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Abstract

The combined effect of impedance and higher order chromaticity can act on the beam in a non-

trivial manner which can cause a tune shift which depends on the relative momenta w.r.t. the “on

momentum” particle (∆p/p). Experimentally, this tune shift affects the measurement of the linear

chromaticity which is traditionally measured with a change of ∆p/p. The theory behind this effect

will be derived in this paper. Computer simulations and experimental data from the Tevatron will

be used to support the theory.
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I. INTRODUCTION

The control of chromaticity in modern high energy colliders such as the LHC (Large

Hadron Collider), Tevatron and RHIC (Relativistic Heavy Ion Collider) is of critical im-

portance for maintaining beam stability and in maximizing the beam lifetime both during

acceleration and at HEP (high energy physics).

In order to deliver as many collisions as possible to the experiments, losses have to be

reduced as much as possible. One significant source of continuous particle loss is related

to the head-tail instabilities driven by wakefields. These instabilities can be controlled by

increasing the betatron tune spread, and thus Landau damping, with large chromaticities.

However, when the chromaticity is too large, the beam’s betatron tune footprint can cover

more resonances and thus decrease its lifetime. Clearly an understanding of the true chro-

maticity of the machine is critical for optimizing the integrated luminosity delivered to the

experiments.

One major motivation for this paper comes from the observation that the linear chro-

maticity measured using the “traditional” method for uncoalesced[10] and coalesced[11]

proton beam yields consistently different results by ∼1 unit especially in the vertical plane,

i.e. the measured linear chromaticity has a dependence on bunch structure. (The traditional

method referred here is the method where the RF frequency is varied, and thus the relative

momenta w.r.t. the “on momentum” particle ∆p/p, and the linear chromaticity is measured

from the betatron tune excursions).

In this paper we will show that the combined effect of higher order chromaticity and

resistive wall impedance will cause a betatron tune shift which depends on ∆p/p. This

means that the linear chromaticity when measured with the traditional method will yield an

incorrect result because the betatron tune does not shift as much as expected for coalesced

protons.

II. THE COMBINED EFFECT OF CHROMATICITY AND IMPEDANCE ON

THE COLLECTIVE FREQUENCY

In the simplest case a single particle’s transverse motion can be characterized by

d2Y (t)

dt2
+ (Qω0)

2Y (t) = 0. (1)
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Here Y is the transverse position of the particle and t is the time coordinate and Qω0 is

the angular betatron frequency where ω0 is the angular revolution frequency and Q is the

betatron tune. The solution of this differential equation will give us the transverse harmonic

motion of a particle oscillating at the betatron angular frequency ωβ = Qω0.

If we now add in the effect of wakefields to the transverse motion, Eq. 1 becomes the

forced simple harmonic oscillator equation[2]

d2Y (t)

dt2
+ (Qω0)

2Y (t) =
F⊥(t)

γm
. (2)

For a broad-band impedance, the transverse force F⊥ is

F⊥(t) = −j
βqIZ⊥

2πR
〈y〉, (3)

where R is the mean radius of the accelerator, q is the electronic charge, β is the relative

speed of the particle w.r.t. the speed of light c.

If we assume that the solutions of Eq. 3 take the form:

yk = Yke
j(Ωct−nθ), (4)

where n is the revolution harmonic, θ is the angle along the closed orbit of the accelerator,

Yk is the amplitude of the motion for the kth particle and Ωc is the collective oscillation

angular frequency of the particles, then when we substitute it into Eq. 2, it becomes

[(Qω0)
2 − (Ωc − nω0)

2]Yk = −j
qIZ⊥

2πR
〈y〉. (5)

Now when we divide Eq. 5 with the term on the rhs and then integrate both sides over

the transverse beam distribution ρ(δ), the lhs becomes
∫

ρ(δ)yk dδ = 〈y〉. Here, we have

defined δ ≡ ∆p/p. The result is the dispersion relation

1 = j
βqIZ⊥

2πRγm

∫

dδ
ρ(δ)

(Ωc − nω0)2 − (Qω0)2
(6)

where γmc2 is the total energy of each particle.

If we expand the Q and ω0 in terms of δ we obtain.

Q(δ) = Q + ξδ +
ξ′

2
δ2.

