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ABSTRACT: This paper reports on a 6 kV modulator built and installed at Fermilab to drive the 
electron gun anode for the Tevatron Electron Lens (TEL).  The TEL was built with the intention 
of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 
bunches with the desire of improving Tevatron integrated luminosity.  This modulator is 
essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron 
beam intensity on a bunch-by-bunch basis.  A voltage waveform is constructed having a 7 μs 
duration that corresponds to the tune shift requirements of a 12-bunch (anti)proton beam pulse 
train.  This waveform is played out for any one or all three bunch trains in the Tevatron.  The 
programmed waveform voltages transition to different levels at time intervals corresponding to 
the 395 ns bunch spacing.  Thus, complex voltage waveforms can be played out at a sustained 
rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the 
inductive adder topology employing five transformers.  It describes the design aspects that 
minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor 
application.   
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1. Background and introduction 

1.1 Background 

Beam-beam effects related to Tevatron luminosity are described in [1].  One of the measures 
anticipated to counteract adverse beam-beam effects was to implement bunch-by-bunch tune 
shifting of individual (anti)proton bunches by use of the Electron Lenses installed in the 
Tevatron [2].  To be to most effective, the TEL would need to be able to shift the tunes of all 36 
bunches to even out the tune spread.  This modulator was designed to drive the electron gun 
anode for this task and was installed in the fall of 2008 into TEL2.      

1.2 Modulator requirements 

The Tevatron bunch structure determines the modulator’s timing requirements.  The tune shift 
range in addition to the gun purveyance determine the necessary modulator output voltage 
range.  By the year 2008, it was determined that even 5 kV would be adequate.  Internal power 
dissipation is certainly a limiting factor when switching to kilovolts at these rep rates and high 
duty factors.  Therefore, understanding the timing issues provides an overview of the rationale 
for the modulator design. 

There are 36 bunches of both protons and antiprotons in the Tevatron traveling in opposite 
directions.  Both particle beams contain three bunch trains containing 12 bunches followed by a 
2.6 μs abort gap.  Bunches are spaced 395 ns apart.  It was determined that the pattern of shifted 
tunes was nearly the same for all three trains.  Therefore, the modulator was designed to store 
information to produce a single voltage waveform to compensate uneven tunes in one 12-bunch 
pulse train.  This waveform can then be triggered for any one of the three (anti)proton bunch 
trains, or it can be triggered for all three continuously and thereby even out the tunes of all 36 



 
 

– 2 –

Tevatron bunches.  The tune shift pattern varies from one Tevatron store to another, and the 
stored waveform in the modulator can be updated remotely over Ethernet at any time. 

Adequate resolution for equalizing the tune shifts can be satisfied with a fixed number of 
discrete voltages and need not be infinitely adjustable.  For this reason the modulator’s output 
resolution of “arbitrary” voltages is 16 discrete voltage levels from minimum to maximum.  The 
modulator output steps to different values and must settle to a reasonable level by the time of 
arrival of a Tevatron beam bunch. The modulator outputs the minimum (or the lowest) voltage 
for those bunches whose tunes are not to be shifted and is always the minimum value during the 
abort gap.  Figure 5 is an example of an output waveform compensating a 12-bunch train. 

This modulator was designed to output complex waveforms over a 6.4 kV range.  
Absolutely, the output voltage will transition to the maximum—in some zigzag pattern—and 
back to minimum once in each 7 s waveform period.  Also, this waveform can be triggered for 
each of the three pulse trains.  This means that voltages will transition from minimum to 
maximum at 143 kHz.  However, existing tune shift patterns are more complicated than that.  
To even out the tune spread of one 12-bunch train requires the capability of going from 
minimum to maximum and back not once but as many as three times within each 7 s 
waveform period.  This means the modulator would have to be able to switch fully on and off at 
a sustained average rate of 429 kHz to even out all 36 Tevatron bunches.  This is what is meant 
by “worst case switching”. 

2. Modulator design 

Figure 1 is the block diagram of the modulator showing the major circuit components and 
system connections.  The modulator is referenced to ground, but its output is capacitively 
coupled to the electron gun anode that is DC biased to the cathode.  The heart of the modulator 
is the voltage adder comprised of transformers T1-5. The transformer primaries are driven by H-
bridges independently, but their voltages are summed through the series-connected secondaries.   

 

 

Figure 1.  Simplified modulator block diagram and external connections. 

