode remains constant. Note that the

amplitude variation of the v6 mode in Fig. 3 is caused by residual mode mixing. That is

why the low-pass Fourier filter applied in Fig. 9 is essential for determination of vibrating

quadrupole locations.

VII. CONCLUSION

We applied model-independent analysis to the turn-by-turn BPM measurements of coher-

ent betatron oscillations excited by the transverse kicker in the Tevatron. In order to obtain

the amplitudes and phase advances of coupled betatron oscillations, we have developed a

new approach to rotational MIA mode untangling, which is based on the assumption that

the betatron phase advance calculated between a BPM and the same BPM shifted by one

turn is equal to the betatron tune and does not depend on the BPM position in the ring.

The main advantage of this method is that it can be used to untangle the mixed betatron

modes in the proximity of the linear coupling resonance when there is an overlap between

21



synchrobetatron sidebands corresponding to the different betatron tunes. However, the

obvious disadvantage of our method of betatron function determination in this case is that

the temporal modes are assumed to be mutually orthogonal. Therefore the fractional parts

of betatron tunes can not be too close because the condition (16) should be satisfied. This

sets the lower limit on the number of turns to be recorded before the betatron oscillations

in the beam decohere, namely, N∆µ/2π > 4 for typical Tevatron parameters (according

to Fig. 8). One can effectively increase N by treating several repeated measurements as a

single BPM readout. In particular it is helpful to combine measurements with horizontal

and vertical kicks.

Although according to Table I and Fig. 8 in the case of no overlap between synchrobeta-

tron sidebands the accuracy of determination of optical functions via MIA is typically the

same or worse than that of conventional Fourier analysis, our algorithm can help to find the

central peak which is not always obvious in the Fourier spectrum of betatron oscillations

with large chromatic tune spread as can be seen in the Fig. 2 for example.

Another application of our criterion for betatron mode separation may be the identi-

fication of malfunctioning BPMs. After the BPM-by-BPM tune spread is minimized via

rotation, the tunes calculated at noisy and malfunctioning BPMs deviate from the main

distribution.

We have also shown that MIA can be used to locate some unintended sources of transverse

beam oscillations like the vibrating quadrupoles in the Tevatron.

So far we have used the turn-by-turn measurements only to verify the predictions of the

Tevatron model which was calibrated with orbit response matrix method. However our final

goal is to use turn-by-turn data from the Tevatron (as well as from other Fermilab accel-

erators) for model calibration, similarly to the technique developed at the PEP-II collider

[17, 18]. The model calibration can also provide the BPM tilts and gain factors which should

further improve the accuracy of optical functions measurements.
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Appendix A: EVD algorithm

We use the ICA algorithm called EVD from the ICALAB [15] package version 2.2 (the

“user alg3.m” MATLAB script written by Andrzej Cichocki and Pando Georgiev). We

describe this algorithm here because the ICALAB v2.2 package is outdated and it cannot

be obtained directly from the website [15].

The first step of EVD is the standard data whitening procedure using the SVD of co-

variance matrix BT B which is given by BT B = V Σ2V T . Whitened data matrix is obtained

as

Z = BṼ Σ̃−1, (A1)

where Ṽ and Σ̃ are the truncated versions of V and Σ, with only the largest singular values

and the corresponding columns of matrix V retained. Therefore in our case of coupled

betatron oscillations Z has 4 columns.

Then several time delayed covariance matrices are constructed as follows

Cnm(τ) = 〈zn(t)zm(t + τ)〉t, (A2)

where Cnm is the covariance matrix element, zn(t) is the t-th element of the n-th column of

matrix Z, 〈...〉t stands for the averaging over turn number t, and τ is the time delay (we use

τ = 1, 2, 3, 4). After that the eigenvalue decomposition is used in order to diagonalize the

following sum of all these time delayed covariance matrices

∑

τ

[
C(τ) + CT (τ)

]
= WSW T , (A3)

where W is the orthogonal matrix, and S is the diagonal matrix of eigenvalues. Finally the

resulting temporal modes are obtained as the columns of matrix ZW , and the new set of

spatial modes is given by the columns of matrix Ṽ Σ̃W.
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