ω(δ) = ω0 − ηω0δ (7)

Here ξ = dQ/dδ is called the linear chromaticity, ξ′ the second order chromaticity and η is

the phase slip parameter. Linearizing the denominator and keeping only first order term in

δ we obtain
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1 = j
βqIZ⊥

4πRγmQω0

∫

dδ
ρ(δ)

Ωc − (n + Q)ω0 − (ξ − (n + Q)η)ω0δ
(8)

It is customary to define new variables V and U which are proportional to the real and

imaginary parts of the impedance

V + jU =
qβIZ⊥

4πRγmQω0

(9)

Now we can write the dispersion relation in a more compact form,

(−U + jV )−1 =

∫

ρ(δ)

Ωc − ωn(δ)
dδ (10)

where we have defined

ωn(δ) = (n + Q)ω0 + [ξ − (n + Q)η]ω0δ (11)

If we consider a Gaussian distribution,

ρ(δ) =
1√

2πσδ

e−(δ−δ0)2/(2σ2

δ
) (12)

where δ0 is the collective mean relative momentum, then Eq. 10 can be transformed into,

(v + ju)−1 =
j

π

∫ ∞

−∞

e−t2

Z − t
dt (13)

where

u =

√
πU

σω

v =

√
πV

σω

Z =
Ωc − (n + Q)ω0

σω
− δ0√

2σδ

(14)

and

σω =
√

2[ξ − (n + Q)η]ω0σδ (15)

Eq. 13 has a known solution in the form of the complex error function erfc(z) = 1 − erf(z),

(v + ju)−1 = e−Z2

erfc(−jZ) (16)
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We can calculate u and v for the Tevatron with Eq. 16 from its measured parameters.

The impedance of the Tevatron at 150 GeV has been studied extensively [3, 4] and the

effective transverse impedance has been estimated to be Zeff
1,⊥ ≈ (1− j) MΩ/m which for one

coalesced proton bunch with intensity Np = 2.6× 1011 particles yields a coherent tune shift

δQcoh = −(1.0 + 1.0j) × 10−4. From these values, u and v can be estimated to be 0.22 and

0.027 respectively for n = 0, ξ = 4.7, η = 2.8 × 10−3, σδ = 4.93 × 10−4. If we assume that

the beam is matched to the bucket, we can calculate σω from σδ and we get σω = 969.7 s−1.

This yields a growth rate of Im(Ωc) = −0.031σω s−1.

In Fig. 1, we plot u versus v for three different δ0 offsets which are typically used for

chromaticity measurements in the Tevatron,

FIG. 1: The normalized u versus v curves for a Gaussian distribution is plotted with the growth

rate Im(Ωc) = −0.031σω for three δ0 offsets (40, 0, −40) Hz . All three curves lie on top of each

other. The symbols ’×’ mark the position of the coherent tune shift for each δ0.

If we now consider the effects of second order chromaticity, we can expand Eq. 11 to

second order in δ to get,

ωn,ω(δ) = (n + Q)ω0 +

[

ξ − (n + Q)η

]

ω0δ +

(

ξ′

2
− ξη

)

ω0δ
2 (17)

Now Eq. 13 becomes,
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(v + ju)−1 =
j

π

∫ ∞

−∞
dt

e−t2

(

Z − δ2

0
aw

σω

)

−
(

1 + aw2
√

2σδδ0
σω

)

t −
(

aw2σ2

δ

σω

)

t2
(18)

where we have defined,

aw =

(

1
2
ξ′ − ξη

)

ω0 (19)

The denominator in Eq. 17 can be factored and recast as,

(v + ju)−1 = − j

πd

∫ ∞

−∞
dt

e−t2

(t + b + g)(t + b − g)

d =
2σ2

δaω

σω

b =
1 + aω2

√
2σδδ0

σω

2d

c =
−Z +

δ2

0
aω

σω

d

g =
√

b2 − c (20)

Using Mathematica[6] this integral can be solved, yielding

(v + ju)−1 = − j
2dπg

e−(g+b)2
(

−πerfi(g + b) − e4gb(πerfi(g − b) − ln(g − b) − ln(−g + b))

− ln(−g + b) − ln(g + b)) (21)

When we plot u versus v for the same Im(Ωc) = −0.031σω in Fig. 3, we can see a clear δ0

dependence in the curves. Typically 2nd order chromaticity at injection in the Tevatron has

been found to be between ±1000 to ±5000 units in both planes (see Fig. 2). The second

order chromaticity has introduced an additional δ0 dependence apart from the normal first

and second order chromaticity effects.

This shift will impact the measured chromaticity when the traditional method is used.

This effect has been postulated in our previous paper [1] and is due to the mixing of the

wakefield and the higher order chromaticity.