 
This modulator was designed to drive the gun anode with positive voltage—anode to 

cathode.  Positive anode voltage Va generates electron current Ie following the expression: 
2/3kVaIe  , where k is the gun’s purveyance.  Any negative anode to cathode voltage cuts the 

gun off.  This modulator’s output is AC coupled out of necessity because of the use of 
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transformers, but can be DC shifted at the gun anode.  Voltage waveforms of arbitrary 
amplitude are constructed by a combination of two things:  (1) setting the value of DC voltage 
VIN to define the dynamic voltage range and (2) controlling the bipolar drive of the H-bridges 
to define the waveform pattern.  The DC power supply VIN is external to the modulator and is 
independently controllable over the continuous range of 0 – 800 V DC.  Once set, VIN remains 
fixed. 

The bipolar drive capability of H-bridges is utilized.  The H-bridges are always switched to 
one of three states:  positive, negative or zero.  The positive state occurs when the H-bridge 
applies +VIN to the primary.  When the H-bridge is switched to the negative state –VIN is 
applied to the primary.  The H-bridge shorts out the primary in the zero state.  Note that the 
normally-off, or default, switch state is negative.  This enables the modulator to be used 
conceptually as a unipolar generator that outputs positive voltage waveforms.  Each transformer 
contributes a positive voltage when the H-bridge is switched to either of the two states other 
than the negative state.  In other words, the transformers are driven with either 0, 1×VIN or 
2×VIN. 

The magnitude of voltage contributed by each transformer depends on its turns ratio.  
Transformers T1-3 have a turns ratio of 1:1 and T4 and T5 are wound 2:1.  The modulator 
output is simply the sum of secondary voltages, and the maximum waveform peak-to-peak 
voltage the modulator will output for a given VIN setting is 

 
].[8))2/1(23(2max_ VppVINVINVo   

 
For example, Vo_max is 6.4 kV when VIN is 800 V DC and all H-bridges are switched to 
“positive”.     Given that there are two different turns ratios among the five transformers means 
there are always 16 equally spaced discrete output voltages that can possibly be generated by 
controlling the H-bridges in various drive combinations.  Two different turns ratios were 
implemented in order to provide better resolution over the output voltage range compared with 
having all five transformers the same.  The number of optional voltages is 16 in this case rather 
than 10.   

In practice, the maximum electron beam current is decided first, from which Vo_max is 
determined.  This then determines the needed input voltage VIN.  The minimum settable 
voltage step size within the constructed waveform is Vo_max/16 (or VIN/2).   

The H-bridges are controlled independently and can be switched from any state to any 
state.  H-bridges that will be changing state do so at the same time and synchronous with the RF 
clock at the defined 395 ns spaced, beam bunch time slots.  The resulting output voltage step-
changes to the arbitrary voltage to produce the desired electron current for each (anti)proton 
beam bunch. 

The capacitors C1 shown in Figure 1 play an important role.  First of all, they provide DC 
blocking to allow the H-bridges to output DC voltage VIN indefinitely.  Secondly, as switching 
commences, a voltage develops across C1 that results in the voltage across the transformer 
primary to automatically average to zero volts—regardless of the H-bridge switching pattern 
duty factor.  The transformers will not march towards saturation.  This allows the generation of 
truly arbitrary waveforms to be generated.   

Capacitor C2 enables the output to be DC offset by way of the Offset Bias PS making full 
use of AC coupled, high duty factor waveforms to generate electron beam.  The Offset Bias PS 
voltage can be made to shift the anode voltage such that the waveform’s minimum voltage is 
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equal to the cathode voltage.  When this is done, all waveform voltage above the minimum will 
generate electron beam.  Use of the Offset Bias PS is optional.  As long as enough voltage can 
be generated at the anode to produce desired beam current, it doesn’t matter how much the 
anode is driven below the cathode; and low duty factor waveforms do not result in much DC 
shift anyway. 

3. Transformer design 

Crucial to the modulator performance is the transformer design.  Transformer parasitics define 
the modulator’s pulse response characteristics. These effects only compound as multiple 
transformers are stacked in series.  Requirements are that the modulator output settles to a 
reasonably flat in ~400 ns.  Figure 2 shows the secondary side parasitics SPICE model used in 
development.   

 

Figure 2.  Transformer secondary side equivalent circuit model.  LLK’s are the transformer leakage 
inductances reflected to the secondary side.  The secondary voltages are represented by the V’s.  Cs’s are 
the secondary stray capacitances and the resistors, labeled as appearing in Figure 1, are added to dampen 
the pulse response. 

Tests were made to verify a good pulse transformer parasitics model.  Pulse responses 
were compared between SPICE simulations and those of driving a wound transformer.  
Measured transformer parasitics were put into the SPICE model for a single RLC section of the 
Figure 2 circuit.  Comparison was made by adjusting dampening resistor values until both 
circuits were critically damped.  (The load was open circuit.)  The result was that SPICE’s pulse 
response rise time was only about 20% slower than the real circuit.  Thus, SPICE modeling was 
effective in guiding the iterative design process. 

