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Abstract 

Analytical solutions are derived for both transient and steady state gradient distributions 

in the travelling wave (TW) accelerating structures with arbitrary variation of parameters 

over the structure length. The results of the unloaded and beam loaded cases are presented. 

Finally the exact analytical shape of the RF pulse waveform was found in order to apply 

the transient beam loading compensation scheme during the structure filling time. The 

obtained theoretical formulas were crosschecked by direct numerical simulations on the 

CLIC main linac accelerating structure and demonstrated a good agreement. The proposed 

methods provide a fast and reliable tool for the initial stage of the TW structure analysis. 

  



1. Introduction 

The steady state theory of beam loading in electron linear accelerators was developed in 

the ‘50s by a number of authors both for constant impedance [1,2,3] and constant 

gradient [4] accelerating structures. They considered the equation for energy conservation 

in a volume between any two cross sections; the power gained by the beam or  lost in the 

walls due to the Joule effect results in a reduction of the power flow. Later on, transient 

behavior was studied following a similar approach, but in this case, in addition to the 

power dissipated in the walls and gained by the beam, the transient change in the energy 

stored in the volume contributes to the power flow variation along the structure. Again, 

only constant impedance [5,6,7] or constant gradient [8,9] accelerating structures were 

considered.  

However, traveling wave accelerating structures with arbitrary (neither constant 

impedance nor constant gradient) geometrical variations over the length are widely used 

today in order to optimize the acceleration structure and linac performance [10,11]. The 

relationships between structure length, input and average accelerating gradients are 

obtained  by solving the energy conservation equation numerically. For the first time an 

analytical solution of the gradient profile in a loaded arbitrary TW structure was recently 

proposed in [12] but for the steady-state regime only. The comprehensive numerical 

analysis of an arbitrary TW structure including the effects of a signal dispersion was 

recently published in [13] using the circuit model and mode matching technique. 

In this paper, generalized analytical solutions of the gradient distribution in the TW 

accelerating structure with an arbitrary variation of parameters over the structure length 

are presented for both steady state and transient regimes. It is based on the method 



suggested earlier by one of the coauthors [14] and is similar to the classical 

approach [1−9]. Finally a simple analytical relation is derived that allows the input power 

ramp needed to create, at the end of the filling time, the field distribution inside the TW 

structure that coincides to the loaded field distribution in the presence of the beam to be 

determined. The compact analytical formulas so obtained give us a better understanding of 

the physics of TW structures and provide a tool for a fast preliminary structure 

optimization. 

The following definitions are used throughout the paper: 

P  –  Power flow through  the structure cross section 

W * –  Stored energy per unit length 

  –  Circular frequency 

Q *  –  Quality factor  

G * –  Loaded accelerating gradient  

G
~

*  –  Unloaded accelerating gradient 
I  –  Beam current 

gv *  –  Group velocity 

 *  –  Normalized shunt impedance, often called QR , where R  is the shunt 

impedance per unit length 

z  –  Longitudinal coordinate  

where * denotes that continuous parameters are averaged over the structure period and 

represent the effective values of an individual cell. 

The following assumptions are used: a) the structure is perfectly matched at both ends and 

has no internal reflections, b) all dispersion effects that limit field rise time: gr vct  , 

where c  is the speed of light, are neglected, c) time separation between two neighboring 



bunches and time of flight of the beam through the structure are much less than the filling 

time of the structure. 

2. Steady State Regime 

The basic traveling wave structure relations are: 

gWvP            (2.1) 
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Energy conservation including wall losses and the interaction with the beam gives: 
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Using Eq. (2.2) in the derivation of the power flow Eq. (2.1) yields: 
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Substituting Eq. (2.4) into Eq. (2.3) and using Eq. (2.2) results in the first order non-

homogeneous differential equation with variable coefficients: 
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Substituting Eq. (2.6) into Eq. (2.5) and using Eq. (2.7) yields: 
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Integrating Eq. (2.8) gives: 
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a local integration variable.  