III. EXPERIMENTAL RESULTS

Ever since 2005, measurements from several experiments have shown a consistent differ-

ence between chromaticity measurements performed on uncoalesced and coalesced protons
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FIG. 2: Snapshot of a typical 2nd Order Chromaticity Measurement in at Injection Energy in the

Tevatron.

at the Tevatron injection energy. These measurements are shown in Figure 4 and in Ta-

ble. I. There is a consistent though varied depression in the chromaticity measured as one

goes from uncoalesced to coalesced protons.
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FIG. 3: The normalized u versus v curves for a Gaussian distribution is plotted with growth rate

Im(Ωc) = −0.031σω for three δ0 offsets (40, 0, −40) Hz in the presence of second order chromaticity

set to −4000 units. Unlike Fig. 1, the curves are now separated for each δ0. The ’×’ symbols mark

the position of the coherent tune shifts for each δ0.

A. BTF Experiments

This experience prompted us to perform more careful BTF (beam transfer function)

measurements on coalesced and uncoalesced protons in the Tevatron on the central orbit at

150 GeV. The experimental setup is shown in Fig. 5 where a VSA (vector signal analyzer)

is used to measure the BTF. The excitation, which is a chirp centered at the nominal

betatron tune and a span from 0.568 to 0.578 tune units, from the VSA is up converted by

(21.4 + δf) MHz and sent to a stripline kicker.[12] The kicker excites the beam transversely

and its transverse motion is detected with a resonant Schottky detector. This signal is down

converted and measured by the VSA at baseband where it calculates the BTF from this

signal and the chirp excitation.

The BTF for the two RF frequency changes ±40 Hz and the nominal RF frequency at

zero frequency change are measured for both uncoalesced an coalesced beam. The phase

of the BTF is recorded and used for the analysis because of the way linear chromaticity is

measured with a PLL (phase locked loop) based chromaticity tracking systems where only
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FIG. 4: Measurements made on several occasions since 2005, showing a consistent difference be-

tween coalesced and uncoalesced proton chromaticity measurements

TABLE I: Table of Measured Chromaticities for Uncoalesced and Coalesced Protons. Last Column

indicates number of points used to calculate linear and 2nd order chromaticity values.

Coalesced Intensity 2nd Order Uncoalesced Coalesced Number

1011 Chromaticity Chromaticity Chromaticity of Measurement Points

2.9 −3447 4.7 3.7 3

2.9 +1043 4.9 4.1 3

2.9 −4146 4.3 1.5 3

2.9 −1382 2.0 1.5 3

2.5 +5454 4.8 2.6 14

2.5 −11940 3.6 0.2 14

1.9 −4033 6.8 3.0 14

1.9 −5910 5.7 17 14

the “zero” crossings of the phase response matter.[7] Fig. 6 and 7 show the typical phase of

the BTF measurements for three different δ0 changes. The “×”’s mark the zero crossings

where the PLL can lock to — the phase offset in the PLL electronics is chosen so that it

locks to a point which is symmetric about the central dip. We define this point to be the
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FIG. 5: A simplified block diagram of the setup used for measuring the BTF of the beam. The

beam is excited with a stripline kicker where the excitation source is an up converted chirp signal

from the vector signal analyzer (VSA). The down converted Schottky signal of the beam and the

chirp excitation are used by the VSA to calculate and display the BTF.

betatron tune. The other dips to the left and right of the “×”’s correspond to the other

synchrotron resonances.

B. Difference in Tune shift between Coalesced and Uncoalesced Protons

Careful analysis of the BTF phase response shows that the tune measurements are differ-

ent between uncoalesced and coalesced beam because of its dependence on δ0. This results in

a difference in the measured chromaticity between these two bunch structures where we find

that the chromaticity of the coalesced beam is always smaller than for uncoalesced beam.

Fig. 6 and 7 show where we have set the zero crossings and thus the measured betatron

tunes. These numbers are tabulated in Tables II and III.

In the analysis of the data, we calculate the zero crossings using linear interpolation and
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TABLE II: Table of tunes and fitted chromaticities from the BTF measurements for uncoalesced

and coalesced protons for chromaticity sextupole setting CYINJ=27

δ0 Uncoalesced Coalesced ∆ tune ∆ − ∆(δ0 = 0)

10−4 Tune Tune 10−4 10−4

−2.69 0.57233 0.57206 −2.7 −0.7

0.0 0.57360 0.57340 −2.0 0.0

2.69 0.57494 0.57435 −5.9 -3.9

Chromaticity 4.85 4.26 −0.59

TABLE III: Table of tunes and fitted chromaticities from the BTF measurements for uncoalesced

and coalesced protons for chromaticity sextupole setting CYINJ=33

δ0 Uncoalesced Coalesced ∆ tune ∆ − ∆(δ0 = 0)

10−4 Tune Tune 10−4 10−4

−2.69 0.57230 0.57226 −0.4 3.3

0.0 0.57369 0.57332 −3.7 0.0

2.69 0.57480 0.57430 −5.0 −1.3

Chromaticity 4.65 3.78 −0.87

root finding routines.