The expression used for calculating secondary leakage inductance of the transformer 
design is  

)H(
104 27


 P

LK
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L
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 in mks units, 

where NP is the number of primary turns, A is area between primary and secondary coils and λ is 
the height of the primary winding [3].  The primary and secondary winding heights are equal, 
and both are single layer.  Layers of .010 inch mica impregnated Nomex® 418 insulation and 
the secondary winding are wound tightly over the primary winding on all transformers.  Also, 
the secondary turns of T1-3 are located directly over the primary windings of these 1:1 
transformers to help reduce leakage inductance.  As suggested in the above expression, 
spreading apart the windings to increase the winding height also lowers leakage inductance.  
This was found to be true except to a winding separation of about 0.15 inches beyond which 
little more is gained.  The need for increased dielectric strength increases with each transformer, 
so the number of insulation layers progresses from T1 to T5.   

The expression used for calculating stray secondary to primary capacitance with a turns 
ratio 1:1 is 
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where ɛ is the dielectric constant of the medium between primary and secondary, S is the mean 
circumference of the primary and secondary and d is the distance between primary and 
secondary [4].  

Placing a resistor in series with each transformer secondary, as shown as R1-5 in Figures 1 
and 2, very effectively dampens the output pulse response resulting from the parasitics of these 
five transformers.  To achieve critical dampening of the overall circuit, each resistor simply 
needs to be the value obtained from the expression R = 2×√(LLK / Cs) of each transformer.  The 
calculated resistor values were close to each other, however, so a single value was chosen for all 
five.  Once constructed, the resistors needed to be decreased by adding parallel resistors to 
account for unanticipated parasitic capacitance of the final assembly.   

There is a second important role resistors R1-5 play.  They dissipate the power from 
charging to high voltage and discharging all the parasitic capacitance in the transformer 
secondary circuit.  Capacitive currents flow through the resistance in series—composed of these 
resistors and the Rds-on FET resistance—where I2R power is dissipated.  This average power is 
calculated from CV 2f, where C is each capacitance, V is the capacitor voltage and f is the 
switching rate.  Something less than 5% is dissipated in the H-bridge FETs, so these physical 
resistors not only dampen the output response, but they dissipate significant switching losses 
rather than the H-bridge FET’s.  The parasitics on the output lead is about 140 pF; so for 
example, a single pulse to maximum voltage once every Tevatron revolution results in 270 W of 
dissipation in this part of the circuit, while worst case switching could be over 2 kW.  (The 
modulator has never been run at worst case.) 

 

Table 1.  Measured transformer parameters.  Np and Ns are primary and secondary turns. Lp and LLK are 
primary excitation and leakage inductance. Cs is secondary stray capacitance. λ is winding height. d is 
primary to secondary distance. Vc is secondary winding corona extinction voltage (primary grounded). 

X  Np  Ns 
Lp 
(µH) 

LLk 
(µH) 

Cs 
(pF) 

λ 
(in.) 

d 
(in.) 

Vc 
(volts) 

1  11  11  2130 2.13 42 2.25 .050 1400

2  11  11  2430 2.09 42 2.25 .050 1600

3  11  11  2076 2.28 34 2.0 .060 2500

4  10  5  1520 3.79 25 1.6 .080 3150

5  10  5  1520 3.75 22 1.6 .080 3000

 
The measured transformer parameters are listed in Table 1 of the final assembly.  Estimates 

of average core flux density were made to better understand core losses and to choose the core 
size.  The design intended to allow for sustained switching at up to 429 kHz.  Manganese-zinc 
ferrite material MN8CX from Ceramic Magnetics, Inc. was chosen.  The vendor’s expression 

for core loss of this material is 9.15.216109.5 FBP  , where P’ is power per unit volume in 
mW/cm3, B is flux density in Gauss and F is switching frequency in Hertz.  It was observed by 
making measurements of a wound sample core that losses were nearly half of what would be 
expected from this loss expression assuming the magnitude of B is the sinusoid peak when 
switching at rate F.   
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Given the core loss expression above, core loss P (Watts) relates to the cross sectional area 

A as: 2/31 AP   for a rectangular core in which the core size does not change much in the 

direction of the flux path for variations in core area.  This shows that core losses decrease at a 
faster rate than incremental increases in its area.  Thus, increasing core area buys not only lower 
core temperature but fewer primary turns that, in turn, decreases leakage inductance.  The core 
size chosen for all transformers was 2.0 square inches.  Actual power dissipation of these 
transformers was measured for three switching rates and is shown in Figure 4. 