Therefore the general solution of Eq. (2.5) is: 
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The solution for the homogeneous Eq. (2.7) is: 
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where )0(0 GG   is a gradient at the beginning of accelerating structure and can be found 

from initial conditions : 
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where 0P is input RF power. 

The integral of function )(z can be simplified using analytical solutions: 
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Finally we can rewrite Eq. (2.10) as: 
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Eqs. (2.13) and (2.9) give us an expression for the loaded gradient: 
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The first term on the right hand side of Eq. (2.14) is the solution of the homogeneous 

equation for the unloaded gradient obtained above in Eq. (2.13). The second term is the 

so-called beam induced gradient which is the difference between the loaded and unloaded 

gradient distributions. 

 

 

Fig. 1 Individual cell geometry of the CLIC main linac accelerating structure with strong 

waveguide HOM damping (a), HFSS simulations of the surface electric (b) and magnetic 

(c) fields are shown. 

(a) 
(b) 

(c) 



Parameters of the CLIC main linac accelerating structure are summarized in the 

Table 1 [11]. They have been used to compare an accurate solution for an arbitrary 

variation of the TW structure parameters given by Eq. (2.14) to an approximate solution 

given in [4] where it has been assumed that the shunt impedance and Q-factor are constant 

in the range over which the group velocity changes and that they are both equal to their 

respective averages over the structure.

Table 1: Parameters of the CLIC main linac accelerating structure. 

Average loaded accelerating gradient 
 

100 MV/m 

Frequency 
 

12 GHz 

RF phase advance per cell 
 

2π/3 rad 

First, Middle and Last cell group velocity 
 

1.65, 1.2, 0.83 % of c 

First, Middle and Last cell Q-factor (Cu) 
 

5536, 5635, 5738 

First, Middle and Last cell normalized shunt impedance 14587, 16220, 17954 Ω/m 

Number of regular cells 
 

26 

Structure length including couplers 
 

230 mm 

Bunch spacing 
 

0.5 ns 

Bunch population 
 

3.7×109 

Number of bunches in the train 
 

312 

Rise time 
 

22 ns 

Filling time 
 

67 ns 

Peak input power 
 

61.3 MW 
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Fig. 2 The HFSS simulation of the full CLIC accelerating structure. Electric field 

profile (a), input (S11, red curve) and output (S22, blue curve) couplers matching (b), phase 

advance per cell versus frequency (c) and internal reflections (SWR) in the structure (d) 

are shown. The phase advance per cell is equal to 120 degree and both coupler are 

matched better than -30 dB level at operating frequency of 11.994 GHz. 

 

The unloaded gradient has been calculated for a 3D model of the structure using 

Ansoft HFSS [15], a frequency-domain finite-element code which takes into account 

internal reflections [11]. First of all the parameters of individual cells were calculated for 

the given phase advance, shunt impedance, group velocity and maximum EM-field 

strength on the surface. The result of individual cell optimization is shown in Fig. 1. Next, 

the input and output RF couplers were designed in order to match the TW structure with 

-20 0 20

-20

-10

0

10

20

Im
E

z 
[k

V
/m

]

f=11.99 GHz

-20 0 20

-20

-10

0

10

20

f=11.991 GHz

-20 0 20

-20

-10

0

10

20

f=11.992 GHz

-20 0 20

-20

-10

0

10

20

Im
E

z 
[k

V
/m

]

f=11.993 GHz

-20 0 20

-20

-10

0

10

20

f=11.994 GHz

-20 0 20

-20

-10

0

10

20

f=11.995 GHz

-20 0 20

-20

-10

0

10

20

Im
E

z 
[k

V
/m

]

f=11.996 GHz

-20 0 20

-20

-10

0

10

20

f=11.997 GHz

-20 0 20

-20

-10

0

10

20

f=11.998 GHz

(a) (b) 

(c) 
(d) 



feeding waveguide and RF loads. The detailed procedure of RF coupler design using 

Ansoft HFSS code is described in [16]. After that we made the simulation of full CLIC 

main linac accelerating structure and verified RF phase advance per cell and internal 

reflections using the well-known “Kroll’s” method [17] (see Fig. 2). Finally we derived 

the secondary values (stored energy and RF power flow per cell) necessary for the 

unloaded gradient calculation. 