For example, when we consider measurements taken with sextupole magnet setting

CYINJ = 27 (see Table. II), we obtain the measured phase response shown in Fig. 6 for un-

coalesced protons and Fig. 7 for coalesced protons. In both cases, when the RF frequency is

shifted by ∆f = ±40Hz, we expect δ0 = ±2.69×10−4 for fRF = 53.104 MHz and η = 0.0028

by using the formula ∆f/fRF = ηδ0,

Let us look at the data in Table II. The tune difference between uncoalesced and coalesced

beam (∆) for δ0 = 0 is −2.0 × 10−4. This difference is close to what we expect from the

coherent tune shift caused by the resistive wall impedance [3, 4]. However, when we compare

∆ for δ0 = ±2.69×10−4, we see that the difference is large enough to alter the measured linear

chromaticity with the traditional method. This is the reason why the linear chromaticity for

coalesced beam can be underestimated because the measurements of the zero phase crossings

have been shifted from where we expect them to be. In this case we see that the measured
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chromaticity of the coalesced beam smaller than the coalesced beam by 0.59 units.

We repeated the experiment for chromaticity sextupole setting CXINJ = 33 units and we

can see from Table III that ∆ shows the same type of tune differences between uncoalesced

and coalesced beam for different δ0 values. And again, the measured linear chromaticity for

coalesced beam is smaller than uncoalesced beam by 0.87 units.

The data clearly shows that ∆ has a δ0 dependence. Näıvely we might expect that the

effect of impedance will shift the coherent tune uniformly with little or no dependence on

δ0, i.e. the coherent betatron tune shift is effectively decoupled from δ0. We can explain this

observation with our calculation in section II where we have shown that δ0 is coupled to

the coherent tune shift when second order chromaticity is included. We can use Eq. 21 to

generate Table. IV to compare the theory to the experimental data. The results show that

the predictions of our simple model match the characteristics of the experiment surprisingly

well. The theory shows that there is an asymmetry in ∆ — larger shift for positive δ0 shift

than negative — and the size of ∆ for the different δ0’s are comparable with the experimental

data shown in Tables II and III.

TABLE IV: Table of tunes and fitted chromaticities using Eq. 21 for uncoalesced and coalesced

protons, assuming ∆ = −2.25 × 10−4, ξ = 4.7 and ξ′ = −4000.

δ0 Uncoalesced Coalesced ∆ ∆ − ∆(δ0 = 0)

10−4 tune tune 10−4 10−4

−2.69 0.57232 0.57199 −3.3 −1.1

0.0 0.57358 0.57336 −2.2 0.0

2.69 0.57484 0.57423 −6.1 −3.9

Chromaticity 4.70 4.16 −0.54

IV. FULL 6D SIMULATION USING BBSIM CODE

To further verify the effects of higher order chromaticity and wakefields on the measured

linear chromaticity, we added the ability to handle single bunch resistive wall wakefields and

second order chromaticity to BBSIMc. BBSIMc was originally conceived as a parallel weak

strong beam-beam simulation code developed by T. Sen at FNAL [9].
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FIG. 6: The phase of the BTF for uncoalesced protons at different frequency offsets (i.e. different

δ0). The ’×’ symbols mark the zero crossing for the phase which we have defined as the betatron

tune.

FIG. 7: The phase of the BTF for coalesced protons at different frequency offsets (i.e. different δ0)

instead of uncoalesced protons which was shown in Fig. 6.

13



The simulation was setup to model the BTF measurement as closely as possible. The

whole simulation consisted of 10 frequency sweeps of the kicker back and forth across the

resonant betatron tune. Each sweep totalled about 19 × 103 turns. The average beam

position at the pickup was then recorded for each turn. The simulation was further enabled

to model an offset in energy due to a change in frequency that is done during a chromaticity

measurement. The resistive wall wakefield was applied using a simple 1/
√

r model with the

effects lumped into a single location in the ring. Linear and higher order chromaticity was

modeled using kicks distributed around the ring. Our simulations typically ran between

3 × 104 to 3 × 105 particles.