4. H-bridge design  

An H-bridge and transformer are assembled as a module as shown in Figure 3.  This minimized 
lead length and related leakage inductance.  The FET heat sinks and transformer core are close 
together forming a channel through which the forced air is directed for cooling. 
 

  

Figure 3.  H-bridge and transformer assembled module.  Diagram shows direction of currents in the 
positive (ip), negative (in) and zero (iz) switch states. 

The FET conducted currents are small, so both I2R conduction losses as well as transition 
switching losses are on the order of a few watts each per FET.  However, switching losses due 
to charging and discharging drain to source capacitance are much larger.  The FET Rds-on is the 
only resistance in series with this capacitance to dissipate the stored energy.  Each FET 

dissipates on average fVINCP 2  (Watts), where C is the total capacitance across both 

transistors of a half-bridge and f  is the H-bridge switching rate.  These switching losses were 
measured with no load connected to the H-bridge and are shown in Figure 4 on the left. 

The MOSFETs are IXZR08N120 from IXYS Corp. chosen for having low COSS and fast 
switching characteristics.  The dead-time delay was fixed at 10 ns between each FET turn off 
and the turn on of the other FET in each half-bridge.  Extra diodes were added to prevent 
damaging the FET’s when commutating reverse current.  These diodes are shown in Figure 3. 
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Figure 4.  Switching losses measured in the H-bridge and the transformers.  H-bridge switching losses 
are evenly distributed among all four FET’s.  Switching rate “single” is a complete positive to negative 
switching cycle one time at 143 kHz, “double” is twice at 286 kHz and “triple” is three times at 429 kHz.  
(The data set is not complete for “double”.) 

5. Performance 

Figure 5, left, shows the modulator output of an 790 ns wide pulse produced with VIN set equal 
to 500 V.  All H-bridges transition together from negative to positive and back to negative to 
produce it.  The 10-90% rise time is 200 ns.   

A much more complex waveform is shown on the right that was programmed to 
compensate the 12-bunch trains of Tevatron store #5162.  Voltage for each bunch was chosen 
that generates a desired electron beam current to shift that bunch’s tune.  The waveform is 
repeated with bunch 13, etc., showing the single waveform used to compensate back-to-back 
Tevatron 12-bunch trains.  VIN was set to 600 V, and the maximum voltage produced, anode to 
cathode, is 4800 V at bunch 12.  Anode to cathode voltage of zero occurs at bunch 5 as well as 
during the abort gap between bunches 12 and 13.  This waveform is shown without the bias 
offset voltage applied at the anode.   
 

    

Figure 5.  Modulator output response plots.  Left is a single pulse, 790 ns wide with VIN equal to 500 
Vdc.  Right is the response to compensate each Tevatron bunch.  A 2.6 μs abort gap is between bunch 12 
and 13.  The arrows show the alignment of the antiproton bunches with the voltage waveform. 
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6. Construction 

A chassis was specially designed for the modulator.  H-bridge/transformer modules are enclosed 
in shielded compartments that allow forced air to flow in a directed manner across the FET’s, 
transformer cores and secondary side resistors.  One 300 cfm fan forces air throught the chassis.  
The inside of the chassis behind the front door is shown on the left of Figure 6.  The five H-
bridge/transformer modules are behind the panels with holes.  These panels shield the low level 
trigger signals orginating from the controller out of view on the left of the chassis. 

It is worth mentioning that gate drive isolation was accomplished using ADuM1100 
iCoupler digital isolators from Analog Technology and/or Si8844x digital isolators from Silicon 
Laboratories.  These fast isolators allow for low jitter in preserving nano-second timing across 
800 V and have high common mode transient immunity greater than 25 kV/μs. 

On the right of Figure 6 are the secondary side components in the rear of the chassis— 
between another shielding panel and the rear door.  This separate shielded region houses 
resistors R1-5 and capacitor C2 as labeled in Figure 1.  Observable is the manner that these 
resistor values were reduced in value to tune the circuit for critically dampening by the addition 
of resistor strings across the 200 Watt Globar resistors.  Also labeled are transformers T1-5 
located on the other side of the panel.   
 

    

Figure 6.  Photos of the inside front, on the left, and rear chassis, on the right.   

7. Conclusion 

This modulator demonstrates the effectiveness of driving transformers in a bipolar manner 
in an inductive adder topology to generate high rep rate, high duty factor, kilo-volt waveforms.  
Capacitors in series with the transformer primaries prevent transformers from saturating and 
allows truly arbitrary waveforms to be generated.  Employing transformers having different 
turns ratios increases resolution of selectabe output values. 
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