 

Fig. 3 Loaded (red) and unloaded (blue) gradients calculated accurately (solid) and 

approximately (dashed) for the CLIC main linac accelerating structure. In blue circles, the 

unloaded gradient calculated numerically is shown. 

 

Both the loaded and unloaded gradients are shown in Fig. 3 for an input RF power of 

61.3 MW which corresponds to an average loaded gradient of 100 MV/m. There is clearly 

a very good agreement between the accurate analytical solution and the numerical 
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simulation. In contrast, the approximate solution is quite different from the accurate 

solution due mainly to a significant (~30%) variation of the shunt impedance along the 

structure, see Table 1. 

 

3.  Transient Regime 

The transient regime can also be derived analytically. The instantaneous energy 

conservation is given by: 
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Substituting Eqs. (2.1), (2.2) and (2.4) into Eq. (3.1) yields: 
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We assume the following initial conditions: 
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First, we consider the unloaded case ( 0I ). In this case Eq. (3.4) becomes a 

homogeneous differential equation: 



),(ˆ),(
~̂

~̂
pzpzG

dz

Gd          (3.5) 

where 













gg

g

g v

p

Qvdz

d

dz

dv

v
pz

211

2

1
),(ˆ




 . The solution of Eq. (3.5), obtained in a 

similar manner to the solution of Eq. (2.7), is: 







z

g

z

zv

dz
p

ezgpG
dzpz

epGpzG
00

)'(

'

)(),0(
~̂'),'(ˆ

),0(
~̂

),(
~̂ 

   (3.7) 

 

where )(zg is defined in Eq. (2.13). The time-domain solution of Eq. (3.7) is obtained by 

applying the inverse Laplace transformation and its time shifting property: 
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is the signal time delay. Thus, the distribution of the unloaded gradient in time-domain 

along the structure is: 
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or taking into account Eqs. (2.11) and (2.13) it can be expressed as a function of the input 
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The solution of non-homogeneous Eq. (3.4) is obtained in a similar manner to the solution 

of Eq. (2.5) as a product of the solution to the homogeneous equation ),(
~̂

pzG  and a 
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Substituting Eqs. (3.5) and (3.11) into Eq. (3.12) yields: 
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and furthermore using Eqs. (3.7) and (3.8) 
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The solution of Eq. (3.14) can be obtained by integration in the form:
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Thus the time-dependent solution of Eq. (3.1) is obtained by applying the inverse Laplace 

transform to Eq. (3.16). Here again the time shifting property has been used:  
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where, )(z  is a function of the coordinate z and given by Eq. (3.8). 

The first term on the right hand side of Eq. (3.17) is the solution of the homogeneous 

equation for the unloaded gradient obtained above in Eq. (3.9) or Eq. (3.10) in terms of the 

input power. The second term is the so-called beam induced gradient which is the 

difference between the loaded and unloaded gradient distributions.  

For the CLIC main linac accelerating structure with the parameters from the Table 1, 

the time-dependent solution given by Eq. (3.17) during the transient related to structure 

filling and to beam injection is illustrated in Fig. 4 (a) and (b) respectively. In Fig. 5, the 

corresponding input power and beam-current time dependences are shown together with 

the unloaded, loaded and beam voltages defined as: 
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respectively, where L  is the structure length. In order to mitigate unwanted dispersion 

effects the signal front width is limited by a slow amplitude rise, with the rise time rt  = 22 



ns gvc  . The sum of the signal rise time rt  and the structure filling time 

( ) 66.7ft L   ns form the overall time of 89 ns corresponding to a transient of a cavity 

excitation. The total beam pulse length bt  is 312 0.5 156   ns and the beam current 

19 9 91.6 10 3.72 10 / (0.5 10 )e bI eN f         is 1.2 A [11]. 
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Fig. 4 The instantaneous unloaded (blue) and loaded (red) gradient distributions along the 

structure at different moments of time during the transient related to structure filling (a) 

and to the beam injection (b). The steady state solutions are shown as well (solid lines). 