Although part of the experiment was done using four coalesced bunches to improve the

signal to noise ratio of the measurement, the primary transverse wake field effect from the

resistive wall goes as z−1/2 and since the rms bunch size is 78 cm and the inter-bunch

spacing is 21 buckets or 118 m, the inter-bunch effects are about a factor of 12 smaller than

the intra-bunch effects. For this reason we will neglect the long range wakefield effects. We

will benchmark BBSIMc against the BTF measurements to see whether we can reproduce

it.

For uncoalesced protons we are able to reproduce fairly accurately the phase of the BTF.

Fig. 8 shows the BBSIMc results overlaid on to of the measured BTFs.

For coalesced protons, when we include resistive wall wakefields in the BBSIMc model

together with second order chromaticity, we find that while the phase of the simulated

BTFs begins to deviate from the uncoalesced simulations it is not an exact match to the

measured BTFs. This is in part due to the fact that our model has only simulated chromatic

effects to 2nd order, and recent evidence [5] suggests that the distribution in δ due to the

coalescing process yields a persistent longitudinal dipole mode which distorts the longitudinal

distribution unlike the smooth gaussian distribution that we have assumed. Fig. 9 shows

the BBSIMc results overlaid on the measured BTFs.

From Fig. 10 we can obtain a better sense of the magnitude of this effect and its re-

sponse to intensity and positive and negative 2nd order chromaticity values. We see that

generally, as was observed in experiment, that coalesced measurements produce lower linear

chromaticity values than uncoalesced. However the correlations between linear chromaticity

and intensity and 2nd order chromaticity appears non-trivial (not simply linear).
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FIG. 8: The phase of the BTF for uncoalesced protons at different frequency offsets (i.e. different

δ0). Overlaid are the simulated results using BBSIMc with 4.7 units of linear chromaticity, −2 ×

103 units of second order chromaticity

FIG. 9: The phase of the BTF for coalesced protons at different frequency offsets (i.e. different δ0).

Overlaid are the simulated results using BBSIM with 4.7 units of linear chromaticity, −2×103 units

of second order chromaticity, resistive wall wakefield and the intensity of 3.0 × 1011 protons.
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FIG. 10: Plot of the results of the 6D simulations with 3 × 105 particles using BBSIM. The sim-

ulation was setup to imitate a chromaticity measurement using BTF method. We used 4.0 units

of linear chromaticity. The top plot shows simulations with −4 × 103 units of second order chro-

maticity, the bottom plot with +4× 103 units of second order chromaticity. In these plots the red

trace (“×”) show uncoalesced protons, the black trace (�) show coalesced protons with. These are

all plotted with intensities up to instability threshold with only transverse resistive wall impedance

effects (no longitudinal).

V. CONCLUSION

We have shown that the näıve expectation that the coherent betatron tune shifts from

δ0 changes are independent of bunch structure is false. In fact, our experiments show that

the amount of coherent tune shift is strongly dependent on bunch structure and therefore

wakefields. When we include higher order chromaticity, we find that the net coherent tune

shift has a significant dependence on ∆p/p. We have demonstrated this by using simple
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analytical models and full 6D simulations which explain the experimental observations.

[1] C.Y. Tan and V.H. Ranjbar, Phys.Rev.ST Accel.Beams 11:032802,2008

[2] S.Y. Lee “Accelerator Physics”World Scientific (1999) pp. 199-206.

[3] P. M. Ivanov et. al, Proc. of PAC2003, Portland, Or, p.3062.; P. M. Ivanov et. al, Proc. of

PAC2005, Knoxville, Tn p.1714; P. M. Ivanov et. al, Proc. of PAC2005, Knoxville, Tn p.2756;

P. M. Ivanov, F0 Lambertson liner review (2003), internal FNAL document.;

[4] V.H. Ranjbar and P. Ivanov, Phys.Rev.ST Accel.Beams 11:084401,2008.

[5] Bucket Shaking Stops Bunch Dancing in Tevatron, A. Burov and C.Y. Tan, WEP116,

PAC2011

[6] http://www.wolfram.com/

[7] C.Y. Tan, Nucl.Instrum.Meth.A602:352-356,2009.

[8] http://www.ptc.com/products/mathcad/

[9] http://www-ap.fnal.gov/ hjkim/

[10] Uncoalesced beam in the Tevatron means that there are 30 bunches in adjacent buckets.

[11] One coalesced bunch means that 7 bunches from the Main Injector are “coalesced” into one

high current bunch and injected into the Tevatron. For our experiment, four coalesced bunches

separated by 21 buckets are used.

[12] There is a small change in the LO (local oscillator frequency) of δf < 20Hz used for up and

down conversion because the low level RF, from which the LO of 21.4 MHz is derived, is

changed for chromaticity measurements.

17