 

Fig. 5 The time dependence of the input RF power (blue) with a rise time of 22 ns, beam 

current (green) and the corresponding unloaded (black), loaded (red) and beam (light blue) 

voltages are shown. 

A transient change in the loaded voltage just after the beam injection causes energy 

spread along a multi-bunch beam train. One possible method of transient beam loading 

compensation in TW structures is presented in the next section 

 

4.  Compensation of the transient beam loading 

The idea of transient beam loading compensation was proposed in 1993 at SLAC 

(USA) [18], where a linear ramp of the input RF amplitude has been applied to 
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numerical algorithm for beam loading compensation was developed in the framework of 

the NLC project in order to calculate the precise profile of the RF pulse wavefront [19]. 

Recently the effectiveness of this method of transient beam loading compensation has 

been experimentally verified at KEK (Japan) [20, 21]. 

In this paper, the exact modification of the input power during a filling time ft  needed 

to set the gradient distribution at the beam injection time equal to the steady-state loaded 

gradient solution )(zG is calculated. Thus, the loaded voltage remains flat during the time 

when the beam is on because the transient related to the beam injection is fully 

compensated by the transient of the cavity excitation itself (at least in the framework of 

the applied analytical model). 

Based on Eq. (3.9) the instantaneous gradient distribution at the moment of injection 

ftt  is: 
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Where )(0 ftG  is the steady-state value of the input gradient after injection. The input 

gradient in Eq. (4.2) indirectly depends on time. Introducing the function )(tz  as a solution 

of the following integral equation:
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Eq. (4.2) becomes an explicit function of time: 
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An expression for the input RF power is derived using Eq. (2.11): 
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where )(0 ftP  is the steady-state value of the input RF power after injection.  

 

Fig. 6 The input RF pulse profile with 22 ns rise time and ramp-up during the filling time 

for the transient beam loading compensation is shown in blue. Beam current injected 

exactly at the end of the ramp is shown in green. The corresponding unloaded, loaded and 

beam voltages are shown in black, red and light blue, respectively. 
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Fig. 7 The instantaneous unloaded gradient distribution along the structure at different 

moments of time is presented in (a). Special correction to the input RF pulse was applied 

(see Fig.6). In (b), the instantaneous unloaded gradient at different moments of time after 

beam injection is shown in blue. Solid lines represent the steady state distributions for 

loaded (red) and unloaded (blue) gradients. The beam injection time is 89 ns. 
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The solution of Eq. (4.5) is shown in Fig. 6 (blue) together with the beam current 

(green) injected exactly at the end of the ramp and the corresponding unloaded (black), 

loaded (red) and beam (light blue) voltages. The gradient distribution at different moments 

of time is presented for the compensated case in Fig. 7 (a) and (b) for the structure filling 

transient and the beam injection transient, respectively. 

 

Summary 

Analytical expressions for unloaded and loaded gradient distributions in travelling 

wave structures with arbitrary variation of parameters were derived in steady state and in 

transient. They were applied to the case of the CLIC main linac accelerating structure. The 

analytical solution agrees very well with the numerical solution obtained using finite-

element code. On the other hand, it differs from the approximate solution obtained using 

expressions derived earlier in [4]. Finally the exact analytical solution was found for the 

wavefront of input RF pulse which theoretically provides exact compensation of the beam 

loading effect. The derived analytical formulas are very useful during the preliminary 

stages of structure design and later for structure efficiency optimization. 
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